![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1308656
ö ÇÃ·Î¿ì ¹èÅ͸® ½ÃÀå ¿¹Ãø(-2030³â) - ¹èÅ͸® À¯Çüº°, À¯Çüº°, Àç·áº°, ÀüÇØÁúº°, Àü°³º°, ¿ëµµº°, Áö¿ªº° ¼¼°è ºÐ¼®Iron Flow Battery Market Forecasts to 2030 - Global Analysis By Battery Type, Type, Material, Electrolyte, Deployment, Application and By Geography |
Stratistics MRC¿¡ µû¸£¸é, 2023³â ¼¼°è ö ÇÃ·Î¿ì ¹èÅ͸® ½ÃÀåÀº 3¾ï 3,387¸¸ ´Þ·¯·Î ¿¹Ãø ±â°£ µ¿¾È 27%ÀÇ CAGR·Î ¼ºÀåÇÏ¿© 2030³â 17¾ï 7,911¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
ö ÇÃ·Î¿ì ¹èÅ͸®´Â ·¹µ¶½º ÇÃ·Î¿ì ¹èÅ͸®·Îµµ ºÒ¸®´Âµ¥, ¾×ü ÀüÇØÁú ÅÊÅ©¿¡ ¿¡³ÊÁö¸¦ ÀúÀåÇÏ´Â Àü±âÈÇÐ ÀåÄ¡ÀÔ´Ï´Ù. ¿¬¼Ò, Æø¹ß ¹× µ¶¼º °¡½º ¹æÃâÀÌ ¾ø±â ¶§¹®¿¡ ³Î¸® »ç¿ëµË´Ï´Ù. ö ÇÃ·Î¿ì ¹èÅ͸®´Â »ó¾÷, ±º»ç ¹× ¹æ¼Û ºÐ¾ß¸¦ Æ÷ÇÔÇÑ ¸¹Àº »ê¾÷¿¡¼ äÅõǾúÁö¸¸ °¡Á¤°ú Àü±âÀÚµ¿Â÷¿¡¼ °¡Àå ÀÚÁÖ »ç¿ëµË´Ï´Ù. öÀ» ±â¹ÝÀ¸·Î ÇÑ Àç·á´Â ºñ¿ëÀÌ Àú·ÅÇϰí ȯ°æ Ä£ÈÀûÀ̱⠶§¹®¿¡ ÀÌ·¯ÇÑ ÇÃ·Î¿ì ¹èÅ͸®´Â ´ë±Ô¸ð ¿¡³ÊÁö ÀúÀå ÀåÄ¡¿¡ ¸Å·ÂÀûÀÎ ¼±ÅÃÀÌ µÇ°í ÀÖ½À´Ï´Ù.
Benchmark Mineral Intelligence Worldwide¿¡ µû¸£¸é, ¹èÅ͸® ºÎ¹®ÀÇ ÄÚ¹ßÆ® ¼ö¿ä´Â Áö³ 5³â°£ 3¹è Áõ°¡ÇßÀ¸¸ç, 2020³â±îÁö ÃÖ¼Ò 2¹è ÀÌ»ó Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
ÇÃ·Î¿ì ¹èÅ͸®´Â Àü±âÈ ¼ö¿ä Áõ°¡·Î ÀÎÇØ À¯Æ¿¸®Æ¼ ºÐ¾ß¿¡¼ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ½ÃÀå ¼ºÀåÀ» µÞ¹ÞħÇÏ´Â ¹èÅ͸® ¹× ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ ¼ö¿äÀÇ ÁÖ¿ä ÃËÁø¿äÀÎ Áß Çϳª´Â ž籤 ¹× dz·Â°ú °°Àº Àç»ý¿¡³ÊÁöÀÇ »ç¿ëÀÌ Áõ°¡Çϰí ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ´ë±Ô¸ð À¯Æ¿¸®Æ¼ ȸ»ç°¡ ¹Ì·¡ÀÇ ±×¸®µå »ç¿ëÀ» À§ÇØ Àç»ý¿¡³ÊÁö¸¦ ¾îµð¼³ª ºñ¿ë È¿À²ÀûÀ¸·Î ÀúÀåÇÒ ¼ö ÀÖ´Â ¼Ö·ç¼ÇÀÌ ÇÊ¿äÇÏ´Ù´Â Á¡À» °¨¾ÈÇÒ ¶§, ÇÃ·Î¿ì ¹èÅ͸®´Â ¸Å·ÂÀûÀÎ ±â´ÉÀ» Á¦°øÇÏ¿© À¯Æ¿¸®Æ¼ ±â¹Ý ÀúÀåÀ» À§ÇØ °¡Àå ¼±È£µÇ´Â ¿¡³ÊÁö ÀúÀå ±â¼úÀÌ µÇ¾ú½À´Ï´Ù.
¸®Æ¬ À̿ ¹èÅ͸®, ³³ ºÎ½Ä¼º ¹èÅ͸®, ³ªÆ®·ý°è ¹èÅ͸® µî ÀÏ¹Ý ¹èÅ͸®¸¦ ´ëüÇÒ ¼ö Àִ ö ÇÃ·Î¿ì ¹èÅ͸®´Â ¿À·§µ¿¾È °³¹ßµÇ¾î ¿ÔÁö¸¸, ÇÃ·Î¿ì ¹èÅ͸®ÀÇ ³ôÀº ºñ¿ëÀÌ ½ÃÀå ¼ºÀåÀÇ Áß¿äÇÑ ¾ïÁ¦¿äÀÎÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ö ÇÃ·Î¿ì ¹èÅ͸®ÀÇ Àüü ºñ¿ë¿¡´Â ÀÚº» ÁöÃâ, ºÎǰ ÁöÃâ, Àç·á ÁöÃâ, ¼³¸³ ÁöÃâ, ¼ö¸® ¹× À¯Áöº¸¼ö ÁöÃâÀÌ Æ÷ÇԵ˴ϴÙ. ÀÌ´Â Áß¼Ò±â¾÷¿¡°Ô Å« »ç¾÷ÀÔ´Ï´Ù.
µ¥ÀÌÅͼ¾ÅÍÀÇ Àü·Â ¼ö¿ä Áõ°¡´Â Àü·Âȸ»ç¿¡ ÀÖ¾î ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ¹Ì±¹ ¿¡³ÊÁöºÎ Åë°è¿¡ µû¸£¸é 2020³â µ¥ÀÌÅͼ¾ÅÍÀÇ ¿¬°£ Æò±Õ ¿¡³ÊÁö ¼Òºñ·®Àº 200-1000TWh¿¡ ´ÞÇÕ´Ï´Ù. ÇâÈÄ ¸î ³â µ¿¾È ¿¡³ÊÁö ¼Òºñ·®ÀÌ Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. µ¥ÀÌÅͼ¾ÅÍÀÇ ¿¡³ÊÁö ¼Òºñ°¡ Áõ°¡ÇÔ¿¡ µû¶ó ºñ¿ë, ȯ°æ, È®À强 ¹®Á¦°¡ ´ëµÎµÇ°í ÀÖ½À´Ï´Ù. µû¶ó¼ µ¥ÀÌÅͼ¾Å͸¦ À¯ÁöÇϱâ À§ÇØ Àú·ÅÇÏ°í ¿¡³ÊÁö È¿À²ÀûÀÎ ´ë¾ÈÀ» µµÀÔÇÒ Çʿ䰡 ÀÖ½À´Ï´Ù.
ö ÇÃ·Î¿ì ¹èÅ͸®´Â ¸ðµç »ç¶÷ÀÌ ¹Þ¾ÆµéÀÏ ¼ö ÀÖ´Â ÇϳªÀÇ À¯ÇüÀÌ ¾ø±â ¶§¹®¿¡ Ç¥ÁØÈ ºÎÁ·À̶ó´Â ¹®Á¦°¡ ÀÖ½À´Ï´Ù. Ç¥ÁØ ±Ô°ÝÀÌ ¾ø±â ¶§¹®¿¡ »ý»êÀÚ°¡ ÇöÀç ½Ã½ºÅÛ¿¡¼ ÀÛµ¿ÇÒ ¼ö Àִ ö ÇÃ·Î¿ì ¹èÅ͸®¸¦ ¸¸µå´Â °ÍÀº ¾î·Æ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãø¸éÀÌ ½ÃÀå ¼ºÀåÀ» Á¦ÇÑÇϰí ÀÖ½À´Ï´Ù.
COVID-19 Àü¿°º´Àº ö ÇÃ·Î¿ì ¹èÅ͸® ½ÃÀå¿¡ ´Ù¾çÇÑ ¿µÇâÀ» ¹ÌÃÆÀ¸¸ç, COVID-19ÀÇ ´ëÀ¯ÇàÀ¸·Î ÀÎÇØ 2020³â ¼ö¸¹Àº ÇÁ·ÎÁ§Æ®¿¡¼ ÀÌ·¯ÇÑ ÇÃ·Î¿ì ¹èÅ͸®ÀÇ ¼³Ä¡°¡ °¨¼ÒÇß½À´Ï´Ù. ¶ÇÇÑ Àü ¼¼°è Á¦Á¶ °øÀåÀÇ Æó¼â°¡ ½ÃÀå È®´ë¿¡ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ±×·¯³ª °¢±¹ Á¤ºÎ°¡ Àü·Â ºÎ¹® Çö´ëÈ¿¡ ÁÖ·ÂÇÔ¿¡ µû¶ó Àü ¼¼°èÀûÀ¸·Î ÀÌ·¯ÇÑ ¹èÅ͸®ÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È, ö ÇÃ·Î¿ì ¹èÅ͸®´Â Àç»ý¿¡³ÊÁö¸¦ Áö¿øÇϱâ À§ÇØ À¯Æ¿¸®Æ¼ ½Ã¼³¿¡¼ ³Î¸® »ç¿ëµÇ±â ¶§¹®¿¡ À¯Æ¿¸®Æ¼ ½Ã¼³ ºÎ¹®ÀÌ Ã¶ ÇÃ·Î¿ì ¹èÅ͸® ½ÃÀåÀ» Áö¹èÇϰí ÀÖ½À´Ï´Ù. Àü±âÈ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó À¯Æ¿¸®Æ¼ ºÐ¾ß¿¡¼ ÇÃ·Î¿ì ¹èÅ͸®ÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ³×Æ®¿öÅ©°¡ Á¡Á¡ ´õ ¸¹Àº ³ì»ö ¿¡³ÊÁö¸¦ »ç¿ëÇÔ¿¡ µû¶ó È¿°úÀûÀ̰í ÀûÀÀ·ÂÀÌ ¶Ù¾î³ª°í ¿À·¡ Áö¼ÓµÇ´Â ¿¡³ÊÁö ¿ë·® ¹èÄ¡¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
150kW ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 150kWÀÇ Ã¶ ÇÃ·Î¿ì ¹èÅ͸®´Â ö°ú ÀüÇØÁúÀ» »ç¿ëÇÏ¿© ¿¡³ÊÁö¸¦ ÀúÀåÇÏ°í ¹æÃâÇÕ´Ï´Ù. ÀÌ ¹èÅ͸®´Â 150kWÀÇ ¿¡³ÊÁö ÀúÀå ¿ë·®À» °¡Áö°í ÀÖÀ¸¸ç °Ç¹°, »ó¾÷ ½Ã¼³ µî¿¡ Àü·ÂÀ» °ø±ÞÇÏ´Â µ¥ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. ¼ö¸íÀÌ ÃÖ´ë 20³âÀΠö ÇÃ·Î¿ì ¹èÅ͸®´Â ³»±¸¼ºÀÌ ¶Ù¾î³ Àå±â ¿¡³ÊÁö ÀúÀå ¿É¼ÇÀÔ´Ï´Ù. ´õ ³ôÀº Ãâ·ÂÀ» ¾òÀ» ¼ö ÀÖÀ¸¸ç ±âÁ¸ ³³ÃàÀüÁöº¸´Ù ÈξÀ ´õ È¿À²ÀûÀÔ´Ï´Ù.
Àç»ý¿¡³ÊÁö ÀúÀå¿¡ ´ëÇÑ ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛÀÇ Çʿ伺ÀÌ Áõ°¡Çϰí Àü·Â¸Á ¾ÈÁ¤¼º¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼ ºÏ¹Ì ö ÇÃ·Î¿ì ¹èÅ͸® ½ÃÀåÀÌ °¡Àå Å« ½ÃÀåÀ¸·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ö ÇÃ·Î¿ì ¹èÅ͸®´Â ±×¸®µå ½ºÄÉÀÏ °íÁ¤½Ä ½ºÅ丮Áö, ¸¶ÀÌÅ©·Î ±×¸®µå °íÁ¤½Ä ½ºÅ丮Áö, °íÁ¤½Ä ½ºÅ丮Áö µî ´Ù¾çÇÑ ¿ëµµ¿¡ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ö ÇÃ·Î¿ì ¹èÅ͸® ½ÃÀå °³Ã´¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡Çϰí Àå±â ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ½ÃÀåÀÌ È®´ëµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
Àå±â ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼Ç°ú Àç»ý¿¡³ÊÁö¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ Ã¶ ÇÃ·Î¿ì ¹èÅ͸® ¼ºÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, È¿À²ÀûÀÎ ¿¡³ÊÁö °ü¸® ¹× ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡µµ ½ÃÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ö ÇÃ·Î¿ì ¹èÅ͸®´Â Àü±âÀÚµ¿Â÷, Àç»ý¿¡³ÊÁö ¹× ¸¶ÀÌÅ©·Î ±×¸®µå ¾ÖÇø®ÄÉÀ̼ǿ¡¼ ´õ ÀÚÁÖ »ç¿ëµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ, À̵é Áö¿ªÀÇ È¯°æ ÀνÄÀÌ ³ô¾ÆÁö°í ź¼Ò ¹èÃâ¿¡ ´ëÇÑ ±ÔÁ¦°¡ °ÈµÊ¿¡ µû¶ó ½ÃÀåÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù.
2023³â 6¿ù, Àå¼ö¸í ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ Á¦Á¶¾÷üÀÎ ESS Å×Å©(ESS Tech)¿Í µ¶ÀÏ¿¡ º»»ç¸¦ µÐ ¿¡³ÊÁö °ø±Þ¾÷ü LEAG´Â µ¶ÀÏ ¹Ú½ºº£¸£Å©(Boxberg) ¹ßÀü¼Ò ºÎÁö¿¡ 50MW/500MWh ±Ô¸ðÀÇ Ã¶ ÇÃ·Î¿ì ¹èÅ͸® ½Ã½ºÅÛÀ» ±¸ÃàÇϱâ À§ÇØ Çù·ÂÇϱâ·Î Çß½À´Ï´Ù. ¾à 2¾ï À¯·Î(¾à 2¾ï 1,800¸¸ ´Þ·¯) ±Ô¸ðÀÇ ÀÌ ÇÁ·ÎÁ§Æ®´Â Àç»ý¿¡³ÊÁö ¹ßÀü°ú ESSÀÇ Çõ½ÅÀûÀΠö ÇÃ·Î¿ì ¹èÅ͸® ±â¼úÀ» ÀÌ¿ëÇÑ Àå±â ¿¡³ÊÁö ÀúÀå(LDES)À» °áÇÕÇÏ¿© ûÁ¤¿¡³ÊÁö·ÎÀÇ ÀüȯÀ» °¡¼ÓÈÇÏ´Â °ÍÀ» ¸ñÇ¥·Î Çϰí ÀÖ½À´Ï´Ù.
2023³â 6¿ù, Àκñ´ÏƼ´Â 200MWh ¿ë·®ÀÇ ¹êÄí¹ö Á¦Á¶ ½Ã¼³À» ¿ÀÇÂÇß½À´Ï´Ù. Àκñ´ÏƼÀÇ ¹êÄí¹ö °øÀåÀº ¿¬°£ ÃÖ´ë 200MWhÀÇ ¹Ù³ªµã ÇÃ·Î¿ì ¹èÅ͸®¸¦ »ý»êÇÒ ¼ö ÀÖ½À´Ï´Ù. Àκñ´ÏƼÀÇ Ä³³ª´Ù »ý»ê±âÁö¿¡ ´ëÇÑ Àü·«Àû ÅõÀÚ·Î 2022³â ¸» ¾à 31MWhÀÇ »ç»ó ÃÖ´ë ¸ÅÃâÀ» ´Þ¼ºÇϱâ À§ÇØ »ý»ê ±Ô¸ð¸¦ ´õ¿í È®´ëÇÒ ¼ö ÀÖ°Ô µÆ½À´Ï´Ù.
2023³â 6¿ù, ¼®Åº ä±¼ ¹× ¹ßÀü ȸ»çÀÎ LEAG´Â µ¶ÀÏ µ¿ºÎ¿¡ 2¾ï À¯·Î(2¾ï 1,612¸¸ ´Þ·¯) ±Ô¸ðÀÇ Àç»ý¿¡³ÊÁö ¹ßÀü ½Ã½ºÅÛÀ» °Ç¼³ÇÒ °èȹÀÔ´Ï´Ù. ź¼Ò ´Ù·® ¼Òºñ ȼ®¿¬·á¸¦ ´Ü°èÀûÀ¸·Î ÆóÁöÇÒ Çʿ伺°ú º°µµ·Î µ¶Àϰú ´Ù¸¥ À¯·´ ±¹°¡µéÀº ž籤, dz·Â µî ¿¡³ÊÁöÀÇ °£ÇæÀû Ư¼ºÀ» °ü¸®Çϱâ À§ÇØ ´õ ¸¹Àº Àü·Â ÀúÀåÀ» ÇÊ¿ä·Î ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
According to Stratistics MRC, the Global Iron Flow Battery Market is accounted for $333.87 million in 2023 and is expected to reach $1779.11 million by 2030 growing at a CAGR of 27% during the forecast period. An iron flow battery, also known as a redox flow battery, is an electrochemical device that stores energy in tanks of liquid electrolytes. It is widely used because it doesn't burn, explode, or release toxic gases. Iron flow batteries are employed in a number of industries, including the commercial, military, and broadcast sectors, but they are most frequently used in homes and electric vehicles. The low cost and environmental friendliness of materials based on iron make flow batteries like these an appealing option for large-scale energy storage devices.
According to Benchmark Mineral Intelligence Worldwide, cobalt demand from the battery sector has tripled in the past five years and is projected to at least double again by 2020.
Flow batteries are widely used in the utility sector due to the increased demand for electrification. One of the main drivers of demand for battery energy storage systems, which will support market growth, is the rising use of renewable energy sources like solar and wind. Given that large-scale utilities need solutions that can cost-effectively store renewable energy for future grid use at any location, flow batteries offer an alluring feature that has made them the most preferred energy storage technology for utility-based storage.
The development of iron flow batteries as a potential replacement for common batteries such as lithium-ion, lead-corrosive, and sodium-based batteries has occurred over time; however, the high cost of flow batteries may act as a significant market growth restraint. The iron flow battery's overall cost includes capital expenditure, component expenditure, material expenditure, establishment expenditure, and fix and maintenance expenditure. This is a major undertaking for small and medium-sized enterprises.
For power utilities, the rising demand for electricity in data centers is significant. The average annual energy consumption of data centers was between 200 and 1000 TWh in 2020, according to statistics from the U.S. Department of Energy. In the upcoming years, it is anticipated that energy consumption will rise. Cost, environmental, and scalability concerns have been brought up by the rising energy consumption in data centers. Therefore, it is necessary to maintain these data centers by implementing affordable and energy-efficient alternatives.
Because there is no one type of iron flow battery that is accepted by everyone, there is a challenge with the lack of standardization. Because of the lack of standards, it is challenging for producers to create iron flow batteries that work with the current system. Such aspects restrict the market's growth.
The COVID-19 pandemic had a mixed effect on the iron flow battery market. The installation of these flow batteries across numerous projects in 2020 has decreased as a result of the COVID-19 pandemic. Additionally, the global closure of manufacturing plants has an impact on market expansion. However, it is predicted that the adoption of these batteries will rise globally as a result of the government's increased focus on modernizing the power sector.
During the forecast period, the utility facilities segment dominates the iron flow battery market because iron flow batteries are widely used in utilities to support renewable energy. Due to the escalating demand for electrification, flow battery adoption is rising in the utility sector. Additionally, as networks increasingly use green energy, the demand for effective, adaptable, and long-lasting energy capacity arrangements has increased.
The 150 kW segment is estimated to witness the highest CAGR during the forecast period. The 150 kW Iron Flow Battery uses iron and an electrolyte to store and release energy. The battery has a 150 kW energy storage capacity, which can be used to power buildings, commercial buildings, and other applications. With a lifespan of up to 20 years, the iron flow battery is a durable, long-term energy storage option. A higher power output can be achieved, and it is also significantly more efficient than conventional lead-acid batteries.
Due to the growing need for energy storage systems to store renewable energy and the increased emphasis on grid stability, the North American iron flow battery market is anticipated to be the largest. Iron flow batteries are becoming more widely used in a variety of applications, including grid-scale storage, micro-grid storage, and stationary storage. Additionally, the market is anticipated to grow as a result of rising investments in the development of iron flow batteries and rising demand for long-duration energy storage solutions.
Long-duration energy storage solutions and the rising demand for renewable energy are driving the growth of iron flow batteries in the Asia Pacific region. The market is also being driven by the rising demand for effective energy management and storage solutions. Iron flow batteries are expected to be used more frequently in electric vehicle, renewable energy, and microgrid applications. Furthermore, rising environmental consciousness and strict regulations on carbon dioxide emissions in these regions are expanding the market.
Some of the key players profiled in the Iron Flow Battery Market include Australian Vanadium Limited, Avalon Battery, Bushveld Energy, CellCube Energy Storage Systems Inc, Electric Fuel Limited, ESS, Inc, Grupo Saesa, Invinity Energy Systems, Largo Clean Energy, Lockheed, Martin Corporation, Primus Power, Redflow-Sustainable Energy Storage, Sumitomo Electric Industries Ltd., UniEnergy Technologies, ViZn Energy Systems and VRB Energy.
In June 2023, ESS Tech, a manufacturer of long-duration energy storage systems, and Germany-based energy provider LEAG have partnered to construct a 50 MW/500 MWh iron flow battery system at the Boxberg power plant site in Germany. Estimated to cost an initial €200 million (~$218 million), the project aims to accelerate the clean energy transition by combining renewable generation with long-duration energy storage (LDES) using ESS's innovative iron flow battery technology.
In June 2023, Invinity Opens 200 MWh Capacity Vancouver Manufacturing Facility. The Company's Vancouver facility is now able to produce up to 200 MWh of vanadium flow batteries per year. This strategic investment in Invinity's Canadian manufacturing base will enable the Company to further scale up production to meet the record sales achieved of nearly 31 MWh secured by the Company at the end of 2022.
In June 2023, Coal miner and power generator LEAG plans to build a 200 million euros ($216.12 million) renewable energy storage system in eastern Germany. Apart from the need to phase out carbon-intensive fossil fuel, Germany and other European countries are expected to need more storage to manage the intermittent nature of forms of energy such as solar and wind.