½ÃÀ庸°í¼­
»óǰÄÚµå
1494762

¼¼°èÀÇ ¹ÙÀÌ¿À°¡½º °³·® ½ÃÀå ¿¹Ãø : ¿ø·á À¯Çüº°, ±â¼úº°, ¿ëµµº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®(-2030³â)

Biogas Upgrading Market Forecasts to 2030 - Global Analysis By Feedstock Type (Agricultural Residues, Sewage Sludge, Industrial Waste, Forestry waste, Poultry waste and Other Feedstock Types), Technology, Application, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ¹ÙÀÌ¿À°¡½º °³·® ½ÃÀåÀº 2024³â¿¡ 20¾ï ´Þ·¯·Î ÃßÁ¤µÇ°í, ¿¹Ãø ±â°£ µ¿¾È CAGRÀº 23.1%·Î ¼ºÀåÇÒ Àü¸ÁÀ̸ç 2030³â¿¡´Â 73¾ï ´Þ·¯¿¡ À̸¦ Àü¸ÁÀÔ´Ï´Ù.

¹ÙÀÌ¿À°¡½º °³·®À̶õ õ¿¬°¡½º ÆÄÀÌÇÁ¶óÀο¡ ÁÖÀÔ, ÀÚµ¿Â÷ ¿¬·á·Î »ç¿ë, ±âŸ È­ÇÐ °øÁ¤ÀÇ ¿ø·á µî ´Ù¾çÇÑ ¿ëµµ¿¡ ÀûÇÕÇÑ °íǰÁúÀÇ °¡½º¸¦ »ý»êÇϱâ À§ÇØ ¿ø½Ã ¹ÙÀÌ¿À°¡½º Á¤È­ ¶Ç´Â Á¤Á¦ÇÏ´Â °úÁ¤À» ¸»ÇÕ´Ï´Ù. Á¤Á¦´Â ¸Þź ÇÔ·®À» Áõ°¡½ÃŰ°í ¹ÙÀÌ¿À°¡½ºÀÇ ¿¡³ÊÁö ÇÔ·®°ú ¾ÈÁ¤¼ºÀ» Çâ»ó½Ã۱â À§ÇØ ÀÌ·¯ÇÑ ºÒ¼ø¹°, ƯÈ÷ CO2¸¦ Á¦°ÅÇÕ´Ï´Ù. ¹ÙÀÌ¿À°¡½º °³·® °øÁ¤¿¡´Â ¾Ð·Â ½ºÀ® ÈíÂø, ¿öÅÍ ½ºÅ©·¯ºù, ¸· ºÐ¸®, ¾Æ¹Î ½ºÅ©·¯ºù µîÀÇ ´Ù¾çÇÑ ±â¼úÀÌ Ã¤¿ëµÇ°í ÀÖ½À´Ï´Ù.

À¯·´ ¹ÙÀÌ¿À°¡½º Çùȸ¿¡ µû¸£¸é ¾à 18,977°³ÀÇ ¹ÙÀÌ¿À°¡½º Ç÷£Æ®¿Í 1,023°³ÀÇ ¹ÙÀÌ¿À¸Þź Ç÷£Æ®°¡ ¼³Ä¡µÇ¾î ÃÑ ¼³ºñ ¿ë·®Àº 167TWh¿Í 25¾ï ÀÔ¹æ¹ÌÅÍ(bcm)ÀÔ´Ï´Ù.

½ÅÀç»ý ¿¡³ÊÁö ¼ö¿ä Áõ°¡

½ÃÀåÀº ½ÅÀç»ý ¿¡³ÊÁö¿øÀÇ Ã¤¿ë Áõ°¡¿¡ µû¸¥ ¼ö¿äÀÇ ±ÞÁõÀ» ¸ñ°ÝÇϰí ÀÖ½À´Ï´Ù. Áö¼Ó°¡´É¼ºÀÌ ¿ì¼±½ÃµÇ°í, »ê¾÷°è´Â ½ÇÇà°¡´ÉÇÑ ´ë¾ÈÀ¸·Î¼­ ¹ÙÀÌ¿À°¡½º¿¡ ´«À» µ¹¸®°í ÀÖ½À´Ï´Ù. ¹ÙÀÌ¿À°¡½º¸¦ Á¤Á¦ÇÏ¿© ¹ÙÀÌ¿À¸ÞźÀ» »ý»êÇÏ´Â ¹ÙÀÌ¿À°¡½º °³·®Àº ȯ°æÀû ÀÌÁ¡°ú ÀÌ»êȭź¼Ò ¹èÃâ·® °¨¼ÒÀÇ °¡´É¼ºÀ¸·Î °¢±¤¹Þ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼ö¿ä Áõ°¡´Â º¸´Ù ±ú²ýÇϰí Áö¼Ó °¡´ÉÇÑ ¿¡³ÊÁö ¼Ö·ç¼ÇÀ¸·ÎÀÇ ¼¼°è º¯È­¸¦ ¹Ý¿µÇϸç, ¹ÙÀÌ¿À°¡½º °³·®¸¦ ½ÃÀåÀÇ Áß¿äÇÑ ±â¾÷À¸·Î ÀÚ¸®¸Å±è½Ã۰í ÀÖ½À´Ï´Ù.

Àç·¡½Ä õ¿¬°¡½º¿ÍÀÇ °æÀï

È®¸³µÈ ÀÎÇÁ¶ó¿Í Àúºñ¿ëÀ» ÀÚ¶ûÇÏ´Â Àç·¡½Ä õ¿¬°¡½º´Â ¹ÙÀÌ¿À°¡½º °³·® ±â¼ú¿¡ À־ ´ë´ÜÇÑ °æÀï »ó´ë°¡ µË´Ï´Ù. ¹ÙÀÌ¿À°¡½º´Â ȯ°æ¸é¿¡¼­ÀÇ ÀåÁ¡À̳ª Àç»ý °¡´ÉÇÑ ¼ºÁúÀÌ ÀÖÀ½¿¡µµ ºÒ±¸ÇÏ°í »ý»êºñ¿ëÀÌ ³ô°í ÀÎÇÁ¶óµµ Á¦ÇѵǾî ÀÖ¾î º¸±ÞÀÇ ¹æÇذ¡ µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ Ãµ¿¬°¡½º °¡°Ý º¯µ¿°ú ±ÔÁ¦ ºÒÈ®½Ç¼ºÀº ¹ÙÀÌ¿À°¡½º °³·® ±â¼ú°æÀï ±¸µµ¸¦ ´õ¿í º¹ÀâÇÏ°Ô ¸¸µì´Ï´Ù.

Æó±â¹° °ü¸®¿¡ ´ëÇÑ °ü½É Áõ°¡

±â¾÷Àº ¹ÙÀÌ¿À°¡½º¸¦ È¿À²ÀûÀ¸·Î °íǰÁúÀÇ ¹ÙÀÌ¿À¸ÞźÀ¸·Î ÀüȯÇÏ¿© ¿Â½Ç°¡½º ¹èÃâ°ú È­¼®¿¬·á ÀÇÁ¸µµ¸¦ ÁÙÀÌ´Â ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ¸¦ ´Ã¸®°í ÀÖ½À´Ï´Ù. ÀÌ ÃÊÁ¡Àº ÀÚ¿ø ȸ¼ö¸¦ ±Ø´ëÈ­Çϰí ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÃÖ¼ÒÈ­Çϱâ À§ÇÑ Æó±â¹° ¼öÁý, Ä¡·á ¹× ÀÌ¿ë ÇÁ·Î¼¼½ºÀÇ ÃÖÀûÈ­¿¡ À̸£°í ÀÖ½À´Ï´Ù. Áö¼Ó°¡´É¼ºÀÌ µÞ¹ÞħµÊ¿¡ µû¶ó Æó±â¹° °ü¸®ÀÇ Çõ½ÅÀº ¹ÙÀÌ¿À°¡½º °³·® ºÎ¹®ÀÇ ¼ºÀå°ú Àå±â »ýÁ¸¿¡ ÇʼöÀûÀÌ µÇ°í ÀÖ½À´Ï´Ù.

ÀÎÇÁ¶ó ºÎÁ·

½ÃÀå¿¡¼­´Â ÀÎÇÁ¶óÀÇ ¹ÌÁ¤ºñ¶ó´Â Å« °úÁ¦°¡ »Ñ¸®±í°Ô ³²¾Æ ÀÖ½À´Ï´Ù. ½ÅÀç»ý ¿¡³ÊÁö¿øÀ¸·Î¼­ÀÇ ¹ÙÀÌ¿À°¡½º¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖÀ½¿¡µµ ºÒ±¸Çϰí, ¹ÙÀÌ¿À°¡½º °³·®¸¦ À§ÇÑ ÃæºÐÇÑ ÀÎÇÁ¶ó°¡ ¾ø´Â °ÍÀÌ º¸±ÞÀÇ À庮ÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¹ÙÀÌ¿À°¡½º¸¦ ó¸®ÇÏ°í º¸´Ù °íǰÁúÀÇ ¹ÙÀÌ¿À¸ÞźÀ¸·Î Á¤Á¦Çϱâ À§ÇÑ ½Ã¼³ÀÌ ºÒÃæºÐÇϱ⠶§¹®¿¡ ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ÀÇ ÀÌ¿ëÀÌ Á¦Çѵǰí ÀÖ½À´Ï´Ù. Áö¼Ó °¡´ÉÇÑ ¿¡³ÊÁö ¼Ö·ç¼ÇÀ¸·Î¼­ ¹ÙÀÌ¿À°¡½ºÀÇ ÀáÀç·ÂÀ» ±Ø´ëÈ­ÇÏ·Á¸é ÀÌ ÀÎÇÁ¶ó ºÎÁ·À» ÇØ°áÇÏ´Â °ÍÀÌ ¸Å¿ì Áß¿äÇÕ´Ï´Ù.

COVID-19ÀÇ ¿µÇâ :

COVID-19ÀÇ À¯ÇàÀº ¹ÙÀÌ¿À°¡½º °³·® ½ÃÀå¿¡ ¸î °¡Áö ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ºÀ¼âÁ¶Ä¡¿¡ ÀÇÇØ °ø±Þ¸Á°ú ÇÁ·ÎÁ§Æ®ÀÇ ½ºÄÉÁÙ¿¡ ´çÃÊ È¥¶õÀÌ º¸¿´À¸³ª ½ÅÀç»ý ¿¡³ÊÁö¿Í Áö¼Ó°¡´É¼ºÀÌ Á߽õʿ¡ µû¶ó ¹ÙÀÌ¿À°¡½º °³·® ¼Ö·ç¼Ç¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁ³½À´Ï´Ù. ¶ÇÇÑ ´ë±âÁú°ú ¿Â½Ç°¡½º ¹èÃâ¿¡ ´ëÇÑ ÀǽÄÀÌ ³ô¾ÆÁ® ¹ÙÀÌ¿À°¡½º °³·®¸¦ Æ÷ÇÔÇÑ ½ÅÀç»ý ¿¡³ÊÁö ÇÁ·ÎÁ§Æ®¿¡ ´ëÇÑ ÅõÀÚ¸¦ Á¤ºÎ¿¡ Ã˱¸Çϰí ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È »ê¾÷ Æó±â¹° ºÎ¹®ÀÌ ÃÖ´ëÈ­µÉ Àü¸Á

»ê¾÷ Æó±â¹°Àº ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë°¡ µÉ Àü¸ÁÀÔ´Ï´Ù. ¹ÙÀÌ¿À°¡½º °³·® °øÁ¤Àº À¯±â Æó±â¹° À¯·¡ÀÇ ¹ÙÀÌ¿À°¡½º¸¦ Á¤Á¦ÇÏ¿© õ¿¬°¡½º ±×¸®µå ¹× ±âŸ ¿ëµµ·ÎÀÇ ÁÖÀÔ¿¡ ÀûÇÕÇÕ´Ï´Ù. ³ó¾÷ ÀÜ·ù¹°, ½Äǰ Æó±â¹°, Æó¼ö ½½·¯Áö µîÀÇ »ê¾÷ Æó±â¹°Àº ¹ÙÀÌ¿À°¡½º »ý»êÀÇ ¿ø·á·Î ÀÛ¿ëÇÏ¿© Æó±â¹° °ü¸® ¹× ½ÅÀç»ý ¿¡³ÊÁö ¹ßÀüÀÇ ÀÌÁß ÀÌÁ¡À» Á¦°øÇÕ´Ï´Ù. ÀÌ ±Þ¼ºÀåÇÏ´Â ½ÃÀåÀº ȯ°æ º¹±¸¿Í ¿¡³ÊÁö ´Ù¾çÈ­¸¦ À§ÇÑ À¯¸ÁÇÑ ±âȸ¸¦ º¸¿©ÁÝ´Ï´Ù.

¿¹Ãø±â°£ µ¿¾È ³ó¾÷ºÐ¾ß°¡ °¡Àå ³ôÀº CAGR ¿¹»ó

À¯±âÆó±â¹°ÀÇ È帧À» Ȱ¿ëÇÏ¿© ½ÅÀç»ý ¿¡³ÊÁö¿Í ±ÍÁßÇÑ ¹ÙÀÌ¿Àºñ·á¸¦ »ý»êÇÏ´Â ³ó¾÷ºÐ¾ß´Â ¿¹Ãø±â°£ Áß °¡Àå ³ôÀº CAGRÀÌ ¿¹»óµË´Ï´Ù. ¹ÙÀÌ¿À°¡½º °³·® ±â¼úÀº ¿ø½Ã ¹ÙÀÌ¿À°¡½º¸¦ °íǰÁúÀÇ ¹ÙÀÌ¿À¸ÞźÀ¸·Î Á¤Á¦Çϰí õ¿¬°¡½º °ø±Þ¸ÁÀ¸·ÎÀÇ ÁÖÀÔ ¹× ¿î¼Û¿ë ¿¬·á·Î Ȱ¿ëÇϱ⿡ ÀûÇÕÇÕ´Ï´Ù. Ãà»êÀå°ú ÀÛ¹° ÀÜ»ç µîÀÇ ³ó¾÷ °æ¿µÀº ¹ÙÀÌ¿À°¡½º »ý»ê¿¡ dzºÎÇÑ ¿ø·á¸¦ Á¦°øÇÏ¿© ¾÷°è ³» Áö¼Ó°¡´É¼º°ú ¼øÈ¯°æÁ¦ÀÇ ½ÇõÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

ÃÖ´ë Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª :

ºÏ¹Ì´Â ȯ°æ¹®Á¦¿¡ ´ëÇÑ °ü½É Áõ°¡¿Í ½ÅÀç»ý ¿¡³ÊÁö¿øÀÇ ÃßÁø¿¡ ÀÇÇØ ¿¹Ãø±â°£ Áß ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¹ÙÀÌ¿À°¡½º¸¦ õ¿¬°¡½º ÆÄÀÌÇÁ¶óÀο¡ ÁÖÀÔÇϰųª ¿î¼Û¿¬·á·Î »ç¿ëÇϱ⿡ ÀûÇÕÇÑ °íǰÁúÀÇ ¹ÙÀÌ¿À¸ÞźÀ¸·Î Á¤Á¦Çϱâ À§ÇØ ¾Ð·Â ½ºÀ® ÈíÂø(PSA) ¹× ¹° ½ºÅ©·¯ºù°ú °°Àº ¹ÙÀÌ¿À°¡½º °³·® ±â¼úÀÇ Ã¤¿ëÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ½ÅÀç»ý ¿¡³ÊÁöÀÇ µµÀÔÀ» ÃËÁøÇÏ´Â Á¤ºÎÀÇ Àå·ÁÃ¥À̳ª ±ÔÁ¦°¡ ½ÃÀåÀÇ È®´ë¸¦ ´õ¿í ÃßÁøÇϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

¾Æ½Ã¾ÆÅÂÆò¾çÀº ȯ°æ¹®Á¦¿¡ ´ëÇÑ °ü½É Áõ°¡, ½ÅÀç»ý ¿¡³ÊÁö ÃßÁøÀ» À§ÇÑ Á¤ºÎÀÇ ÀÌ´Ï¼ÅÆ¼ºê, È­¼®¿¬·á¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ãâ Çʿ伺 µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ¿¹Ãø±â°£ Áß °¡Àå ³ôÀº CAGRÀ» À¯ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¹ÙÀÌ¿À°¡½º °³·®Àº ³ó¾÷ ÀÜ·ù¹°, Çϼö, À½½Ä¹° ¾²·¹±â µîÀÇ À¯±â Æó±â¹°·ÎºÎÅÍ ¾òÀº ¹Ì°¡°ø ¹ÙÀÌ¿À°¡½º¸¦ °íǰÁúÀÇ Àç»ý°¡´ÉÇÑ Ãµ¿¬°¡½ºÀÎ ¹ÙÀÌ¿À¸ÞźÀ¸·Î Á¤Á¦ÇÏ´Â °ÍÀ» Æ÷ÇÔÇÕ´Ï´Ù.

¹«·á ¸ÂÃã¼³Á¤ ¼­ºñ½º :

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀû ÇÁ·ÎÆÄÀϸµ(3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ ÀÀÇÑ ÁÖ¿ä±¹ ½ÃÀå Ãß°è, ¿¹Ãø ¹× CAGR(ÁÖ : Ÿ´ç¼º È®Àο¡ µû¸§)
  • °æÀï º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû Á¸Àç ¹× Àü·«Àû Á¦ÈÞ¿¡ ±â¹ÝÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç Á¤º¸¿ø
    • 1Â÷ Á¶»ç Á¤º¸¿ø
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ±â¼ú ºÐ¼®
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾ »ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
  • ±¸¸ÅÀÚÀÇ Çù»ó·Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô ÁøÀÔ¾÷ÀÚÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ¹ÙÀÌ¿À°¡½º °³·® ½ÃÀå : ¿ø·á À¯Çüº°

  • ³ó¾÷ ÀÜ·ù¹°
  • Çϼö ½½·¯Áö
  • »ê¾÷ Æó±â¹°
  • ÀÓ¾÷ Æó±â¹°
  • °¡±Ý Æó±â¹°
  • ±âŸ ¿ø·á À¯Çü

Á¦6Àå ¼¼°èÀÇ ¹ÙÀÌ¿À°¡½º °³·® ½ÃÀå : ±â¼úº°

  • ¹°¼¼Å¹
  • ¾Ð·Â ½ºÀ® ÈíÂø(PSA)
  • È­ÇÐ Èí¼ö
  • ¸· ºÐ¸®
  • ±ØÀú¿Â ºÐ¸®
  • »ý¹°ÇÐÀû ¸Þź »ý¼º
  • ±âŸ ±â¼ú

Á¦7Àå ¼¼°èÀÇ ¹ÙÀÌ¿À°¡½º °³·® ½ÃÀå : ¿ëµµº°

  • ¹ßÀü
  • ¿î¼Û ¿¬·á
  • ÁÖÅà ³­¹æ
  • °ø¾÷ ¿ëµµ
  • ±×¸®µå ÀÎÁ§¼Ç
  • ±âŸ ¿ëµµ

Á¦8Àå ¼¼°èÀÇ ¹ÙÀÌ¿À°¡½º °³·® ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • ÁöÀÚü
  • ³ó¾÷
  • »ó¾÷±â¾÷
  • À¯Æ¿¸®Æ¼
  • »ê¾÷
  • ±âŸ ÃÖÁ¾ »ç¿ëÀÚ

Á¦9Àå ¼¼°èÀÇ ¹ÙÀÌ¿À°¡½º °³·® ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦10Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷ ¹× ÇÕÀÛÅõÀÚ(JV)
  • Àμö ¹× ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦11Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • Air Liquide SA
  • Bioferm Energy Systems
  • Atlas Copco AB
  • Waga Energy
  • CarboTech AC GmbH
  • DMT Environmental Technology
  • Greenlane Renewables
  • AB Energy USA
  • Hitachi Zosen Inova
  • Bright Biomethane
  • Pentair Plc
  • Malmberg Water AB
  • Xebec Adsorption Inc.
  • MT-Energie GmbH
  • EnviTec Biogas
  • Anaergia Inc.
AJY 24.06.21

According to Stratistics MRC, the Global Biogas Upgrading Market is accounted for $2.0 billion in 2024 and is expected to reach $7.3 billion by 2030 growing at a CAGR of 23.1% during the forecast period. Biogas upgrading refers to the process of purifying or refining raw biogas to produce a higher quality gas suitable for various applications, including injection into natural gas pipelines, use as vehicle fuel, or as a feedstock for other chemical processes. Upgrading removes these impurities, especially CO2, to increase the methane content and improve the energy content and stability of the biogas. Various techniques such as pressure swing adsorption, water scrubbing, membrane separation, and amine scrubbing are employed in biogas upgrading processes.

According to the European Biogas Association, about 18,977 biogas plants and 1,023 biomethane plants were installed, with a total installed capacity of 167TWh and 2.5 billion cubic meters (bcm).

Market Dynamics:

Driver:

Increasing demand for renewable energy

The market is witnessing a surge in demand driven by the increasing adoption of renewable energy sources. As sustainability becomes a priority, industries are turning to biogas as a viable alternative. Biogas upgrading, which involves purifying biogas to produce biomethane, is gaining prominence due to its environmental benefits and potential to reduce carbon emissions. This heightened demand reflects a broader global shift towards cleaner, more sustainable energy solutions, positioning biogas upgrading as a key player in the market.

Restraint:

Competition from conventional natural gas

Conventional natural gas, with its established infrastructure and lower costs, poses a formidable competitor to biogas upgrading technologies. Despite the environmental benefits and renewable nature of biogas, its higher production costs and limited infrastructure hinder its widespread adoption. Additionally, fluctuations in natural gas prices and regulatory uncertainties further complicate the competitive landscape for biogas upgrading technologies.

Opportunity:

Rising focus on waste management

Companies are increasingly investing in technologies that efficiently convert biogas into high-quality biomethane, reducing greenhouse gas emissions and dependence on fossil fuels. This focus extends to optimizing waste collection, treatment, and utilization processes to maximize resource recovery and minimize environmental impact. As sustainability gains traction, waste management innovations are becoming integral to the biogas upgrading sector's growth and long-term viability.

Threat:

Lack of infrastructure

In the market, a significant challenge persists in the form of inadequate infrastructure. Despite the growing interest in biogas as a renewable energy source, the lack of sufficient infrastructure for biogas upgrading poses a barrier to its widespread adoption. Insufficient facilities for processing and refining biogas into higher-quality biomethane limit its usage in various sectors. Addressing this infrastructure deficit is crucial for unlocking the full potential of biogas as a sustainable energy solution.

Covid-19 Impact:

The COVID-19 pandemic has influenced the biogas upgrading market in several ways. While initial disruptions in supply chains and project timelines were observed due to lockdown measures, the emphasis on renewable energy and sustainability has boosted interest in biogas upgrading solutions. Additionally, increased awareness of air quality and greenhouse gas emissions has driven governments to invest in renewable energy projects, including biogas upgrading.

The industrial waste segment is expected to be the largest during the forecast period

The industrial waste is expected to be the largest during the forecast period. Biogas upgrading processes involve the purification of biogas derived from organic waste sources, rendering it suitable for injection into the natural gas grid or other applications. Industrial waste, such as agricultural residues, food waste, and wastewater sludge, serve as feedstock for biogas production, offering a dual benefit of waste management and renewable energy generation. This burgeoning market showcases promising opportunities for environmental remediation and energy diversification.

The agriculture segment is expected to have the highest CAGR during the forecast period

The agriculture segment is expected to have the highest CAGR during the forecast period, leveraging organic waste streams to produce renewable energy and valuable biofertilizers. Biogas upgrading technologies refine raw biogas into high-quality biomethane, suitable for injection into natural gas grids or as a transportation fuel. Agricultural operations, such as livestock farms and crop residues, provide abundant feedstock for biogas production, fostering sustainability and circular economy practices within the industry.

Region with largest share:

North America is projected to hold the largest market share during the forecast period driven by increasing environmental concerns and the push towards renewable energy sources. Biogas upgrading technologies, such as pressure swing adsorption (PSA) and water scrubbing, are being increasingly adopted to purify biogas into high-quality biomethane suitable for injection into natural gas pipelines or use as a transportation fuel. Government incentives and regulations promoting renewable energy adoption further fuel the market expansion.

Region with highest CAGR:

Asia Pacific is projected to hold the highest CAGR over the forecast period riven by several factors such as increasing environmental concerns, government initiatives to promote renewable energy, and the need to reduce dependency on fossil fuels. Biogas upgrading involves the purification of raw biogas, typically derived from organic waste sources such as agricultural residues, sewage, and food waste, into biomethane, which is a high-quality renewable natural gas.

Key players in the market

Some of the key players in Biogas Upgrading market include Air Liquide SA, Bioferm Energy Systems, Atlas Copco AB, Waga Energy, CarboTech AC GmbH, DMT Environmental Technology, Greenlane Renewables, AB Energy USA, Hitachi Zosen Inova, Bright Biomethane, Pentair Plc, Malmberg Water AB, Xebec Adsorption Inc., MT-Energie GmbH, EnviTec Biogas and Anaergia Inc.

Key Developments:

In April 2023, Anaergia provide PepsiCo with waste-to-biogas solution in South Africa. Anaergia has secured a contract to provide its technologies, engineering and process design for a new facility that will convert food processing waste into renewable energy at PepsiCo's Simba Chips plant in Johannesburg, South Africa.

In February 2023, Anaergia Inc. announced it has sold its Envo Biogas plant in Tonder, Denmark to Copenhagen Infrastructure Partners' (CIP) Advanced Bioenergy Fund I, which is developing biogas projects in Europe and North America.

Feedstock Types Covered:

  • Agricultural Residues
  • Sewage Sludge
  • Industrial Waste
  • Forestry waste
  • Poultry waste
  • Other Feedstock Types

Technologies Covered:

  • Water Scrubbing
  • Pressure Swing Adsorption (PSA)
  • Chemical Absorption
  • Membrane Separation
  • Cryogenic Separation
  • Biological Methanation
  • Other Technologies

Applications Covered:

  • Electricity Generation
  • Transportation Fuel
  • Residential Heating
  • Industrial Uses
  • Grid Injection
  • Other Applications

End Users Covered:

  • Municipalities
  • Agriculture
  • Commercial Enterprises
  • Utilities
  • Industrial
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Biogas Upgrading Market, By Feedstock Type

  • 5.1 Introduction
  • 5.2 Agricultural Residues
  • 5.3 Sewage Sludge
  • 5.4 Industrial Waste
  • 5.5 Forestry waste
  • 5.6 Poultry waste
  • 5.7 Other Feedstock Types

6 Global Biogas Upgrading Market, By Technology

  • 6.1 Introduction
  • 6.2 Water Scrubbing
  • 6.3 Pressure Swing Adsorption (PSA)
  • 6.4 Chemical Absorption
  • 6.5 Membrane Separation
  • 6.6 Cryogenic Separation
  • 6.7 Biological Methanation
  • 6.8 Other Technologies

7 Global Biogas Upgrading Market, By Application

  • 7.1 Introduction
  • 7.2 Electricity Generation
  • 7.3 Transportation Fuel
  • 7.4 Residential Heating
  • 7.5 Industrial Uses
  • 7.6 Grid Injection
  • 7.7 Other Applications

8 Global Biogas Upgrading Market, By End User

  • 8.1 Introduction
  • 8.2 Municipalities
  • 8.3 Agriculture
  • 8.4 Commercial Enterprises
  • 8.5 Utilities
  • 8.6 Industrial
  • 8.7 Other End Users

9 Global Biogas Upgrading Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 Air Liquide SA
  • 11.2 Bioferm Energy Systems
  • 11.3 Atlas Copco AB
  • 11.4 Waga Energy
  • 11.5 CarboTech AC GmbH
  • 11.6 DMT Environmental Technology
  • 11.7 Greenlane Renewables
  • 11.8 AB Energy USA
  • 11.9 Hitachi Zosen Inova
  • 11.10 Bright Biomethane
  • 11.11 Pentair Plc
  • 11.12 Malmberg Water AB
  • 11.13 Xebec Adsorption Inc.
  • 11.14 MT-Energie GmbH
  • 11.15 EnviTec Biogas
  • 11.16 Anaergia Inc.
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦