½ÃÀ庸°í¼­
»óǰÄÚµå
1284081

¼¼°èÀÇ ¸Ó½ÅºñÀü Ä«¸Þ¶ó ½ÃÀå Àü¸Á(-2028³â) - ½Ã½ºÅÛ, À¯Çü, ¹èÆ÷, Ä«¸Þ¶ó À¯Çü ¼¾¼­ À¯Çü, ±¸¼º ¿ä¼Ò, Çȼ¿ À¯Çü, ·»Áî À¯Çü, ½ºÆåÆ®·³ À¯Çü, ¿ëµµ, ÃÖÁ¾ »ç¿ëÀÚ, Áö¿ªº° ºÐ¼®

Machine Vision Camera Market Forecasts to 2028 - Global Analysis By System, Type, Deployment, Camera Type Sensor Type, Component Pixel Type, Lens Type, Spectrum Type, Application, End User and Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 175+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é, ¸Ó½ÅºñÀü Ä«¸Þ¶ó ¼¼°è ½ÃÀåÀº 2022³â 120¾ï ´Þ·¯, 2028³â¿¡´Â 200¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ¿¹Ãø ±â°£ µ¿¾È 9.4%ÀÇ CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸Ó½ÅºñÀü Ä«¸Þ¶ó´Â Ư¼öÇÑ ±¤ÇÐ ÀåÄ¡¸¦ °®Ãá µðÁöÅÐ ¼¾¼­·Î À̹ÌÁö¸¦ ÃÔ¿µÇϰí, ÄÄÇ»ÅÍ Çϵå¿þ¾î¿Í ¼ÒÇÁÆ®¿þ¾î·Î ó¸®, ºÐ¼®, ÃøÁ¤ÇÏ¿© Á¤È®ÇÑ °á°ú¸¦ ¾ò´Â´Ù. ¸Ó½ÅºñÀü Ä«¸Þ¶ó´Â ÀûÀýÇÑ ÇØ»óµµ¿Í ±¤ÇÐ ½Ã½ºÅÛÀ¸·Î ±¸¼ºµÇ¸é »ç¶÷ÀÇ ´«¿¡´Â º¸ÀÌÁö ¾Ê´Â ¹Ì¼¼ÇÑ ¹°Ã¼ÀÇ ¼¼ºÎ »çÇ×À» ½±°Ô Á¶»çÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÃÖ±Ù ½ÃÀå Á¶»ç¿¡ µû¸£¸é, ¸Ó½ÅºñÀü Ä«¸Þ¶ó´Â ÃøÁ¤ ¹× °èÃø ¿ëµµ¸¦ ÅëÇØ ¸ÅÃâÀÇ 26% ÀÌ»óÀ» âÃâÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

½ÃÀå ¿ªÇÐ :

¼ºÀå ÃËÁø¿äÀÎ

ÀΰøÁö´É(AI)¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡

ÀΰøÁö´ÉÀÌ Å¾ÀçµÈ ¸Ó½ÅºñÀü ½Ã½ºÅÛÀº Å« ÆíÂ÷°¡ ÀÖ´Â °áÇÔÀ» ½Å¼ÓÇÏ°Ô ½Äº°ÇÏ°í ´ëºñÇÒ ¼ö ÀÖ½À´Ï´Ù. Á¦Á¶ ½Ã¼³¿¡¼­´Â AI ±â¹Ý ¼Ö·ç¼ÇÀ» »ç¿ëÇÏ¿© ÀÚ»êÀ» ÃÖ´ëÇÑ È°¿ëÇϰí, ´Ù¿îŸÀÓÀ» ÁÙÀ̸ç, ±â°è È¿À²À» ³ô¿© »ý»ê¼ºÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, AI ±â¹Ý ¼Ö·ç¼ÇÀº °áÇÔÀ» °¨ÁöÇÏ°í °øÀå ¼³ºñÀÇ ¿¹Áöº¸ÀüÀ» Áö¿øÇÔÀ¸·Î½á ǰÁú °ü¸®¸¦ ÅëÇØ »ý»ê¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖÀ» °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ, AI ±â¹Ý ½Ã½ºÅÛÀº °ú°Å¸¦ µÇµ¹¾Æº¸°í À̸¦ ÅëÇØ ÇнÀÇϰí, ÇöÀç¿¡ ÇൿÇϰí, ¹Ì·¡¸¦ ¿¹ÃøÇÒ ¼ö ÀÖ½À´Ï´Ù. °á°úÀûÀ¸·Î ¸Ó½Å ºñÀü ºÐ¾ßÀÇ AI Çʿ伺Àº ÀÌ »ê¾÷¿¡¼­ ³ôÀº ¼ºÀå °¡´É¼ºÀ» ±â´ëÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù.

¾ïÁ¦¿äÀÎ :

ºü¸£°Ô º¯È­ÇÏ´Â ¸Ó½ÅºñÀü ±â¼ú¿¡ ´ëÇÑ »ç¿ëÀÚÀÇ ÀÎ½Ä ºÎÁ·

´ëºÎºÐÀÇ »ç¶÷µéÀÌ ÀÌ ±â¼úÀÌ ¾î¶»°Ô ÀÛµ¿ÇÏ´ÂÁö Àß ¾ËÁö ¸øÇϱ⠶§¹®¿¡ »ç¾÷ÁÖµéÀº Á÷¿øµé¿¡°Ô AI ±â¹Ý ±â±âÀÇ ±â¼úÀû ´É·Â¿¡ ´ëÇØ ±³À°ÇÒ Çʿ䰡 ÀÖ½À´Ï´Ù. ¸Ó½Å ºñÀü ±â¼úÀº AI ±â¹Ý ¼Ö·ç¼ÇÀ¸·Î ÀÎÇØ ºü¸£°Ô º¯È­ÇÏ°í °³¼±µÇ°í ÀÖ½À´Ï´Ù. ÀÌó·³ ºü¸£°Ô ÁøÈ­ÇÏ´Â ±â¼ú¿¡ µû¶ó ±³À°¿¡ ¼Ò¿äµÇ´Â ºñ¿ë°ú ±â°£µµ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±³À°ÀÌ Á¦´ë·Î ÀÌ·ç¾îÁöÁö ¾ÊÀ¸¸é ¸Ó½ÅºñÀü ½Ã½ºÅÛÀ» Á¦´ë·Î ÇÁ·Î±×·¡¹ÖÇÏÁö ¸øÇØ À߸øµÈ ¹ß°ßÀ» ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹®Á¦µéÀº ¸Ó½ÅºñÀü ±â¼úÀÇ ºü¸¥ º¯È­·Î ÀÎÇØ ½ÃÀå È®´ë¿¡ ¾î·Á¿òÀ» °Þ°í ÀÖ½À´Ï´Ù.

±âȸ :

ºñÀü °¡ÀÌµå ·Îº¿ ½Ã½ºÅÛ¼ö¿ä Áõ°¡

°¡Àü Á¦Á¶¾÷üÀÇ Ç°Áú °ü¸®, Á¦Ç° ÃøÁ¤, ÀÌ»óÀûÀÎ ¹èÄ¡, ¿¹Áöº¸Àü µîÀÇ ÀÛ¾÷À» ÀÚµ¿È­Çϱâ À§Çؼ­´Â ºñÀü °¡ÀÌµå ·Îº¿ ½Ã½ºÅÛÀ» »ç¿ëÇØ¾ß ÇÕ´Ï´Ù. ºñÀü °¡À̵åÇü ·Îº¿Àº ¾ÈÀü À庮ÀÌ ¾ø¾îµµ Ãæµ¹À» ¹æÁöÇÒ ¼ö Àֱ⠶§¹®¿¡ °øÀ¯ »ç¹«½Ç¿¡¼­ »ç¶÷°ú ÇÔ²² ¾ÈÀüÇÏ°Ô ÀÛ¾÷ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ »ê¾÷°ú °¡Àü »ê¾÷¿¡¼­´Â »ê¾÷¿ë ·Îº¿À» ÀÌ¿ëÇÑ ÀÚµ¿È­°¡ ºü¸£°Ô ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó ¸Ó½ÅºñÀü ½Ã½ºÅÛ°ú ºñÀü °¡ÀÌµå ·Îº¿ ÄÁÆ®·Ñ·¯¸¦ ÅëÇÕÇÏ´Â ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

À§Çù

»ê¾÷¿ë ±â°è ·Îº¿ ¹× ÀåÄ¡¿¡ ´ëÇÑ »çÀ̹ö °ø°Ý À§Çè ±ÞÁõ

µ¥ÀÌÅÍ ÇØÅ·°ú °èÁ¤ ÇØÅ·Àº »ê¾÷¿ë ·Îº¿ÀÇ ÀÛµ¿¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â µÎ °¡Áö ½É°¢ÇÑ ¿ì·Á »çÇ×ÀÔ´Ï´Ù. ÀÌ ºÐ¾ß¿¡¼­´Â AI ¸Ó½Å ºñÀü ¹× ÄÄÇ»ÅÍ ºñÀü°ú °°Àº ÷´Ü ±â¼úÀÇ Ã¤ÅÃÀÌ Á÷Á¢ÀûÀ¸·Î ¿µÇâÀ» ¹ÌÄ¥ °ÍÀÔ´Ï´Ù. ÀΰøÁö´É(AI) ±â¹Ý ¸Ó½ÅºñÀü ½Ã½ºÅÛÀº »çÀ̹ö °ø°Ý¿¡ Ãë¾àÇÏ¿© ±× È¿°ú¸¦ ¶³¾î¶ß¸± ¼ö ÀÖ½À´Ï´Ù. »çÀ̹ö °ø°ÝÀ¸·Î ÀÎÇØ Á¤È®¼º, ¾ÈÀü¼º, ¹«°á¼ºÀÌ ¼Õ»óµÇ¾î È¿À²¼ºÀÌ ¶³¾îÁö°í, Á¦Á¶ °øÁ¤ÀÇ °áÇÔÀ¸·Î ÀÎÇØ ½ÃÀå °¡Ä¡°¡ Ç϶ôÇÒ ¼ö ÀÖ½À´Ï´Ù. µû¶ó¼­ »ê¾÷±â°è ·Îº¿ ¹× °¡Á¬¿¡ ´ëÇÑ »çÀ̹ö °ø°ÝÀÇ °¡´É¼ºÀº ½ÃÀå È®´ë¸¦ µÐÈ­½ÃŰ´Â ¾ïÁ¦¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ :

Äڷγª19¸¦ ¾ÕµÎ°í ¼¼°è »ê¾÷°è´Â ÀÚµ¿È­¿¡ ´ëÇÑ ÅõÀÚ¸¦ ´Ã¸®±â·Î ¾à¼ÓÇß½À´Ï´Ù. ¶ÇÇÑ ±â¾÷µéÀÌ Á¦Á¶ °øÁ¤¿¡¼­ ÀÚµ¿È­µÈ ǰÁú º¸ÁõÀÇ °¡Ä¡¸¦ ÀÌÇØÇÏ°Ô µÇ¸é¼­ ¼ö¿ä°¡ Áõ°¡Çß°í, Äڷγª19 »çÅ·ΠÀÎÇØ ¸¹Àº ÀÛ¾÷¿¡¼­ »ç¶÷ÀÇ °³ÀÔÀÌ ÁÙ¾îµé¸é¼­ ¼¼°èÀûÀ¸·Î ¸Ó½ÅºñÀü Ä«¸Þ¶ó¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çß½À´Ï´Ù. ±× °á°ú, ¸Ó½ÅºñÀüÀº ÀÚµ¿È­ÀÇ Àå±âÀûÀÎ ¹ßÀü¿¡ ¾ø¾î¼­´Â ¾È µÉ Çʼö ¿ä¼Ò·Î ³Î¸® ¾Ë·ÁÁö°Ô µÇ¾ú½À´Ï´Ù. ¸Ó½ÅºñÀüÀº ÀÚµ¿È­µÈ Á¦Á¶ °øÁ¤¿¡¼­ ¹®Á¦¸¦ ½Å¼ÓÇÏ°Ô ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù. ±× °á°ú ºñ¿ëÀÌ Àý°¨µÇ°í ¹ÝÀÀ ¼Óµµ°¡ »¡¶óÁý´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¼ÒÇÁÆ®¿þ¾î ºÎ¹®ÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»ó

¼ÒÇÁÆ®¿þ¾î ºÐ¾ß´Â À¯¸®ÇÑ ¼ºÀå¼¼¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. »ý»ê ¶óÀΰú Ä«¸Þ¶óÀÇ ÀÎÅÍÆäÀ̽º´Â »ê¾÷¿ë ¸Ó½Å ºñÀü ¼ÒÇÁÆ®¿þ¾î Ä÷º¼Ç¿¡ Æ÷ÇÔµÈ ¼ÒÇÁÆ®¿þ¾î µµ±¸¸¦ ÅëÇØ Á¦°øµË´Ï´Ù. ÇÁ·Î±×·¡¸Ó´Â ¸®´ª½º OS°¡ žÀçµÈ ½º¸¶Æ® Ä«¸Þ¶ó¸¦ »ç¿ëÇÏ¿© ºñ¿ëÀ» ÁÙÀ̸鼭 ºñÀü ½Ã½ºÅÛÀÇ È¿À²¼ºÀ» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. ÁÖ¿ä ±â¾÷µéÀº °³¹æÇü ½Ã½ºÅÛ ½º¸¶Æ® Ä«¸Þ¶ó¸¦ ¸¸µå´Â µ¥ ÁÖ·ÂÇϰí ÀÖÀ¸¸ç, ½Ã½ºÅÛ ÅëÇÕ»ç¾÷Àڴ Ÿ»ç ¶Ç´Â ¿ÀǼҽº ¼ÒÇÁÆ®¿þ¾î Á¦°ø¾÷ü·ÎºÎÅÍ ÇÊ¿äÇÑ ¾ÖÇø®ÄÉÀÌ¼Ç ¼ÒÇÁÆ®¿þ¾î¸¦ ÅëÇÕÇÒ ¼ö ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ºÐ¾ß´Â Â÷·®¿ëÀÔ´Ï´Ù.

ÀÚµ¿Â÷ ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå ºü¸¥ CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÚÀ² ÁÖÇà ÀÚµ¿Â÷ÀÇ µîÀå°ú »ý»ê ¼³ºñ ÀÚüÀÇ ÀÚµ¿È­·Î ÀÎÇØ ÀÚµ¿Â÷ »ê¾÷Àº ºü¸£°Ô º¯È­Çϰí ÀÖ½À´Ï´Ù. ÁÖÂ÷ Ä«¸Þ¶ó, »çÀÌµå ºä¿ë CMS Ä«¸Þ¶ó, ÀÚµ¿Â÷¸¦ 360µµ µÑ·¯½Î°í ÀÖ´Â SVS Ä«¸Þ¶ó µî ¸Ó½ÅºñÀü Ä«¸Þ¶óÀÇ »ç¿ëÀº Áö¼ÓÀûÀÎ ±â¼ú °³¼±ÀÇ °á°ú·Î È®´ëµÇ°í ÀÖ½À´Ï´Ù. ¸Ó½ÅºñÀü Ä«¸Þ¶ó ½ÃÀåÀº ¼¼°èÀûÀ¸·Î ADAS¿Í ÀÚÀ²ÁÖÇàÂ÷ÀÇ º¸±ÞÀÌ È®´ëµÇ°í ÀÖ´Â °ÍÀÌ ¹è°æÀÌ µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ, ¸Ó½ÅºñÀü Ä«¸Þ¶ó´Â »õ·Î¿î ºÎǰ °³¹ß ¹× ÀÚµ¿Â÷ Á¦Á¶ °øÁ¤ÀÇ °Ë»ç ´Ü°è¿¡¼­ ÃøÁ¤¿¡ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÇÁ·Î±×·¥¿¡´Â ¶óÀÎ ½ºÄµ Ä«¸Þ¶ó, 3D À̹Ì¡ Ä«¸Þ¶ó, ¹ÙÄÚµå ½ºÄ³³Ê µîÀÇ ÀåÄ¡°¡ Ȱ¿ëµË´Ï´Ù.

°¡Àå ³ôÀº Á¡À¯À²À» º¸ÀÌ´Â Áö¿ª

¾Æ½Ã¾ÆÅÂÆò¾çÀº ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ °Å´ëÇÑ ½ÃÀå Á¡À¯À²°ú Áö¿ªÀû È®´ë´Â ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ÀÚµ¿Â÷, Æ÷Àå, Á¦¾à ¹× ±âŸ »ê¾÷ ÀÀ¿ë ºÐ¾ß¿¡¼­ À¯¸®ÇÑ ÀáÀç·ÂÀÌ Àֱ⠶§¹®À¸·Î º¸ÀÔ´Ï´Ù. ÀÌ Áö¿ªÀÌ ¼¼°èÀûÀÎ Á¦Á¶¾÷ÀÇ Áß½ÉÁö·Î ¹ßÀüÇϰí Àֱ⠶§¹®¿¡ ÀÌ ±â¼úÀº ¿¹»ó ±â°£ µ¿¾È ºü¸¥ ¼Óµµ·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Áß±¹°ú ÀϺ»Àº ¸Ó½ÅºñÀü°ú °°Àº ÷´Ü ±â¼ú°ú ±âÁ¸ ±â¼ú ¸ðµÎ¿¡ ´Ù¾çÇÑ ¿É¼ÇÀ» Á¦°øÇÒ ¼ö ÀÖ´Â Áß¿äÇÑ ±¹°¡·Î ²ÅÈü´Ï´Ù. Áö¿ª °æÁ¦ÀÇ ¼ºÀå°ú ¹ø¿µÀº ´Ù¾çÇÑ »ê¾÷ ºÎ¹®¿¡ ÀÇÇØ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

ºÏ¹Ì´Â ¸Ó½ÅºñÀü ½Ã½ºÅÛÀÇ ÁÖ¿ä ½ÃÀåÀÎ ¹ÝµµÃ¼ ºÎ¹®ÀÇ ¿ìÀ§·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. MV ±â¼úÀº ÀÚÀ²ÁÖÇàÂ÷, AI ±â¹Ý ÇÇÅ·, °Ë»ç ±â¼ú Çâ»ó°ú °°Àº ÀÚµ¿È­ ¿ëµµ¿¡ ÅëÇÕÇϱâ À§ÇØ ¼ÒÇüÈ­, ½º¸¶Æ®È­ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ ¸ðµç °ÍÀÌ ÀÌ ºÐ¾ßÀÇ MV ½Ã½ºÅÛ ¼ö¿ä¸¦ Áõ°¡½Ãų °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ÁÖ¿ä ¹ßÀü :

2021³â 3¿ù, Äڱ׳ؽº´Â Ãֽм¼´ëÀÇ ÈÞ´ë¿ë ¹ÙÄÚµå ¸®´õ±âÀÎ DataMan 8700 ½Ã¸®Á Ãâ½ÃÇß½À´Ï´Ù. ÀÌ Á¦Ç°Àº ¼º´É¸é¿¡¼­ ÃÖ÷´ÜÀ̸ç, Á¶ÀÛÀÌ ¸Å¿ì °£´ÜÇÏ°í »çÀü ¹Ì¼¼ Á¶Á¤À̳ª ¿î¿µÀÚ ±³À°ÀÌ ÇÊ¿äÇÏÁö ¾Ê½À´Ï´Ù.

2021³â 3¿ù, Äڱ׳ؽº´Â ¹ÙÄÚµå ½ºÄµ ¼º´É ¸ð´ÏÅ͸µ ¹× ÀåÄ¡ °ü¸®¸¦ ÅëÇØ °í°´ÀÇ ´Ù¿îŸÀÓÀ» ¹æÁöÇϰí Á¦Á¶ ¹× ¹è¼Û ¾÷¹«ÀÇ È¿À²¼ºÀ» ³ôÀÏ ¼ö ÀÖµµ·Ï Áö¿øÇÏ´Â Cognex Edge Intelligence(EI)¸¦ ¹ßÇ¥Çß½À´Ï´Ù.

º» º¸°í¼­°¡ Á¦°øÇÏ´Â °Íµé

  • Áö¿ªº° ¹× ±¹°¡º° ½ÃÀå Á¡À¯À² Æò°¡
  • ½Å±Ô ÁøÀÔ±â¾÷¿¡ ´ëÇÑ Àü·«Àû Á¦¾È
  • 2020³â, 2021³â, 2022³â, 2025³â, 2028³â ½ÃÀå µ¥ÀÌÅ͸¦ Æ÷ÇÔÇÕ´Ï´Ù.
  • ½ÃÀå µ¿Çâ(½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ ¹× ÀúÇØ¿äÀÎ, ±âȸ, À§Çù, °úÁ¦, ÅõÀÚ ±âȸ, ±ÇÀå »çÇ×).
  • ½ÃÀå ÃßÁ¤¿¡ ±â¹ÝÇÑ ÁÖ¿ä »ç¾÷ ºÎ¹®ÀÇ Àü·«Àû Á¦¾È
  • ÁÖ¿ä °øÅë Æ®·»µå¸¦ ¸ÅÇÎÇÑ °æÀï ±¸µµ.
  • »ó¼¼ÇÑ Àü·«, À繫 ¹× ÃÖ±Ù °³¹ß ÇöȲÀ» Æ÷ÇÔÇÑ ±â¾÷ ÇÁ·ÎÆÄÀÏ
  • Ãֽбâ¼ú ¹ßÀüÀ» ¸ÅÇÎÇÏ´Â °ø±Þ¸Á µ¿Çâ

¹«·á ¸ÂÃãÇü ¼­ºñ½º Á¦°ø:

ÀÌ º¸°í¼­¸¦ ±¸¸ÅÇÑ °í°´¿¡°Ô´Â ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ Á¦°øÇÕ´Ï´Ù.

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀûÀÎ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3°³»ç)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(ÃÖ´ë 3°³»ç)
  • Áö¿ªº° ¼¼ºÐÈ­
    • °í°´ÀÇ ¿äû¿¡ µû¶ó ÁÖ¿ä ±¹°¡ ½ÃÀå ÃßÁ¤, ¿¹Ãø, CAGR(ÁÖ: Ÿ´ç¼º °ËÅä¿¡ µû¶ó ´Ù¸§)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¿ªÀû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç ¼Ò½º
    • 1Â÷ Á¶»ç ¼Ò½º
    • 2Â÷ Á¶»ç ¼Ò½º
    • °¡Á¤

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾»ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • ½ÅÇü Äڷγª¹ÙÀÌ·¯½º(COVID-19)ÀÇ ¿µÇâ

Á¦4Àå PorterÀÇ Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ¹ÙÀ̾îÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô ÁøÃâ¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ¸Ó½Å ºñÀü Ä«¸Þ¶ó ½ÃÀå : ½Ã½ºÅÛº°

  • ½º¸¶Æ® Ä«¸Þ¶ó
  • PC ±â¹Ý
  • ÄÄÆÑÆ®
  • ¿þ¾î·¯ºí Ä«¸Þ¶ó
  • ¹«¼± Ä«¸Þ¶ó
  • ±âŸ ½Ã½ºÅÛ

Á¦6Àå ¼¼°èÀÇ ¸Ó½Å ºñÀü Ä«¸Þ¶ó ½ÃÀå : À¯Çüº°

  • 3D ºñÀü ½Ã½ºÅÛ
  • 1D ºñÀü ½Ã½ºÅÛ
  • 2D ºñÀü ½Ã½ºÅÛ

Á¦7Àå ¼¼°èÀÇ ¸Ó½Å ºñÀü Ä«¸Þ¶ó ½ÃÀå : Àü°³ Çüź°

  • Robotic cells
  • General

Á¦8Àå ¼¼°èÀÇ ¸Ó½Å ºñÀü Ä«¸Þ¶ó ½ÃÀå : Ä«¸Þ¶ó À¯Çüº°

  • ¿¡¾î¸®¾î ½ºÄµ Ä«¸Þ¶ó
  • ¶óÀÎ ½ºÄµ Ä«¸Þ¶ó

Á¦9Àå ¼¼°èÀÇ ¸Ó½Å ºñÀü Ä«¸Þ¶ó ½ÃÀå : ¼¾¼­ À¯Çüº°

  • MIG ¼¾¼­
  • »óº¸Çü ±Ý¼Ó »êÈ­¹° ¹ÝµµÃ¼(CMOS)
  • NÇü MOS ¼¾¼­
  • ÀüÇϰáÇÕ¼ÒÀÚ(CCD)
  • ±âŸ ¼¾¼­ À¯Çü

Á¦10Àå ¼¼°èÀÇ ¸Ó½Å ºñÀü Ä«¸Þ¶ó ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • ¼ÒÇÁÆ®¿þ¾î
  • Çϵå¿þ¾î
    • ÇÁ·¹ÀÓ ±×·¡¹ö
    • Ä«¸Þ¶ó
    • Á¡µî
    • ±¤ÇÐ
    • ÇÁ·Î¼¼¼­
  • ±âŸ ÄÄÆ÷³ÍÆ®

Á¦11Àå ¼¼°èÀÇ ¸Ó½Å ºñÀü Ä«¸Þ¶ó ½ÃÀå : Çȼ¿ À¯Çüº°

  • 12MP ÀÌ»ó
  • 1MP ¹Ì¸¸
  • 8-12MP
  • 1-3MP
  • 3-5MP
  • 5-8MP

Á¦12Àå ¼¼°èÀÇ ¸Ó½Å ºñÀü Ä«¸Þ¶ó ½ÃÀå : ·»Áî À¯Çüº°

  • ÀÏ¹Ý ·»Áî
  • ±¤°¢ ·»Áî
  • ¸Á¿ø ·»Áî

Á¦13Àå ¼¼°èÀÇ ¸Ó½Å ºñÀü Ä«¸Þ¶ó ½ÃÀå : ½ºÆåÆ®·³ À¯Çüº°

  • °¡½Ã±¤¼±
  • Àû¿Ü¼±
  • X¼±

Á¦14Àå ¼¼°èÀÇ ¸Ó½Å ºñÀü Ä«¸Þ¶ó ½ÃÀå : ¿ëµµº°

  • Áö´ÉÇü ±³Åë½Ã½ºÅÛ(ITS)
  • ǰÁú º¸Áõ ¹× °Ë»ç
  • º¸¾È ¹× °¨½Ã
  • ÀÇ·á ¹× »ý¸í°úÇÐ
  • ÃøÁ¤
  • ½Å¿ø
  • ÆÐÅÏ ÀνÄ
  • À§Ä¡ ¾È³»
  • ±âŸ ¿ëµµ

Á¦15Àå ¼¼°èÀÇ ¸Ó½Å ºñÀü Ä«¸Þ¶ó ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • Ç×°ø¿ìÁÖ
  • ÀÚµ¿Â÷
  • ½Äǰ°¡°ø
  • ÇコÄɾî
  • ÀÏ·ºÆ®·Î´Ð½º ¹× ¹ÝµµÃ¼
  • Á¦Á¶¾÷
  • ¼Ò¸Å
  • ÀºÇà¾÷
  • Àμâ
  • žçÀüÁöÆÇ Á¦Á¶
  • ÀǾàǰ
  • ³ª¹« ¹× Á¾ÀÌ
  • À¯¸®
  • °í¹« ¹× ÇÃ¶ó½ºÆ½
  • ±â°è
  • ¼¶À¯
  • ±Ý¼Ó
  • ±âŸ ÃÖÁ¾»ç¿ëÀÚ

Á¦16Àå ¼¼°èÀÇ ¸Ó½Å ºñÀü Ä«¸Þ¶ó ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦17Àå ÁÖ¿ä ¹ßÀü

  • °è¾à/ÆÄÆ®³Ê½Ê/Çù¾÷/ÇÕÀÛÅõÀÚ(JV)
  • Àμö ¹× ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦18Àå ±â¾÷ °³¿ä

  • Qualcomm Technologies
  • Hexagon AB
  • LMI Technologies
  • Toshiba Teli
  • Cognex
  • Nikon
  • USS Vision
  • National Instruments Corporation
  • Sony Corp.
  • Teledyne DALSA Inc.
LSH 23.06.09

According to Stratistics MRC, the Global Machine Vision Camera Market is accounted for $12 billion in 2022 and is expected to reach $20 billion by 2028 growing at a CAGR of 9.4% during the forecast period. Digital sensors with specialised optics are used by machine vision cameras to capture images, which are then processed, analysed, and measured by computer hardware and software to produce accurate results. A machine vision camera can easily examine minute object details that are too small to be seen by the human eye if it is built around the right resolution and optics.

According to recent market research, Machine vision cameras are projected to generate over 26% of their revenue from gauging and measurement applications.

Market Dynamics:

Driver:

Increase in demand for artificial intelligence (AI)

Machine vision systems powered by artificial intelligence are capable of quickly identifying and contrasting flaws with significant variability. Manufacturing facilities use AI-based solutions to increase productivity by maximising asset utilisation, reducing downtime, and improving machine efficiency. It is also anticipated that AI-based solutions will increase productivity through quality control by detecting flaws and assisting in the predictive maintenance of factory equipment. Additionally, AI-based systems are able to look back on the past and learn from it, act in the present, and predict the future. As a result, the industry will have several high-growth prospects thanks to the need for AI in machine vision.

Restraint:

Lack of user awareness about rapidly changing machine vision technology

Since most people are not familiar with how this technology works, business owners must train their staff in the technical capabilities of AI-based devices. Machine vision technology is rapidly changing and improving with AI-based solutions. The cost and length of training have increased as a result of these quickly evolving technologies. Inadequate training can also lead to poor programming of machine vision systems, which can lead to erroneous findings. These problems make it difficult for the market to expand since machine vision technology changes quickly.

Opportunity:

Growing demand for vision guided robotics system

In order to automate quality control, product measurement, ideal placement, and predictive maintenance tasks for consumer electronics manufacturers, vision guided robots systems must be used. Even without a safety barrier, a vision-guided robot can safely operate alongside people in a shared office because it can prevent collisions. The usage of industrial robots for automation in the automotive and consumer electronics industries has rapidly increased. The demand to integrate machine vision systems with vision-guided robot controllers is growing as a result of this.

Threat:

Surging risk of cyber-attacks on industrial machine robots and devices

Data hacking and account hacking are two serious concerns that can affect how well industrial robots work. The adoption of cutting-edge technologies in this area, such as AI machine vision and computer vision, will be directly impacted by this. Artificial intelligence (AI)-based machine vision systems are vulnerable to cyber attacks, which can reduce their effectiveness. We may encounter cyber attacks against them that compromise accuracy, safety, and integrity, which can reduce their effectiveness and result in a decline in market value due to manufacturing process flaws. Because of this, the potential of cyber attacks on industrial machine robots and gadgets is a restraint that is slowing market expansion.

COVID-19 Impact:

Ahead of COVID-19, industrial firms all over the world have committed to increasing their investments in automation. Additionally, as companies have come to understand the value of automated quality assurance in manufacturing processes, demand has grown. The COVID-19 outbreak has increased demand for machine vision cameras globally by decreasing human engagement in numerous operations. As a result, machine vision is now widely seen as being a crucial part of the long-term development of automation. Machine vision can quickly identify problems in automated manufacturing processes. Costs are reduced as a consequence, and reaction times are quicker.

The Software segment is expected to be the largest during the forecast period

The Software segment is estimated to have a lucrative growth. An interface for production lines and cameras is provided by software tools in a collection of industrial machine vision software. The programmer can increase the efficiency of a vision system at a reduced cost by using smart cameras with Linux OS. Major corporations are concentrating on creating open system smart cameras as a result, allowing system integrators to incorporate the required application software from either a third-party or open-source software provider.

The automotive segment is expected to have the highest CAGR during the forecast period

The automotive segment is anticipated to witness the fastest CAGR growth during the forecast period. With the advent of the autonomous car and automation within the production facility itself, the automobile industry is undergoing a fast transformation. The use of machine vision cameras, such as parking cameras, CMS cameras for side views, and SVS cameras for a 360-degree view surrounding the automobile, has grown as a result of ongoing technical improvement. The market for machine vision cameras is anticipated to be driven by the growing use of ADAS and autonomous cars worldwide. Additionally, the machine vision cameras are used for measurement during the development of new parts and in the inspection phase of the automotive manufacturing process. These programmes make use of line scan cameras, 3D imaging cameras, barcode scanners, and other devices.

Region with highest share:

Asia Pacific is projected to hold the largest market share during the forecast period. This enormous market share and regional expansion may be responsible for the lucrative potential in the automotive, packaging, pharmaceutical, and other industrial applications in the Asia Pacific region. As the region develops itself as a hub for global manufacturing, the technology is anticipated to gain significant pace throughout the anticipated timeframe. Two important countries with the ability to provide a variety of options for both advancing and established technologies like machine vision are China and Japan. The growth and prosperity of the local economy are facilitated by a variety of industrial sectors.

Region with highest CAGR:

North America is projected to have the highest CAGR over the forecast period, owing to the dominance of the region's main market for Machine Vision systems, the semiconductor sector. In order to integrate into automation applications like autonomous cars, AI-driven been picking, improved inspection technologies, and so forth, MV technologies are also becoming smaller and smarter. All of this is anticipated to increase demand for MV systems in the area.

Key players in the market:

Some of the key players profiled in the Machine Vision Camera Market include Qualcomm Technologies, Hexagon AB, LMI Technologies, Toshiba Teli, Cognex, Nikon, USS Vision, National Instruments Corporation, Sony Corp. and Teledyne DALSA Inc.

Key Developments:

In March 2021, Cognex introduced the DataMan 8700 Series, the latest generation of portable barcode readers. The gadget is cutting-edge in terms of performance and is extremely simple to operate, requiring no prior tweaking or operator training.

In March 2021, Cognex released Cognex Edge Intelligence (EI) which uses barcode scanning performance monitoring and device management to assist clients in avoiding downtime and enhance the efficiency of manufacturing and shipping operations.

Types Covered:

  • 3-D Vision System
  • 1-D Vision System
  • 2-D Vision System

Deployments Covered:

  • Robotic cells
  • General

Camera Types Covered:

  • Area Scan Camera
  • Line Scan Camera

Sensor Types Covered:

  • MIG Sensor
  • Complementary Metal Oxide Semiconductor (CMOS)
  • N-Type MOS Sensor
  • Charge-Coupled Device (CCD)
  • Other Sensor Types

Components Covered:

  • Software
  • Hardware
  • Other Components

Pixel Types Covered:

  • More than 12MP
  • Less than 1MP
  • 8-12MP
  • 1-3MP
  • 3-5MP
  • 5-8MP

Lens Types Covered:

  • Normal Lens
  • Wide Angle Lens
  • Telephoto Lens

Spectrum Types Covered:

  • Visible Light
  • Infrared
  • X-Ray

Applications Covered:

  • Intelligent Transportation System (ITS)
  • Quality Assurance and Inspection
  • Security and Surveillance
  • Medical and Life Sciences
  • Measurement
  • Identification
  • Pattern Recognition
  • Position Guidance
  • Other Applications

End Users Covered:

  • Aerospace
  • Automotive
  • Food Processing
  • Healthcare
  • Electronics & Semiconductor
  • Manufacturing
  • Retail
  • Banking
  • Printing
  • Solar Panal Manufacturing
  • Pharmaceuticals
  • Wood & Paper
  • Glass
  • Rubber & Plastic
  • Machinery
  • Textile
  • Metals
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2020, 2021, 2022, 2025, and 2028
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Machine Vision Camera Market, By System

  • 5.1 Introduction
  • 5.2 Smart Camera
  • 5.3 PC based
  • 5.4 Compact
  • 5.5 Wearable Camera
  • 5.6 Wireless Camera
  • 5.7 Other Systems

6 Global Machine Vision Camera Market, By Type

  • 6.1 Introduction
  • 6.2 3-D Vision System
  • 6.3 1-D Vision System
  • 6.4 2-D Vision System

7 Global Machine Vision Camera Market, By Deployment

  • 7.1 Introduction
  • 7.2 Robotic cells
  • 7.3 General

8 Global Machine Vision Camera Market, By Camera Type

  • 8.1 Introduction
  • 8.2 Area Scan Camera
  • 8.3 Line Scan Camera

9 Global Machine Vision Camera Market, By Sensor Type

  • 9.1 Introduction
  • 9.2 MIG Sensor
  • 9.3 Complementary Metal Oxide Semiconductor (CMOS)
  • 9.4 N-Type MOS Sensor
  • 9.5 Charge-Coupled Device (CCD)
  • 9.6 Other Sensor Types

10 Global Machine Vision Camera Market, By Component

  • 10.1 Introduction
  • 10.2 Software
  • 10.3 Hardware
    • 10.3.1 Frame grabber
    • 10.3.2 Camera
    • 10.3.3 Lighting
    • 10.3.4 Optics
    • 10.3.5 Processors
  • 10.4 Other Components

11 Global Machine Vision Camera Market, By Pixel Type

  • 11.1 Introduction
  • 11.2 More than 12MP
  • 11.3 Less than 1MP
  • 11.4 8-12MP
  • 11.5 1-3MP
  • 11.6 3-5MP
  • 11.7 5-8MP

12 Global Machine Vision Camera Market, By Lens Type

  • 12.1 Introduction
  • 12.2 Normal Lens
  • 12.3 Wide Angle Lens
  • 12.4 Telephoto Lens

13 Global Machine Vision Camera Market, By Spectrum Type

  • 13.1 Introduction
  • 13.2 Visible Light
  • 13.3 Infrared
  • 13.4 X-Ray

14 Global Machine Vision Camera Market, By Application

  • 14.1 Introduction
  • 14.2 Intelligent Transportation System (ITS)
  • 14.3 Quality Assurance and Inspection
  • 14.4 Security and Surveillance
  • 14.5 Medical and Life Sciences
  • 14.6 Measurement
  • 14.7 Identification
  • 14.8 Pattern Recognition
  • 14.14 Position Guidance
  • 14.10 Other Applications

15 Global Machine Vision Camera Market, By End User

  • 15.1 Introduction
  • 15.2 Aerospace
  • 15.3 Automotive
  • 15.4 Food Processing
  • 15.5 Healthcare
  • 15.6 Electronics & Semiconductor
  • 15.7 Manufacturing
  • 15.8 Retail
  • 15.9 Banking
  • 15.10 Printing
  • 15.11 Solar Panal Manufacturing
  • 15.12 Pharmaceuticals
  • 15.13 Wood & Paper
  • 15.14 Glass
  • 15.15 Rubber & Plastic
  • 15.16 Machinery
  • 15.17 Textile
  • 15.18 Metals
  • 15.19 Other End Users

16 Global Machine Vision Camera Market, By Geography

  • 16.1 Introduction
  • 16.2 North America
    • 16.2.1 US
    • 16.2.2 Canada
    • 16.2.3 Mexico
  • 16.3 Europe
    • 16.3.1 Germany
    • 16.3.2 UK
    • 16.3.3 Italy
    • 16.3.4 France
    • 16.3.5 Spain
    • 16.3.6 Rest of Europe
  • 16.4 Asia Pacific
    • 16.4.1 Japan
    • 16.4.2 China
    • 16.4.3 India
    • 16.4.4 Australia
    • 16.4.5 New Zealand
    • 16.4.6 South Korea
    • 16.4.7 Rest of Asia Pacific
  • 16.5 South America
    • 16.5.1 Argentina
    • 16.5.2 Brazil
    • 16.5.3 Chile
    • 16.5.4 Rest of South America
  • 16.6 Middle East & Africa
    • 16.6.1 Saudi Arabia
    • 16.6.2 UAE
    • 16.6.3 Qatar
    • 16.6.4 South Africa
    • 16.6.5 Rest of Middle East & Africa

17 Key Developments

  • 17.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 17.2 Acquisitions & Mergers
  • 17.3 New Product Launch
  • 17.4 Expansions
  • 17.5 Other Key Strategies

18 Company Profiling

  • 18.1 Qualcomm Technologies
  • 18.2 Hexagon AB
  • 18.3 LMI Technologies
  • 18.4 Toshiba Teli
  • 18.5 Cognex
  • 18.6 Nikon
  • 18.7 USS Vision
  • 18.8 National Instruments Corporation
  • 18.9 Sony Corp.
  • 18.10 Teledyne DALSA Inc.
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦