![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1308714
½º¸¶Æ® ¼ÒÀç ½ÃÀå ¿¹Ãø(-2030³â) : Á¦Ç° À¯Çü, ¿ëµµ, ÃÖÁ¾»ç¿ëÀÚ, Áö¿ªº° ¼¼°è ºÐ¼®Smart Materials Market Forecasts to 2030 - Global Analysis By Product Type, Application, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ½º¸¶Æ® ¼ÒÀç ½ÃÀåÀº 2023³â¿¡ 849¾ï ´Þ·¯¸¦ Â÷ÁöÇÏ°í ¿¹Ãø ±â°£ Áß CAGRÀº 16.9%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 2,532¾ï 9,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù.
½º¸¶Æ® ¼ÒÀç´Â ³»ÀçÀû, ¿ÜÀçÀû ´É·ÂÀ» °âºñÇÑ ÀûÀÀÇü ¶Ç´Â Áö´ÉÇü ¼ÒÀçÀÔ´Ï´Ù. ¿øÇÏ´Â ±â´ÉÀû È¿°ú¸¦ ¾ò±â À§ÇØ ¼öºÐ, ¿Âµµ, ÀüÀÚ±âÀå, ¾Ð·Â µî ¿ÜºÎ ¿äÀο¡ ÀÇÇØ º¯ÈÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÌ·¯ÇÑ Àç·á´Â º»ÁúÀûÀ¸·Î µ¿ÀûÀÌ¸ç »óÈ£ ÀÛ¿ëÇϴ ȯ°æ¿¡ Áï½Ã ¹ÝÀÀÇÏ¿© Ư¼ºÀ» º¯°æÇÕ´Ï´Ù. Àç·á °úÇÐ ºÐ¾ßÀÇ ¹ßÀüÀ¸·Î °íºÐÀÚ, ÇÃ¶ó½ºÆ½, ±Ý¼Ó, À¯¸®, ¼¼¶ó¹Í°ú °°Àº ±âÁ¸ Àç·á·Î´Â ºÒ°¡´ÉÇß´ø ƯÁ¤ ¿ëµµÀÇ Àç·á°¡ °³¹ßµÇ¾ú½À´Ï´Ù.
¹Ì±¹ Àα¸Á¶»ç±¹ÀÌ ¹ßÇ¥ÇÑ 2015³â ±¹Á¦Àα¸º¸°í¼¿¡ µû¸£¸é ÇâÈÄ 35³â µ¿¾È ³ëÀÎ Àα¸ Áõ°¡°¡ ÀþÀº Àα¸ Áõ°¡¸¦ ´É°¡ÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. µû¶ó¼ ÀÌ ¿äÀÎÀ¸·Î ÀÎÇÑ Àü¹ÝÀûÀÎ ¿µÇâÀº 2022³â±îÁö ´õ Ä¿Áú °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
½º¸¶Æ® ¼ÒÀç´Â ÀÚµ¿Â÷, Ç×°ø¿ìÁÖ, ÇコÄÉ¾î µîÀÇ ºÐ¾ß¿¡¼ Á¦Ç° ¼º´É Çâ»ó, ¾ÈÀü¼º Çâ»ó, ºñ¿ë Àý°¨À» À§ÇØ ÀÚÁÖ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î ¾ÐÀü Àç·á´Â ÇコÄÉ¾î ºÐ¾ß¿¡¼ Áö´ÉÇü ÀÓÇöõÆ® ¹× ¼¾¼ Á¦Á¶¿¡ »ç¿ëµÇ¸ç, Çü»ó±â¾ïÇÕ±ÝÀº Ç×°ø¿ìÁÖ ºÐ¾ß¿¡¼ Ç×°ø±â ¿£ÁøÀÇ ¼º´ÉÀ» Çâ»ó½ÃŰ´Â µ¥ »ç¿ëµË´Ï´Ù. ÀÌµé »ê¾÷ÀÌ ±â¼ú Çõ½Å°ú È¿À²À» Áß½ÃÇÏ´Â Ãß¼¼¿¡ µû¶ó ÀÌ ºÐ¾ßÀÇ ¿¬±¸°³¹ß Ȱµ¿ÀÌ È°¹ßÇØÁö¸é¼ ½º¸¶Æ® ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
½ÃÀå È®´ë¸¦ °¡·Î¸·´Â ¶Ç ´Ù¸¥ À庮Àº ¼ÒºñÀÚ¿Í ÃÖÁ¾»ç¿ëÀÚ°¡ ½º¸¶Æ® ¼ÒÀç¿¡ ´ëÇÑ Áö½Ä°ú Á¤º¸°¡ °ÅÀÇ ¾ø½À´Ï´Ù´Â °ÍÀÔ´Ï´Ù. ¸¹Àº »ç¶÷µéÀÌ ½º¸¶Æ® ¼ÒÀç°¡ Á¦Ç° ¼º´É Çâ»ó, ¾ÈÀü¼º Çâ»ó, ºñ¿ë Àý°¨ µîÀÇ ÀÌÁ¡À» °¡Áö°í ÀÖ´Ù´Â »ç½ÇÀ» ¾ËÁö ¸øÇÕ´Ï´Ù. ±× °á°ú ƯÁ¤ ¿ëµµ¿¡¼ ½º¸¶Æ® ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä°¡ ºÎÁ·ÇÏ¿© »ç¿ëÀÌ Á¦ÇÑµÉ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ½º¸¶Æ® ¼ÒÀç´Â º¹ÀâÇϱ⠶§¹®¿¡ ÃÖÁ¾»ç¿ëÀÚ°¡ ¿Ã¹Ù¸¥ »ç¿ë¹ýÀ» ÀÌÇØÇϱⰡ ¾î·Æ°í, À̴ äÅÃÀ» ´õ¿í Á¦ÇÑÇÒ ¼ö ÀÖ½À´Ï´Ù.
½º¸¶Æ® ¼ÒÀç ºÐ¾ßÀÇ ¿¬±¸°³¹ßºñ Áõ°¡·Î ½ÃÀåÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ½º¸¶Æ® ¼ÒÀçÀÇ Æ¯¼º°ú ±â´ÉÀº Á¤ºÎ, ÇÐ°è ¹× ¹Î°£ ±â¾÷ÀÇ R&D ÅõÀÚ¸¦ ÅëÇØ °³¼±µÇ°í ÀÖ½À´Ï´Ù. ±× °á°ú Ư¼öÇÑ Æ¯¼º°ú ´É·ÂÀ» °¡Áø ½Å¼±Çϰí ÃÖ÷´Ü ½º¸¶Æ® ¼ÒÀç°¡ ź»ýÇÏ¿© ½ÃÀå È®´ë°¡ °¡¼Ó鵃 °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
½º¸¶Æ® ¼ÒÀç ¼¼°è ½ÃÀåÀº ¿¹Ãø ±â°£ Áß ¼ºÀåÀ» ÀúÇØÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÚÁÖ Àú·ÅÇØÁö´Â ÀÏ¹Ý ¼ÒÀç´Â ½º¸¶Æ® ¼ÒÀç¿Í °æÀïÇÏ°Ô µË´Ï´Ù. ¿¹¸¦ µé¾î ÆÐ¼Ç »ê¾÷¿¡¼´Â ÀüÅëÀûÀÎ ¼¶À¯°¡ »ç¿ëµÇ¸ç, ÀÚµ¿Â÷ »ê¾÷¿¡¼´Â °Ã¶°ú ¾Ë·ç¹Ì´½ÀÌ ÀÚÁÖ »ç¿ëµË´Ï´Ù. ¹Ý¸é, ½º¸¶Æ® ¼ÒÀç´Â ºñ¿ëÀÌ ºñ½Î°í °íÀ¯ÇÑ Á¦Á¶ ÀýÂ÷°¡ ÇÊ¿äÇÒ ¼ö ÀÖ½À´Ï´Ù. µû¶ó¼ ƯÁ¤ ¿ëµµ, ƯÈ÷ ºñ¿ë Á¦¾àÀÌ ½ÉÇÑ ¿ëµµ¿¡¼´Â ½º¸¶Æ® ¼ÒÀçÀÇ »ç¿ëÀÌ Á¦ÇÑµÉ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ½º¸¶Æ® ¼ÒÀçÀÇ ¼º´É»óÀÇ ÀÌÁ¡ÀÌ ¹Ýµå½Ã ³ôÀº °¡°ÝÀ» ´É°¡ÇÏ´Â °ÍÀº ¾Æ´Ï±â ¶§¹®¿¡ ½º¸¶Æ® ¼ÒÀçÀÇ º¸±ÞÀ» ´õ¿í ¾î·Æ°Ô ÇÒ ¼ö ÀÖ½À´Ï´Ù.
COVID-19´Â ½º¸¶Æ® ¼ÒÀç ½ÃÀå¿¡ »ó¹ÝµÈ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ¼¼°è °ø±Þ¸Á¿¡ È¥¶õÀ» ÀÏÀ¸ÄÑ ÀϺΠºÐ¾ß¿¡¼´Â ½º¸¶Æ® ¼ÒÀç ¼ö¿ä°¡ °¨¼ÒÇÏ´Â ¹Ý¸é, ÇコÄÉ¾î ºÐ¾ß, ƯÈ÷ ÀÇ·á±â±â ¹× °³ÀÎ º¸È£ Àåºñ »ý»ê¿¡ À־ ½º¸¶Æ® ¼ÒÀç ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ±×·¯³ª ÆÒµ¥¹ÍÀ¸·Î ÀÎÇØ ¾ÈÀü¼ºÀ» ³ôÀ̰í ÀÇ·á ¼º°ú¸¦ Çâ»ó½Ãų ¼ö Àִ ÷´Ü ¼ÒÀçÀÇ Çʿ伺¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁ® ±Ã±ØÀûÀ¸·Î ½º¸¶Æ® ¼ÒÀç ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÒ ¼ö ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ Áß ¾ÐÀü Àç·á´Â ½º¸¶Æ® Àç·á¿¡¼ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀÔ´Ï´Ù. ±â°èÀû ½ºÆ®·¹½º¿¡ ¹ÝÀÀÇÏ¿© ÀüÇϸ¦ »ý¼ºÇÒ ¼ö ÀÖ´Â ½º¸¶Æ® Àç·á¿¡´Â ¾ÐÀü Àç·á°¡ Æ÷ÇԵ˴ϴÙ. ¾ÐÀü Àç·á´Â ¿¡³ÊÁö ¼öÈ® Àåºñ, ¼¾¼, ¾×Ãß¿¡ÀÌÅÍ µî ´Ù¾çÇÑ ¿ëµµ¿¡¼ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷, Ç×°ø¿ìÁÖ, ÇコÄÉ¾î »ê¾÷ µî ´Ù¾çÇÑ ºÐ¾ß¿¡¼ ±¤¹üÀ§ÇÏ°Ô »ç¿ëµÇ±â ¶§¹®¿¡ ¾ÐÀü ºÎ¹®Àº ½º¸¶Æ® ¼ÒÀç ½ÃÀå¿¡¼ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ Áß ½º¸¶Æ® ¼ÒÀç ½ÃÀå°ú ÇコÄɾî ÃÖÁ¾»ç¿ëÀÚ ºÎ¹®Àº °¡Àå ³ôÀº CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÇコÄÉ¾î ºÐ¾ß´Â ¾à¹°Àü´Þ, Á¶Á÷ °øÇÐ, ÀÇ·á±â±â µî ´Ù¾çÇÑ ¸ñÀûÀ¸·Î ½º¸¶Æ® ¼ÒÀ縦 Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ÷´Ü ÀÇ·á ±â¼úÀÇ Çʿ伺, ¸¸¼ºÁúȯÀÇ È®»ê, Àα¸ °í·ÉÈ µîÀº ¸ðµÎ ÇコÄÉ¾î ºÐ¾ßÀÇ ½º¸¶Æ® ¼ÒÀç ¼ö¿ä¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î ½º¸¶Æ® ¼ÒÀç´Â ½Åü °úÁ¤À» Á¶ÀýÇÏ°í ¸ð´ÏÅ͸µÇÏ¿© ȯÀÚÀÇ ¿¹Èĸ¦ °³¼±ÇÏ´Â À̽ÄÇü Àåºñ¸¦ ¸¸µå´Â µ¥ »ç¿ëµÉ ¼ö ÀÖ½À´Ï´Ù.
À¯·´ ½ÃÀåÀº ¿¹Ãø ±â°£ Áß ¼¼°è ½º¸¶Æ® ¼ÒÀç ½ÃÀå¿¡¼ °¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ½º¸¶Æ® ¼ÒÀç´Â À¯·´¿¡¼ Å« ½ÃÀå ±Ô¸ð¸¦ °¡Áö°í ÀÖÀ¸¸ç, µ¶ÀÏÀº À¯·´¿¡¼ °¡Àå Å« ½ÃÀåÀÔ´Ï´Ù. ½Å¼ÒÀç ¹× µ¶Ã¢ÀûÀÎ ¼ÒÀç °³¹ß, ±â¼ú ¹ßÀü, ´Ù¾çÇÑ ¿ëµµ¿¡¼ ½º¸¶Æ® ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡ µîÀÌ À¯·´ ½º¸¶Æ® ¼ÒÀç ½ÃÀåÀÇ ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ±×·¯³ª ¿µ±¹, ÇÁ¶û½º, ÀÌÅ»¸®¾Æ, ½ºÆäÀÎ µî À¯·´ ±¹°¡µéµµ Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. ±ÔÁ¦ ¹®Á¦, ÁöÀûÀç»ê±Ç ¹®Á¦, °ø±Þ¸Á È¥¶õ°ú °°Àº Àå¾Ö¹°¿¡µµ ºÒ±¸Çϰí À¯·´ ½º¸¶Æ® ¼ÒÀç ½ÃÀåÀº Áö¼ÓÀûÀ¸·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ½º¸¶Æ® ¼ÒÀç ½ÃÀåÀº »ê¾÷È ÁøÀü, R&D ºñ¿ë Áõ°¡, ÀÚµ¿Â÷, Ç×°ø¿ìÁÖ, ÇコÄÉ¾î µî ´Ù¾çÇÑ ºÐ¾ß¿¡¼ ½º¸¶Æ® ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡ µîÀÇ ¿äÀÎÀ¸·Î ÀÎÇØ ¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Áß±¹Àº R&D ±¸»ó¿¡ ´ëÇÑ ¸·´ëÇÑ ÅõÀÚ¿Í ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼ ½º¸¶Æ® ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ ÀÌ Áö¿ª¿¡¼ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
Áö³ 5¿ù ÀϺ»ÀÇ ´Ù±¹Àû ÀüÀÚ ±â¾÷ TDK´Â ÀÚȸ»çÀÎ º¥Ã³½º(Ventures, Inc.)°¡ ¹Ì±¹¿¡ º»»ç¸¦ µÐ ¹«¼± ±â¼ú °³¹ß ȸ»çÀÎ XCOM Labs¿¡ ÅõÀÚÇß´Ù°í ¹ßÇ¥Çß½À´Ï´Ù. ÅõÀÚ ¸ñÀûÀº ´ë¿ªÆø ¿ë·®, ´ë±â ½Ã°£ ´ÜÃà, °è»ê ºÎÇÏ ºÐ»ê¿¡ ÃÊÁ¡À» ¸ÂÃá 5G ¹× ¹«¼±Åë½Å ½Ã½ºÅÛ °³¹ßÀÔ´Ï´Ù.
Áö³ 3¿ù ÀϺ»ÀÇ ´Ù±¹Àû ÀüÀÚÁ¦Ç° Á¦Á¶¾÷üÀÎ ±³¼¼¶ó(Kyocera Corporation)´Â ¹Ì±¹¿¡ º»»ç¸¦ µÐ ÀüÀÚºÎǰ Á¦Á¶È¸»ç AVX Corp. ±³¼¼¶ó´Â ÀÌÀü¿¡ AVXÀÇ ¹ßÇà ÁÖ½ÄÀÇ ¾à 72%¸¦ º¸À¯Çϰí ÀÖ¾ú½À´Ï´Ù. ÇÕº´ ¿Ï·á ÈÄ AVX´Â ±³¼¼¶óÀÇ ¿ÏÀü ÀÚȸ»ç°¡ µÇ¾ú½À´Ï´Ù.
2021³â 4¿ù, EvonikÀº »öº¯È¯ Àç·á¸¦ Æ÷ÇÔÇÑ »õ·Î¿î 3D ÇÁ¸°ÆÃ¿ë Æ÷ÅäÆú¸®¸Ó Á¦Ç°±ºÀ» ¹ßÇ¥Çß½À´Ï´Ù. ÀÌ »õ·Î¿î Æ÷ÅäÆú¸®¸Ó Á¦Ç°±ºÀº ¿¡º¸´ÐÀÇ 3D ÇÁ¸°ÆÃ °æÇè°ú ½º¸¶Æ® ¼ÒÀç, Çõ½ÅÀû ¼ºÀå ºÐ¾ß¸¦ °áÇÕÇÑ Áï½Ã »ç¿ë °¡´ÉÇÑ °í¼º´É ¹èÇÕÀ¸·Î ±¸¼ºµÇ¾î ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Smart Materials Market is accounted for $84.90 billion in 2023 and is expected to reach $253.29 billion by 2030 growing at a CAGR of 16.9% during the forecast period. Smart materials possess both intrinsic and extrinsic capabilities and are adaptive or intelligent materials. To achieve the desired functional effects, these can be modified by outside factors like moisture, temperature, electromagnetic field, and pressure. Additionally, these materials are dynamic in nature and change their characteristics in response to the environments in which they interact right away. Materials for specific applications have been developed as a result of advancements in the field of materials science, which were previously not possible with the use of traditional materials like polymers, plastics, metals, glass, and ceramics.
According to an International Population Reports, 2015 published by United States Census Bureau, the population increase of older population is projected outpace that of younger population over the next 35 years. Thus, the overall impact of this factor is projected to be high by 2022.
Smart materials are being used more frequently to improve product performance, increase safety, and lower costs in sectors like automotive, aerospace, and healthcare. For instance, piezoelectric materials are used in the healthcare sector to create intelligent implants and sensors, while shape-memory alloys are used in the aerospace sector to enhance the performance of aircraft engines. As these industries continue to place a high priority on innovation and efficiency, more research and development activities in the area are anticipated, which will increase the demand for smart materials.
Another barrier to market expansion is consumers' and end users' scant knowledge of and familiarity with smart materials. Many people are unaware of the advantages that smart materials may have, such as their capacity to increase product performance, increase safety, and lower costs. This might result in a lack of demand for smart materials in particular applications, which might restrict their use. Moreover, the complexity of smart materials can also make it challenging for end users to comprehend how to use them correctly, which can further restrict their adoption.
The market is expanding due to rising research and development expenditures in the area of smart materials. The properties and capabilities of smart materials are being improved through research and development investments made by governments, academic institutions, and private businesses. However, it's anticipated that this will result in the creation of fresh, cutting-edge smart materials with special qualities and capabilities, which will accelerate the market's expansion.
The global Smart Materials market expected to hamper growth during the forecast period. Regular materials, which are frequently less expensive, compete with smart materials. For instance, traditional textiles are used in the fashion industry, while the automotive industry frequently uses steel and aluminum. On the other hand, smart materials might cost more and call for unique manufacturing procedures. This may restrict the use of smart materials in particular applications, particularly those with strict cost constraints. Additionally, the performance benefits of smart materials might not always outweigh their higher price, which can further prevent their widespread use.
The COVID-19 pandemic has had a conflicting effect on the market for smart materials. In addition to causing disruptions in global supply chains and a decline in demand for smart materials in some sectors, it has also resulted in a rise in demand for smart materials in the healthcare sector, particularly for the manufacture of medical devices and personal protective equipment. However, the pandemic has brought attention to the need for cutting-edge materials that can boost safety and enhance healthcare outcomes, which could ultimately fuel the growth of the market for smart materials.
During the anticipated period, piezoelectric materials will hold the largest market share for smart materials. Smart materials that can produce an electric charge in response to mechanical stress include piezoelectric materials. They are used in many different applications, such as energy harvesting devices, sensors, and actuators. Due to its extensive use in numerous sectors, including the automotive, aerospace, and healthcare industries, the piezoelectric segment has been the largest segment of the smart materials market.
During the anticipated period, the smart materials market and the healthcare end-user segment are anticipated to grow at the highest CAGR. Smart materials are being used more frequently in the healthcare sector for a variety of purposes, including drug delivery, tissue engineering, and medical equipment. The need for cutting-edge medical technologies, the growing prevalence of chronic diseases, and the aging population all contribute to the demand for smart materials in the healthcare sector. For instance, Smart materials can be used to create implantable gadgets that can regulate and monitor bodily processes, enhancing patient outcomes.
The Europe region market is estimated to witness a largest share of the global Smart Materials market during the forecast period. Smart materials have a sizable market in Europe, with Germany being the biggest country on the continent. The development of new and inventive materials, as well as technological advancements, rising demand for smart materials across a range of applications, and other factors, all contribute to the growth of the smart materials market in Europe. However, significant market shares are also held by other European nations like the United Kingdom, France, Italy, and Spain. Despite obstacles like regulatory issues, concerns over intellectual property, and supply chain disruptions, the market for smart materials in Europe is anticipated to continue expanding in the years to come.
During the forecast period, the smart materials market is expected to grow at the highest CAGR in the Asia-Pacific region due to factors like rising industrialization, increased R&D spending, and rising demand for smart materials across a range of sectors, including the automotive, aerospace, and healthcare industries. Because of its significant investments in R&D initiatives and rising demand for smart materials across a range of industries, China is predicted to have one of the highest growth rates in the region.
Some of the key players in Smart Materials market include Advanced Cerametrics, Inc., APC International, Ltd., ATI Wah-chang, CeramTech GmbH, Channel Technologies Group, LLC, ChromoGenics, CTS Corporation, Fort Wayne Metals, Harris Corporation, Johnson Matthey, Kyocera Corporation, LCR Hallcrest, LORD Corporation, Gentex Corporation, Meggitt Sensing, Metglas, Inc, Nitinol Devices & Components, SMART MATERIAL CORP., TDK Corporation and Wright Medical Group Inc.
In May 2022, TDK Corporation, which is a Japanese multinational electronics company, announced that its subsidiary Ventures, Inc. invested in the U.S.-based wireless technology developer XCOM Labs. The purpose of the investment is to develop 5G and wireless communications systems focusing on bandwidth capacity, latency reduction, and compute load balancing.
In March 2022, Kyocera Corporation, which is a Japanese multinational electronics manufacturer, completed the acquisition of AVX Corp., which is a U.S.-based electronic component manufacturing company. Kyocera formerly owned approximately 72% of AVX's outstanding shares. Following the completion of the merger, AVX became a fully owned subsidiary of Kyocera.
In April 2021, Evonik has introduced a new photopolymer product range for 3D printing that includes colour phase transition materials. This new photopolymer range is comprised of ready-to-use, high-performance formulations that combine Evonik's experience in 3D printing with smart materials and its innovative growth field.