![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1284304
Çö¹Ì°æ ½ÃÀå ¿¹Ãø(-2028³â) - Á¦Ç°, À¯Çü, ¿ëµµ, ÃÖÁ¾»ç¿ëÀÚ ¹× Áö¿ªº° ¼¼°è ºÐ¼®Microscopy Market Forecasts to 2028 - Global Analysis By Product, Type, Application, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é, Çö¹Ì°æ ¼¼°è ½ÃÀåÀº 2022³â 72¾ï ´Þ·¯·Î 2028³â¿¡´Â 112¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ¿¹Ãø ±â°£ µ¿¾È CAGR 7.8%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
Çö¹Ì°æÀº ÀÛÀº ¹°Ã¼³ª ½Ã·áÀÇ È®´ëµÈ À̹ÌÁö¸¦ Á¦°øÇÏ´Â ÀåÄ¡·Î, »ç¿ëÀÚ´Â °Ë»ç³ª ºÐ¼®¿¡ ÀûÇÕÇÑ ½ºÄÉÀÏ·Î ¹Ì¼¼ÇÑ ±¸Á¶¸¦ ¸Å¿ì °¡±îÀÌ¿¡¼ °üÂûÇÒ ¼ö ÀÖ½À´Ï´Ù. Çö¹Ì°æÀº À°¾ÈÀ¸·Î º¼ ¼ö ¾ø´Â ½Ã·á³ª ¹°Ã¼¸¦ Çö¹Ì°æÀ¸·Î °üÂûÇÏ´Â ºÐ¼® ¹æ¹ýÀÔ´Ï´Ù. Çö¹Ì°æÀº »ý¸í°úÇÐ ¿¬±¸¿¡ ¸Å¿ì À¯¿ëÇϸç, ¿µ»ó ó¸®ÀÇ ¹ßÀüÀ¸·Î ±× »ç¿ëÀº °ÅÀÇ ¸ðµç °úÇÐ ±â¼ú ºÐ¾ß·Î È®´ëµÇ°í ÀÖ½À´Ï´Ù. Çö¹Ì°æÀº ´Ù¾çÇÑ Á¾·ùÀÇ ¼¼Æ÷ °üÂû, ÀÓ»ó ½Ã·á ºÐ¼®, ³ª³ë ¹°Áú ½ºÄ³´× µî¿¡ ÀÚÁÖ »ç¿ëµË´Ï´Ù.
¹Ì±¹¾ÏÇùȸ(American Cancer Society, Inc)¿¡ µû¸£¸é, 2022³â¿¡´Â ¹Ì±¹¿¡¼ 1,900¸¸ ¸íÀÇ ¾Ï ȯÀÚ°¡ »õ·Î Áø´Ü¹Þ°í 609,360¸íÀÌ ¾ÏÀ¸·Î »ç¸ÁÇÒ °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù.
³ª³ë±â¼úÀº ºÐÀÚ ´ÜÀ§ÀÇ ½ºÄÉÀÏÀ» °¡Áø ±â´É ½Ã½ºÅÛÀÇ ¿¬±¸¿Í ÀÀ¿ëÀÔ´Ï´Ù. °øÇÐ, Àç·á°úÇÐ, ÈÇÐ, »ý¹°ÇÐ, ¹°¸®ÇÐ µî ´Ù¾çÇÑ °úÇÐ ºÐ¾ß¸¦ ¾Æ¿ì¸£´Â ´ÙÇÐÁ¦Àû ºÐ¾ßÀÔ´Ï´Ù. ³ª³ë ¹°ÁúÀ» ¿¬±¸ÇÏ´Â °úÁ¤¿¡¼ Çö¹Ì°æÀ» ÀÌ¿ëÇÑ ±¸Á¶ ºÐ¼®Àº ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ÃֽŠÇö¹Ì°æ°ú Àåºñ´Â ³ª³ë ±¸Á¶Ã¼ÀÇ ±¸Á¶¿Í Ç¥¸éÀ» ºÐÀÚ ¹× ¿øÀÚ ¼öÁØ¿¡¼ ±íÀÌ ÀÖ°Ô Æò°¡ÇÒ ¼ö ÀÖ¾î ¼±È£µÇ°í ÀÖ½À´Ï´Ù. ¿Ö³ÄÇÏ¸é ³ª³ë ±¸Á¶Ã¼´Â ³Ê¹« À۾Ƽ ±âÁ¸ÀÇ ±¤ÇÐ Çö¹Ì°æÀ¸·Î´Â º¼ ¼ö ¾ø±â ¶§¹®ÀÔ´Ï´Ù. µû¶ó¼ ÇöÀç ³ª³ë ±â¼ú¿¡¼ Çö¹Ì°æÀÇ »ç¿ë ºóµµ°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. Àç»ýÀÇÇÐ ¿¬±¸¿¡¼µµ Çö¹Ì°æÀÌ ¸¹ÀÌ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. Àç»ýÀÇÇп¡¼´Â ±â´ÉÀûÀÎ Àå±â¸¦ ¸¸µé±â À§ÇØ Á¶Á÷°øÇÐ, Ä¡·á¿ë Áٱ⼼Æ÷ ÇÕ¼º, ÇÇºÎ¿Í ÇǺμ¼Æ÷, Á¶Á÷ Ȱ¿ë µîÀÌ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. ÃÖ±Ù Àç»ýÀÇ·á ºÐ¾ß´Â ºü¸£°Ô ¹ßÀüÇϰí ÀÖ½À´Ï´Ù.
±â¼úÀÇ ¹ßÀüÀ¸·Î Çö¹Ì°æÀÇ »ç¿ë ¹æ¹ýÀÌ º¯ÈÇϰí ÀÖ½À´Ï´Ù. ÀüÀÚ Çö¹Ì°æ, ½ºÄ³´× ÇÁ·Îºê Çö¹Ì°æ, µðÁöÅÐ Çö¹Ì°æ°ú °°Àº °í±Þ Çö¹Ì°æÀº ¶Ù¾î³ ±â´É, ÇØ»óµµ ¹× ¹èÀ²·Î ÀÎÇØ ±âÁ¸ Çö¹Ì°æÀ» ²ÙÁØÈ÷ ´ëüÇϰí ÀÖ½À´Ï´Ù. ±×·¯³ª ÀÌ·¯ÇÑ Çö¹Ì°æÀº 25,000´Þ·¯¿¡¼ 2,000,000´Þ·¯¿¡ À̸£´Â °í°¡ÀÇ ºñ¿ëÀ¸·Î ÀÎÇØ ¼Ò±Ô¸ð ±â¾÷, º´¸®ÇÐ ¿¬±¸¼Ò ¹× º´¿ø¿¡¼ÀÇ »ç¿ëÀÌ Å©°Ô Á¦ÇÑµÇ¾î Æ÷±× ÄÄÇ»ÆÃ ½ÃÀåÀÇ ¼ºÀåÀ» ÀúÇØÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
ÃÖ±Ù Çö¹Ì°æ ±â¼úÀÇ ¹ßÀüÀ¸·Î ±¤À¯ÀüÇÐ, ³ª³ëÆ÷Åä´Ð½º, ±¤Ã˸Å, ÃʼҼö¼º Àç·á Á¦ÀÛ µî Çö¹Ì°æÀÇ »õ·Î¿î ¿ëµµ°¡ ½ÇÇöµÇ°í ÀÖ½À´Ï´Ù. ±¤À¯ÀüÇÐÀ̶ó°í ºÒ¸®´Â ½Å°æ Á¶Àý ±â¼úÀº ºûÀ» Æ®¸®°Å·Î »ï¾Æ »ýü Á¶Á÷ ³» ƯÁ¤ ½Å°æ¼¼Æ÷ÀÇ ÀÛ¿ëÀ» Á¶ÀýÇϰí ÃßÀûÇÏ´Â ±â¼úÀÔ´Ï´Ù. ±¤À¯ÀüÇÐ ¹× Çö¹Ì°æÀº Ãֱ٠Ȱµ¿, ÀüÀ§ ¹ß»ý, Ãà»è ½ÅÈ£ Àü´Þ ¹× ½Ã³À½º Ȱµ¿ÀÇ »ý¹°ÇÐÀ» ÀÌÇØÇϱâ À§ÇØ ¹è¾ç µÈ ÈïºÐ¼º ¼¼Æ÷ ÃþÀ» ¿¬±¸ÇÏ´Â µ¥ »ç¿ëµÇ¾ú½À´Ï´Ù. ÇâÈÄ ¸î ³â µ¿¾È ½ÃÀå ÁøÀÔ ±â¾÷µéÀº ÀÌ·¯ÇÑ »õ·Î¿î Çö¹Ì°æ ÀÀ¿ë ºÐ¾ßÀÇ °·ÂÇÑ ¼ºÀåÀ» ±â´ëÇÒ ¼ö ÀÖÀ¸¸ç, ÀÌ´Â ¿¹Ãø ±â°£ µ¿¾È Çö¹Ì°æ ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇÒ °ÍÀÔ´Ï´Ù.
¿ÀǼҽº ¼ÒÇÁÆ®¿þ¾îÀÇ Á¢±Ù¼ºÀº ÀÌ ½ÃÀå¿¡¼ Áß¿äÇÑ ¹®Á¦´Ù. ¼ÒÇÁÆ®¿þ¾î¿¡ Á¢±ÙÇÒ ¼ö ÀÖ´Â ÇÁ·Î±×·¡¸Ó¶ó¸é ´©±¸³ª ÇÁ·Î±×·¥À» °ËÁõÇÏ°í °³¼±Çϰųª ÇÊ¿äÇÑ °æ¿ì ¹®Á¦¸¦ ÇØ°áÇÒ ¼ö ÀÖ½À´Ï´Ù. ¹Ý¸é ´ëºÎºÐÀÇ »ó¿ë ¼ÒÇÁÆ®¿þ¾î´Â Æó¼âÇü ¼Ò½ºÀÌ¸ç °í°¡ÀÇ µ¶Á¡ ¼ÒÇÁÆ®¿þ¾îÀÎ ¹Ý¸é, ¿ÀǼҽº ¼ÒÇÁÆ®¿þ¾î´Â ÀϹÝÀûÀ¸·Î ¹«·á´Ù. ImageJ/FIJI, Cell Profiler/Cell Analyst, Neuronstudio, Volume Integration and Alignment System(VIAS), ±×¸®°í L-measure´Â ¿ÀǼҽº ¹«·á °øÃÊÁ¡ Çö¹Ì°æ ºÐ¼® µµ±¸ Áß ÀϺÎÀÔ´Ï´Ù. ¼Ò±Ô¸ð ÃÖÁ¾»ç¿ëÀÚ, ÇÐ°è ¹× ¿¬±¸±â°üÀÌ ¿ÀǼҽº ¼Ö·ç¼ÇÀ» ¼±È£ÇÔ¿¡ µû¶ó ¶óÀ̼±½ºµÈ Æó¼âÇü ¼ÒÇÁÆ®¿þ¾îÀÇ Çʿ伺ÀÌ Á÷Á¢ÀûÀ¸·Î ¹æÇØ¹Þ¾Æ ¿¹Ãø ±â°£ µ¿¾È ½ÃÀå ¼ºÀåÀ» ÀúÇØÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.
COVID-19´Â ¼¼°è °æÁ¦¿¡ ¼¼ °¡Áö Áß¿äÇÑ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. ¼ö¿ä¿Í °ø±Þ¿¡ ±àÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¡°í, °ø±Þ¸Á°ú ¼ÒºñÀÚ »çÀÌ¿¡ ºÒ¾ÈÁ¤¼ºÀ» °¡Á®¿À°í, ±â¾÷°ú ±ÝÀ¶ ½ÃÀå¿¡ ÀçÁ¤Àû ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. »õ·Î¿î Àü¸ÁÀ» ¸¸µé¾î³»°í ÀÖ´Ù°í ÇÕ´Ï´Ù. ±×·¯³ª À̹ø Àü¿°º´ ÀÌÀü¿¡´Â Çö¹Ì°æÀ» »ç¿ëÇÏ´Â »ê¾÷ÀÌ Àû¾ú±â ¶§¹®¿¡ Çö¹Ì°æ ½ÃÀåÀº ±×´ÙÁö ±â´ëÇÏÁö ¾Ê¾Ò½À´Ï´Ù. ´Ù¾çÇÑ Çö¹Ì°æÀ¸·Î ÀÎü¿Í µ¿¹°ÀÇ ¸öÀ» °üÂûÇÏ¸é ¾î¶² ¹ÙÀÌ·¯½º°¡ »ýü¿¡ ÇØ¸¦ ³¢Ä¡Áö ¾ÊÀ»Áö ´õ ¿¹ÃøÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Çö¹Ì°æÀÇ °³Ã´°ú COVID-19ÀÇ ¿µÇâÀ¸·Î ¼¼°è Çö¹Ì°æ ½ÃÀåÀº ¿¹Ãø ±â°£ µ¿¾È ¿Ï¸¸ÇÏ°Ô »ó½ÂÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È Çмú ¹× ¿¬±¸ ±â°ü ºÎ¹®ÀÇ ½ÃÀå Á¡À¯À²Àº Å©°Ô È®´ëµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¿¬±¸±â°ü ºÎ¹®Àº ¼¼°è Çö¹Ì°æ ½ÃÀå¿¡¼ »ó´çÇÑ Á¡À¯À²À» Â÷ÁöÇϰí ÀÖÀ¸¸ç, ÀÌ ºÎ¹®ÀÇ ¿ìÀ§´Â ¿¹Ãø ±â°£ µ¿¾È Áö¼ÓµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ ºÎ¹®ÀÇ ¼ºÀåÀº ÁÖ·Î »ý¹°ÇÐ, ÀÇÇÐ, Àç·á °úÇÐ µî ´Ù¾çÇÑ ¿¬±¸ ºÐ¾ß¿¡¼ °íÇØ»óµµ À̹Ì¡ ¹× ºÐ¼® µµ±¸¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí Àֱ⠶§¹®ÀÔ´Ï´Ù. Á¤ºÎ ±â°üÀÇ R&D ÀÚ±Ý Áö¿ø, º¸Á¶±Ý ¹× ÀÌ´Ï¼ÅÆ¼ºê Áõ°¡, °ø°ø ¹× ¹Î°£ ±â°ü °£ÀÇ ÆÄÆ®³Ê½Ê Áõ°¡, ÀÇ·á ¼º°ú Çâ»ó¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡ µîÀÇ ¿äÀÎÀ¸·Î ÀÎÇØ ÀÌ ºÎ¹®ÀÇ ¼ºÀå·üÀÌ ´õ¿í ³ô¾ÆÁú °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ½ºÄ³´× ÇÁ·Îºê Çö¹Ì°æ ºÐ¾ß´Â °¡Àå ºü¸¥ ¼Óµµ·Î ¹ßÀüÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ½ºÄ³´× ÇÁ·Îºê Çö¹Ì°æ(SPM) Ä«Å×°í¸®´Â ¼¼Æ÷ ÀÌÇÏÀÇ ±¸¼º¿ä¼Ò¸¦ º¼ ¼ö Àֱ⠶§¹®¿¡ ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. SPMÀº DNA, ¼¼Æ÷¸·°ú °°Àº »ýü Àç·áÀÇ Á¶»ç, ÁýÀû ȸ·Î ¹× ȸÀý °ÝÀÚ¿Í °°Àº ³ª³ë ±¸Á¶ÀÇ ºÐ¼®¿¡ »ç¿ëµÇ¸ç, ÀÀ¿ë ºÐ¾ß°¡ È®´ëµÇ°í ±â¼úÀÌ ºü¸£°Ô ¹ßÀüÇϰí ÀÖ´Â °ÍÀÌ ÀÌ Ä«Å×°í¸®ÀÇ ¼ºÀåÀ» °ßÀÎÇϰí ÀÖ½À´Ï´Ù. ¼¼Æ÷ ¹× ¼¼Æ÷ÀÇ À̹Ì¡Àº Çмú ±â°ü ¹× »ý¸í°úÇÐ ¿¬±¸ ±â°ü¿¡¼ ±¤ÇÐ ±â¼ú ±â¹Ý Á¦Ç°ÀÇ ÀϹÝÀûÀÎ ¿ëµµÀÔ´Ï´Ù. ÀÌ¿¡ µû¶ó ±¤ÇÐ Àåºñ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, ÀÌ´Â ¼¼°è ½ÃÀå È®´ë¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
¼¼°è Çö¹Ì°æ ½ÃÀå¿¡¼ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÏ´Â Áö¿ªÀº ºÏ¹ÌÀÔ´Ï´Ù. ¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì´Â ±× ¿ìÀ§¸¦ À¯ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ºÏ¹Ì Çö¹Ì°æ ½ÃÀåÀÇ È®´ë´Â ÁÖ¸ñÇÒ¸¸ÇÑ ½ÃÀå ±â¾÷ÀÇ Á¸Àç¿Í Çö¹Ì°æ ¿¬±¸ ¹× °³¹ß¿¡ ´ëÇÑ Á¤ºÎ ¹× ºñÁ¤ºÎ±â±¸ÀÇ ÅõÀÚ Áõ°¡·Î ÀÎÇØ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. ¹Ì±¹ÀÇ ÇコÄÉ¾î ºÐ¾ß¿¡¼ °í±Þ Çö¹Ì°æ °Ë»ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, Á¦¾à ¹× »ý¸í°øÇÐ ±â¾÷ÀÇ ÁýÁßµµ ½ÃÀå È®´ë¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
¾Æ½Ã¾ÆÅÂÆò¾çÀº ¿¹Ãø ±â°£ µ¿¾È °¡Àå ºü¸¥ ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ Çö¹Ì°æ ½ÃÀåÀº ¿¹Ãø ±â°£ µ¿¾È È®´ëµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±â¼ú ¹ßÀü, Çö¹Ì°æ ¿¬±¸°³¹ß¿¡ ´ëÇÑ ÀÚ±Ý Á¶´Þ ¹× ÅõÀÚ Áõ°¡, ³ª³ë±â¼ú ¹× Àç»ýÀÇ·á¿¡ ´ëÇÑ °ü½É Áõ°¡ µîÀÌ ¾Æ½Ã¾ÆÅÂÆò¾ç Çö¹Ì°æ ½ÃÀåÀ» °ßÀÎÇÏ´Â ¿äÀÎ Áß ÀϺδÙ. Çö¹Ì°æ °Ë»ç¿¡¼ ÀΰøÁö´ÉÀÇ µµÀÔ, ¿øÀÚÀç °¡°ÝÀÇ Ç϶ô, ÀÌ ºÐ¾ßÀÇ ¼÷·ÃµÈ Àη Ȯº¸ÀÇ ¿ëÀ̼º µîÀº ¿¹Ãø ±â°£ µ¿¾È Çö¹Ì°æ °Ë»ç ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
2022³â 5¿ù, ´º¿å Ä÷³ºñ¾Æ´ëÇб³ °úÇÐÀÚµéÀº »ýü ³» ½Ç½Ã°£ ¿µ»óÀ¸·Î ¾Ï ¹× ±âŸ Áúº´À» Áø´ÜÇÒ ¼ö ÀÖ´Â °í¼Ó 3D Çö¹Ì°æÀ» °³¹ßÇß½À´Ï´Ù.
Áö³ 4¿ù, ThermofisherScientific Inc.ÀÇ ÃÖ÷´Ü ±ØÀú¿Â Åõ°úÀüÀÚÇö¹Ì°æÀÌ CCMB(Centre for Cellular and Molecular Biology)¿¡ ÁذøµÆ½À´Ï´Ù. ÀÌ Çö¹Ì°æÀº °úÇÐÀÚµéÀÌ ÀáÀçÀû ÀÎ Ä¡·á¹ý, ½Å¾à °³¹ß ¹× Áø´Ü ¿¬±¸¸¦ °¡¼ÓÈÇÏ´Â µ¥ µµ¿òÀÌ µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
2021³â 7¿ù, Ä®ÀÚÀ̽º´Â ZEISS Xradia 3DX¼± Ç÷§Æû¿¡ ZEISS DeepRecon Pro¿Í ZEISS PhaseEvolve À籸¼º ±â¼úÀ» µµÀÔÇß½À´Ï´Ù. ÀÌ ±â¼úµéÀº AI¸¦ »ç¿ëÇÏ¿© µ¥ÀÌÅÍ ¼öÁý°ú ºÐ¼®À» °³¼±Çϰí ÀÇ»ç°áÁ¤À» ´õ ºü¸£°Ô ÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù.
2021³â 6¿ù, ´Ù³ªÇã´Â ½ÇÇèÀÇ ¼º°ø·ü°ú ÀçÇö¼ºÀ» ³ôÀÌ°í ±¤ÇÐ ¹× ÀüÀÚÇö¹Ì°æ(EM) ÅëÇÕÀ» ´Ü¼øÈÇϱâ À§ÇØ »õ·Î¿î ¶óÀÌºê ¼¿ »ó°ü ±¤ÀüÀÚÇö¹Ì°æ(CLEM) ¿öÅ©ÇÃ·Î¿ì ¼Ö·ç¼ÇÀÎ Leica Nano ¿öÅ©Ç÷ο츦 ¹ßÇ¥Çß½À´Ï´Ù.
According to Stratistics MRC, the Global Microscopy Market is accounted for $7.2 billion in 2022 and is expected to reach $11.2 billion by 2028 growing at a CAGR of 7.8% during the forecast period. A microscope is an instrument that provides magnified images of small objects or specimens, allowing the user to observe an extremely close view of minute structures at a scale appropriate for examination and analysis. Microscopy is an analysis method that uses microscope instruments to examine samples and objects that cannot be seen by the naked eye. Microscopes are very useful in life science research, and advances in imaging have allowed their use to spread to almost every field of science and technology. Microscopy is commonly used to view various types of cells, analyze clinical specimens, and scan nanomaterials.
According to the American Cancer Society, Inc. in 2022, an estimated 1.9 million new cancer cases will be diagnosed and an estimated 609,360 cancer deaths in the country.
Nanotechnology is the study and application of molecularly scaled functional systems. It is a multidisciplinary field that encompasses a wide range of scientific disciplines, including engineering, materials science, chemistry, biology, and physics. In the process of studying nanomaterials, structural characterization, which makes heavy use of microscopes, is crucial. Modern microscopes and instruments are favored because they can characterize nanostructures' structure and surface in depth at the molecular and atomic levels. This is because nanostructures are too small to be seen with traditional optical microscopes. As a result, nanotechnology now uses microscopy more frequently. The study of regenerative medicine makes extensive use of microscopes. To create functional organs, regenerative medicine uses tissue engineering, therapeutic stem cell synthesis, and the use of skin, skin cells, and tissues. In recent years, the field of regenerative medicine has grown quickly.
The way that microscopes are used has changed as a result of technological improvements. Due to their superior features, greater resolution, and magnification power, high-end microscopes including electron microscopes, scanning probe microscopes, and digital microscopes are steadily replacing conventional microscopes in terms of popularity. However, the expense of these microscopes, which ranges from USD 25,000 to USD 2,000,000, severely restricts their use in small-scale businesses, pathology labs, and hospitals, which are projected to impede the fog computing market's growth.
New applications for microscopes in optogenetics, nanophotonics, photochemical catalysis, and the creation of superhydrophobic materials have been made possible by recent advancements in microscopy techniques. A neuromodulation technique called optogenetics employs light as a trigger to regulate and track the actions of specific neurons in living tissue. Optogenetics and microscopy have recently been used in studies on layers of cultured excitable cells in order to comprehend the biology of action, potential generation, axonal signal transmission, and synaptic activity. In the upcoming years, market participants may anticipate seeing strong growth in these new microscopy application areas, which will drive the growth of the microscopy market over the forecast period.
Open-source software accessibility is a problem for this market. Any programmer with access to the software can examine and enhance a program or, if necessary, resolve any problems. In contrast, the majority of commercial software products are closed-source, expensive, and proprietary, while open-source software is typically free. ImageJ/FIJI, Cell Profiler/Cell Analyst, Neuronstudio, Volume Integration and Alignment System (VIAS), and L-measure are some of the open-source, free confocal microscopy analysis tools. The need for licensed, closed-source software is directly hampered by the preference of small-scale end customers, academic institutions, and research facilities for open-source solutions, which will impede the market growth over the forecast period.
COVID-19 has the potential to have three important effects on the world economy: it can actively affect supply and demand, cause instability in the supply chain and among consumers, and have a financial impact on businesses and financial markets. The COVID-19 pandemic, according to Microscopy Market Research, has significantly affected the market and created new prospects. The market for microscopes, however, had less potential before this pandemic since fewer industries employed microscopes. Human or animal bodies are examined under various microscopes in order to make further predictions about which viruses will not harm living things. As a result of these developments in microscopy as well as the effects of COVID-19, the global market for microscopy is predicted to rise moderately over the projected period.
During the anticipated timeframe, the Academic & Research Institutes segment's market share will expand significantly. The research institution segment held a substantial share of the global microscopy market, and the segment's dominance is predicted to continue during the forecast period. The growth of the segment is primarily driven by the growing demand for high-resolution imaging and analysis tools in various fields of research, including biological, medical, and material sciences. Factors such as the increased funding, grants, and initiatives by governmental organizations for research and development, the rising number of partnerships between public and private organizations, and the growing demand for improving healthcare outcomes are further fuelling the growth rate of the segment.
Over the projection period, the scanning probes microscope segment is predicted to develop at the fastest rate. Because these tools can see sub cellular components, the scanning probe microscope (SPM) category is anticipated to grow. The factors fuelling the expansion of this category are the expanding number of applications and the swift advancement of technology. SPMs are employed in the research of biological materials like DNA and cell membranes as well as the analysis of nanostructures like integrated circuits and diffraction gratings. Cellular or sub cellular imaging is a common use for optical technology-based products in academic and life science research institutions. Consequently, the rise in academic institutions is driving up the need for optical equipment, which is fostering the expansion of the global market.
The largest portion of the global market for microscopy was in North America. Throughout the predicted period, North America is likely to maintain its dominance. The expansion of the microscopy market in North America is being fuelled by the existence of noteworthy market players and an increase in governmental and non-governmental organization investments in microscopy research and development. The U.S. healthcare sector's increasing demand for sophisticated microscopy methods, together with the country's large concentration of pharmaceutical and biotechnology firms, are driving the market's expansion.
Asia-Pacific is expected to witness the fastest growth rate over the forecast period. Over the course of the forecast period, the Asia Pacific microscopy market is anticipated to expand. Technological advancements, increasing financing and investments in microscopy research and development, and a growing emphasis on nanotechnology and regenerative medicine are some of the factors propelling the APAC microscopy market. The implementation of artificial intelligence in microscopy, as well as the low cost of raw materials and the accessibility of skilled labor in this area, are anticipated to drive the expansion of the microscopy market over the Anticipated Period.
Some of the key players in Microscopy Market include Bruker Corporation, Cameca, Carl Zeiss Ag, Danaher Corporation, Helmut Hund, Hitachi High-Tech Corporation, Jeol Company, Labomed, Inc., Meiji Techno Co., Motic Group, Nikon Corp., Nt-Mdt Si, Olympus Corporation, Oxford Instruments, Park Systems, Semilab, Tescan Orsay Holding As, Thermo Fisher Scientific, Inc. And Zeiss Group
In May 2022, Scientists at Columbia University in New York City developed a high-speed 3D microscope for the diagnosis of cancers and other diseases with real-time imaging within the living body.
In April 2022, the state-of-the-art cryo-transmission electron microscope by ThermofisherScientific Inc. was inaugurated at the Centre for Cellular and Molecular Biology (CCMB). This microscope will help scientists to accelerate potential cures, drug discoveries and diagnostic research.
In July 2021, Carl Zeiss introduced the ZEISS DeepRecon Pro and ZEISS PhaseEvolve reconstruction technologies in the ZEISS Xradia 3D X-ray platforms. These technologies will use AI to improve data collection and analysis, which, in turn, will speed up decision-making.
In June 2021, Danaher Corporation launched the Leica Nano workflow, a new live-cell correlative light and electron microscopy (CLEM) workflow solution designed to increase experimental success rates, improve reproducibility, and simplify light and electron microscopy (EM) integration.