½ÃÀ庸°í¼­
»óǰÄÚµå
1324208

¼¼°èÀÇ ¹ÙÀÌ¿ÀÆú¸®¸Ó ½ÃÀå ¿¹Ãø(-2030³â) : Á¦Ç° À¯Çü, ¿ø·á, ¼ºÇü °øÁ¤, ¿ëµµ, ÃÖÁ¾»ç¿ëÀÚ ¹× Áö¿ªº° ºÐ¼®

Biopolymers Market Forecasts to 2030 - Global Analysis By Product Type, Raw Material, Molding Process, Application, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 175+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é, ¹ÙÀÌ¿ÀÆú¸®¸Ó ¼¼°è ½ÃÀåÀº 2023³â 251¾ï 6,000¸¸ ´Þ·¯·Î ¿¹Ãø ±â°£ µ¿¾È 17.5%ÀÇ CAGR·Î 2030³â 778¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¹ÙÀÌ¿ÀÆú¸®¸Ó´Â È­ÇÐÀû ¶Ç´Â »ý¹°ÇÐÀû °úÁ¤À» ÅëÇØ »ý¹°ÇÐÀû ¹°Áú·Î ¸¸µé¾îÁö´Â ÇÕ¼º °íºÐÀÚ·Î, »ý¹°ÇÐÀû ¹°Áú·Î ¸¸µé¾îÁý´Ï´Ù. ¼ö³â µ¿¾È ¸¹Àº ¹ÙÀÌ¿ÀÆú¸®¸Ó°¡ ÀǾàǰ ¹× »ý¹°ÇÐÀû ¿ëµµ·Î »ç¿ëÇϱâ À§ÇØ ¿¬±¸µÇ¾î ¿Ô½À´Ï´Ù. ¹ÙÀÌ¿ÀÆú¸®¸Ó´Â »ýü ÀûÇÕ¼º°ú »ýºÐÇØ¼ºÀ» °¡Áö°í ÀÖ¾î ½Ä¿ë Çʸ§, ¿¡¸ÖÁ¯, ½Äǰ»ê¾÷¿ë Æ÷ÀåÀç, ¾à¹° ¼ö¼Û Àç·á, ÀΰøÀå±â, »óó Ä¡À¯, Á¶Á÷ ºñ°è, µå·¹½Ì°ú °°Àº ÀÇ·á¿ë ÀÓÇöõÆ® µî ´Ù¾çÇÑ ¿ëµµ¿¡ À¯¿ëÇÏ°Ô ¾²ÀÔ´Ï´Ù.

Plastmart¿¡ µû¸£¸é ¹ÙÀÌ¿ÀÆú¸®¸ÓÀÇ °¡Àå Å« ´ÜÁ¡Àº ±âÁ¸ Æú¸®¸Ó¿¡ ºñÇØ °¡°ÝÀÌ ºñ½Î´Ù´Â °ÍÀÔ´Ï´Ù.

ģȯ°æ Á¦Ç°¿¡ ´ëÇÑ ¼ÒºñÀÚ ¼±È£ º¯È­

¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½ÀÇ »ó¾÷Àû ¹ßÀüÀº Áö¼Ó°¡´ÉÇÑ ÇÃ¶ó½ºÆ½ ¼±Åÿ¡ ´ëÇÑ ¼ÒºñÀÚÀÇ Áö½Ä°ú ±âÁ¸ÀÇ ºñ»ýºÐÇØ¼º ÇÃ¶ó½ºÆ½ »ç¿ëÀ» ¾ø¾Ö±â À§ÇÑ ºÒ°¡ÇÇÇÑ ³ë·Â¿¡ ÀÇÇØ µÞ¹ÞħµÇ°í ÀÖ½À´Ï´Ù. ¼®À¯¸¦ ÁÖ¿ø·á·Î ÇÏ´Â ±âÁ¸ ÇÃ¶ó½ºÆ½Àº ºÐ¸® ¹× ºÐÇØ¿¡ ¸Å¿ì ¿À·£ ½Ã°£ÀÌ °É¸®¸ç ¸Å¸³Áö¿¡¼­ »ó´çÇÑ ½Ã°£À» ¼ÒºñÇÕ´Ï´Ù. »ýºÐÇØ¼º ÇÃ¶ó½ºÆ½Àº Æó±âµÇ¸é ´õ »¡¸® ºÐÇØµÇ¾î ȯ°æÀÇ ±ÔÄ¢ÀûÀÎ ±¸Á¶¿¡ ´Ù½Ã ÅëÇյ˴ϴÙ. ¶ÇÇÑ »ýºÐÇØ¼º Æú¸®¸Ó´Â ¹Ì»ý¹°ÀÇ ÀÛ¿ëÀ¸·Î ±âÁ¸ ÇÃ¶ó½ºÆ½º¸´Ù ÈξÀ ºü¸£°Ô ºÐÇØµË´Ï´Ù. ±âÁ¸ ÇÃ¶ó½ºÆ½ÀÌ ºÐ¸®µÇ´Â µ¥ ¾à 1000³âÀÌ °É¸®´Â ¹Ý¸é, »ýºÐÇØ¼º ÇÃ¶ó½ºÆ½Àº ´Ü 180ÀÏ ¸¸¿¡ 60% ÀÌ»ó ºÐ¸®µË´Ï´Ù. ¸Å¸³Áö¿Í ¾²·¹±â ´õ¹Ì°¡ °è¼Ó ´Ã¾î³ª´Â °ÍÀº »ýŰ迡 ½É°¢ÇÑ À§ÇèÀ» ÃÊ·¡ÇÏ°í »ý¹° ½Ã½ºÅÛÀÇ ³ì»ö¿¡ ´Ù¾çÇÑ ¾Ç¿µÇâÀ» ¹ÌĨ´Ï´Ù.

¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½ÀÇ ¼º´É ¹®Á¦

¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½ÀÇ ¼º´É°ú ³»±¸¼º¿¡ ÇѰ谡 ÀÖ¾î Æ÷Àå, ÀüÀÚ±â±â, ³ó¾÷, ÀÚµ¿Â÷ »ê¾÷ µî ´Ù¾çÇÑ »ê¾÷¿¡¼­ ³Î¸® »ç¿ëµÇÁö ¸øÇϰí ÀÖ½À´Ï´Ù. ±âÁ¸ ¼®À¯ ±â¹Ý Æú¸®¸Ó¿Í ºñ±³ÇÏ¿© ¹ÙÀÌ¿À ±â¹Ý Æú¸®¸Ó´Â °ø±â, ¹°, »ê¼Ò, ¿­¿¡ ´ëÇÑ À庮ÀÌ ³·Àº µî ±â´ÉÀû Ư¼ºÀÌ ´Ù¸£±â ¶§¹®¿¡ ½Äǰ, ÀǾàǰ, ÆÛ½º³ÎÄɾî Á¦Ç°, ÀüÀÚ Á¦Ç° µîÀÇ Æ÷Àå¿¡ »ç¿ëÀÌ Á¦ÇѵǾî ÀÖ½À´Ï´Ù. ¹ÙÀÌ¿À ±â¹Ý Æú¸®¸Ó¸¦ ±âÁ¸ ¼®À¯ ±â¹Ý ÇÃ¶ó½ºÆ½°ú ºñ±³ÇÏ¸é ±â°èÀû Ư¼º°ú °¡°ø ´É·ÂÀÌ ³·±â ¶§¹®¿¡ ¼ºÀåÀÌ Á¦ÇÑµÇ¾î ³ó¾÷, ÀÚµ¿Â÷ ¹× ±âŸ »ê¾÷¿¡¼­ »ç¿ëÀÌ Á¦Çѵ˴ϴÙ.

º¸´Ù Çö´ëÀûÀÎ ¾ÖÇø®ÄÉÀ̼ÇÀÇ Ã¢Á¶

±âÁ¸ Æú¸®¸Ó¿Í ¸¶Âù°¡Áö·Î ¹ÙÀÌ¿À ±â¹Ý Æú¸®¸Ó´Â ´Ù¾çÇÑ ¿ëµµ·Î Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. ¹ÙÀÌ¿À ±â¹Ý °íºÐÀÚ ½ÃÀåÀº Á¤ºÎÀÇ Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ °­Á¶¿Í ³ì»ö Á¶´Þ ±ÔÁ¤ÀÇ ÁöÁö¿Í ÇÔ²² ¼ÒºñÀÚ Á¦Ç° ¿ëµµ¿¡ Å« ±âȸ°¡ ÀÖÀ» °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ, Æ÷Àå¿ëµµµµ Å©°Ô È®´ëµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ³ó¾÷ ºÐ¾ß¿¡¼­´Â »ýºÐÇØ¼º ¸ÖĪ Çʸ§ÀÌ ¿©·¯ °¡Áö ¿ëµµ·Î »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. Æ®·¹ÀÌ, ¼öÀú, ÄŰú °°Àº ½Äǰ Æ÷Àå ¿ëǰÀÇ ÄÉÀÌÅ͸µÀº ¹ÙÀÌ¿À ±â¹Ý Æú¸®¸Ó¿¡ ´ëÇÑ ¼ö¿ä°¡ ¸Å¿ì ³ôÀ¸¸ç Áß¿äÇÑ ÀÀ¿ë ºÐ¾ßÀÔ´Ï´Ù.

¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½ÀÇ ºÐ¸® ¹× °¡°ø

³ó¾÷ ÇöÀå¿¡¼­ »ýºÐÇØ¼º ¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½Àº ¼ÒÈ­, ÅðºñÈ­, »ýºÐÇØµË´Ï´Ù. Á¦Ç° À¯Çü, ½ÃÀå ±Ô¸ð, ȸ¼ö ÀÎÇÁ¶ó, ¹ý·ü, °¡°Ý Ã¥Á¤ µîÀº ¸ðµÎ ¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½(PET, PA, PE)¿¡ »ç¿ëµÇ´Â ó¸® ¹æ½Ä¿¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. Àç»ý °¡´ÉÇÑ ½Ä¹° À¯·¡ ¹°ÁúÀÓ¿¡µµ ºÒ±¸Çϰí, ÀÌµé ¹°ÁúÀº ÇØ¾ç ȯ°æ¿¡¼­ È­¼® ¿¬·á À¯·¡ ÇÃ¶ó½ºÆ½°ú µ¿µîÇÏ°Ô ÇൿÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ÇÃ¶ó½ºÆ½Àº µ¿¹°ÀÌ ¼·ÃëÇϸé ÇØ·Î¿ï ¼ö ÀÖÀ¸¸ç, ¹Ì¼¼ ÇÃ¶ó½ºÆ½À¸·Î ºÐÇØµÇ±â ¾î·Æ½À´Ï´Ù. »ýºÐÇØ¼º °íºÐÀÚ(PLA)Á¶Â÷µµ ºÐÇØÇÏ´Â µ¥ ½Ã°£ÀÌ °É¸®¸ç, »ê¾÷Àû ÅðºñÈ­°¡ ÇÊ¿äÇÕ´Ï´Ù.

COVID-19ÀÇ ¿µÇâ:

½ÅÁ¾ Äڷγª¹ÙÀÌ·¯½º(COVID-19)ÀÇ ´ëÀ¯ÇàÀº ÁֽĽÃÀå ºÒ¾ÈÁ¤, ¾ö°ÝÇÑ ±¹°æ ÅëÁ¦, Àü ¼¼°è ºÀ¼â·Î ´ë±â¾÷, Á¤ºÎ, ÇÃ¶ó½ºÆ½ ¾÷°è°¡ °ø±Þ¸ÁÀ» º¸ÃæÇØ¾ß ÇÏ´Â »óȲÀ̸ç, COVID-19´Â Àü ¼¼°è »çȸ ¹× ±ÝÀ¶ ºÐ¾ß¿¡ Å« ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. ¸ðµç ´ë±â¾÷ÀÌ ¾î·Á¿òÀ» °Þ°í ÀÖ½À´Ï´Ù. Äڷγª ¹ÙÀÌ·¯½º Àü¿°º´Àº ¹ÙÀÌ¿À ±â¹Ý »ê¾÷¿¡ ºÒ±ÕµîÇÏ°Ô ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. ¾î¶² ±â¾÷µéÀº Àü¿°º´ È®»êÀ» ¸·±â À§ÇÑ ±â¼úÀû ¼Ö·ç¼ÇÀ» Áö¿øÇϰí, ¾î¶² ±â¾÷µéÀº »ýºÐÇØ¼º Å×ÀÌÅ©¾Æ¿ô ¿ë±â¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¸¦ ¸ñ°ÝÇϰí ÀÖ´Â °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È »ýºÐÇØ¼º ºÎ¹®ÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»ó

»ýºÐÇØ¼º ºÎ¹®Àº ¹Ì»ý¹°ÀÌ »ýºÐÇØ¼º °íºÐÀÚ¸¦ ºü¸£°Ô ºÐÇØÇÏ°í ¿ø·¡ÀÇ »ýºÐÇØ¼º °íºÐÀÚ¿Í ±× Á¦Ç°º°·Î ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÃÖ¼ÒÈ­Çϴ Ư¼ºÀ¸·Î ÀÎÇØ À¯¸®ÇÑ ¼ºÀåÀ» ÀÌ·ê °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù. ¹Ì»ý¹°ÀÌ »ý»êÇÏ´Â È¿¼Ò´Â È¿¼Ò Ã˸аøÁ¤¿¡¼­ ÀÌ·¯ÇÑ Æú¸®¸Ó¸¦ ´õ ÀÛÀº Á¶°¢À¸·Î ºÐÇÒÇÏ´Â µ¥ »ç¿ëµË´Ï´Ù. ±×µéÀº Á¡Â÷ÀûÀ¸·Î ºÐÇØµÇ¾î Åä¾ç ¹× ±âŸ ÀÚ¿¬°èÀÇ ¿ä¼Ò¿¡ ÀÇÇØ ¸ÔÈ÷°Ô µË´Ï´Ù. °øÁ¤À» ½ÃÀÛÇϱâ À§ÇØ °­Á¦Àû ÀÎ È­ÇÐ ¹ÝÀÀÀÌ ÇÊ¿äÇÏÁö ¾Ê±â ¶§¹®¿¡ÀÌ ÀÚ¿¬ °øÁ¤¿¡¼­ ¹ß»ýÇÏ´Â ¿À¿°ÀÌ Àû½À´Ï´Ù.

¼¶À¯ ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»ó

¼¶À¯ »ê¾÷¿¡¼­ ¼¶À¯ Á¶¸³¿¡¼­ Âø»ö±îÁö ±¤¹üÀ§ÇÏ°Ô »ç¿ëµÇ±â ¶§¹®¿¡ ¼¶À¯ ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGR ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Àΰø Æú¸®¸Ó°¡ ¹ÙÀÌ¿ÀÆú¸®¸Óº¸´Ù ǰÁú¸é¿¡¼­ ´õ È¿°úÀûÀÌÁö¸¸, »ý»êµÈ Æú¸®¸Ó¸¦ Á¶¸³ÇÏ´Â µ¥ ÇÊ¿äÇÑ °ªºñ½Ñ ÀÚ¿ø°ú ´Ù¾çÇÑ ÇÁ·ÎÁ§Æ®¿¡¼­ ȯ°æ ģȭÀûÀÎ Àç·á¸¦ »ç¿ëÇÏ·Á´Â ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó °³¹ßÀº ¸¹Àº ¿¡³ÊÁö¸¦ Èí¼öÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¹ÙÀÌ¿ÀÆú¸®¸Ó´Â Á¶¸³ ºñ¿ë Àý°¨, °¡º­¿î Áú°¨ µî Á¦Á¶ Àç·á¿Í °ü·ÃÇÏ¿© ´Ù¾çÇÑ ÀÌÁ¡À» Á¦°øÇÕ´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

¾Æ½Ã¾ÆÅÂÆò¾çÀº ±âÁ¸ Æú¸®¸Ó¿Í ¸¶Âù°¡Áö·Î ³Î¸® »ç¿ëµÇ°í Àֱ⠶§¹®¿¡ ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Á¤ºÎ°¡ Áö¼Ó°¡´É¼ºÀ» °­Á¶ÇÏ°í ³ì»ö Á¶´Þ¿¡ µµ¿òÀÌ µÇ´Â ±ÔÁ¦¸¦ °­È­ÇÔ¿¡ µû¶ó ¹ÙÀÌ¿À ±â¹Ý Æú¸®¸Ó ½ÃÀåÀº ¼ÒºñÀç ºÐ¾ß¿¡¼­ Å« ¼ºÀåÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ, Æ÷Àå¿ëµµÀÇ ´ëÆøÀûÀÎ È®´ëµµ °èȹµÇ¾î ÀÖ½À´Ï´Ù. »ýºÐÇØ¼º ¸ÖĪ Çʸ§Àº ³ó¾÷ ºÐ¾ß¿¡¼­ ´Ù¾çÇÑ ¿ëµµ·Î »ç¿ëµË´Ï´Ù. Æ®·¹ÀÌ, ¼öÀú, ÄÅÀ» Æ÷ÇÔÇÑ ½Äǰ Æ÷Àå Á¦Ç°Àº ¹ÙÀÌ¿À ±â¹Ý Æú¸®¸Ó¿¡ ´ëÇÑ ¼ö¿ä°¡ ƯÈ÷ ³ôÀº Áß¿äÇÑ ÀÀ¿ë ºÐ¾ßÀÔ´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª:

¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â Áö¿ªÀº À¯·´ÀÔ´Ï´Ù. ÀÌ´Â À¯·´ÀÌ ¼¼°è ¹ÙÀÌ¿ÀÆú¸®¸Ó ½ÃÀå¿¡¼­ ¹ÙÀÌ¿ÀÆú¸®¸Ó¸¦ °¡Àå ¸¹ÀÌ »ç¿ëÇÏ´Â Áö¿ªÀ¸·Î, ¾ö°ÝÇÑ ¹ý±Ô°¡ Àû¿ëµÇ°í Àֱ⠶§¹®ÀÔ´Ï´Ù. ÇöÁö ±ÔÄ¢°ú ±ÔÁ¤À¸·Î ÀÎÇØ À¯·´Àº °¡»ó ±â°£ µ¿¾È ¿ìÀ§¸¦ À¯ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ Áö¿ªÀº ¿¹Ãø ±â°£ µ¿¾È Å« ¼ºÀåÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ´Â ÁÖ·Î ÀÌ Áö¿ªÀÇ ±Þ¼ÓÇÑ »ê¾÷È­, »ý»êµÈ Æú¸®¸Ó ¹× Àΰø ÇÃ¶ó½ºÆ½À¸·Î ÀÎÇÑ ¿À¿°À» ¹æÁöÇÒ Çʿ伺, ´ç½Ã ¹ÙÀÌ¿ÀÆú¸®¸ÓÀÇ ¼±±¸ÀûÀÎ ¿¬±¸¿¡ ÀÚ¿øÀ» ÅõÀÔÇÒ Çʿ伺 µî¿¡ ±âÀÎÇÕ´Ï´Ù.

¹«·á ¸ÂÃãÇü ¼­ºñ½º:

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´¿¡°Ô´Â ´ÙÀ½ Áß ÇϳªÀÇ ¹«·á ¸ÂÃãÈ­ ¿É¼ÇÀ» Á¦°øÇÕ´Ï´Ù:

  • ±â¾÷ ÇÁ·ÎÇÊ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀûÀÎ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤ ¹× ¿¹Ãø, CAGR(Âü°í: Ÿ´ç¼º °ËÅä¿¡ µû¸¥)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù¹ý
  • Á¶»ç ¼Ò½º
    • 1Â÷ Á¶»ç ¼Ò½º
    • 2Â÷ Á¶»ç ¼Ò½º
    • °¡Á¤

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • Á¦Ç° ºÐ¼®
  • ¾ÖÇø®ÄÉÀÌ¼Ç ºÐ¼®
  • ÃÖÁ¾»ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • ½ÅÁ¾ Äڷγª¹ÙÀÌ·¯½º °¨¿°Áõ(COVID-19)ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ±¸¸ÅÀÚÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü¿©¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷ °£ÀÇ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ¹ÙÀÌ¿ÀÆú¸®¸Ó ½ÃÀå : Á¦Ç° À¯Çüº°

  • ºñ»ýºÐÇØ¼º
    • ¹ÙÀÌ¿À Æú¸®¿¡Æ¿·»(¹ÙÀÌ¿À PE)
    • ¹ÙÀÌ¿À Æú¸®ÇÁ·ÎÇÊ·»(¹ÙÀÌ¿À PP)
    • ¹ÙÀÌ¿À Æú¸®¿¡Æ¿·» Å×·¹ÇÁÅ»·¹ÀÌÆ®(PET)
    • Æú¸®Æ®¸®¸ÞÆ¿·» Å×·¹ÇÁÅ»·¹ÀÌÆ®(PTT)
    • Æú¸®¿¡Æ¿·» Ç»¶ó³ë¿¡ÀÌÆ®(PEF)
    • ¹ÙÀÌ¿À ±â¹Ý Æú¸®¿Ã·¹ÇÉ
    • ¹ÙÀÌ¿À ±â¹Ý Æú¸®¾Æ¹Ìµå(Bio-PA)
      • È£¸ð Æú¸®¾Æ¹Ìµå
      • ¹ÙÀÌ¿À Æú¸®¾Æ¹Ìµå(PA) 6
      • ¹ÙÀÌ¿À Æú¸®¾Æ¹Ìµå(PA) 11
      • ÄÚÆú¸®¾Æ¹Ìµå
      • ±âŸ ¹ÙÀÌ¿À ±â¹Ý Æú¸®¾Æ¹Ìµå(Bio-PA)
    • ±âŸ ºñ»ýºÐÇØ¼º
  • »ýºÐÇØ¼º
    • Æú¸®Á¥»ê(PLA)
    • Æú¸®ºÎÆ¿·» ¾ÆµðÇÁ»ê Å×·¹ÇÁÅ»·¹ÀÌÆ®(PBSA)
    • Æú¸®ÇÏÀ̵å·Ï½Ã¾ËÄ«³ë¿¡ÀÌÆ®
    • Æú¸®ºÎÆ¿·» ¼®½Ã³×ÀÌÆ®(PBS)
    • ¼¿·ê·Î¿À½º Çʸ§
    • ÀüºÐ ±â¹Ý
    • ±âŸ »ýºÐÇØ¼º
  • Æú¸®¿ì·¹Åº
  • ´Ù´ç·ù Æú¸®¸Ó
    • ¼¿·ê·Î¿À½º°è Æú¸®¸Ó
    • ÀüºÐ ±â¹Ý Æú¸®¸Ó
  • ±âŸ Á¦Ç° À¯Çü

Á¦6Àå ¼¼°èÀÇ ¹ÙÀÌ¿ÀÆú¸®¸Ó ½ÃÀå : ¿øÀç·áº°

  • °¨ÀÚ
  • ¿Á¼ö¼ö ÀüºÐ
  • ¹Ð
  • Ä«»ç¹Ù
  • ½ºÀ§Ä¡ ±Û·¡½º
  • »çÅÁ¼ö¼ö¡¤»çÅÁ¹«
  • ±âŸ ¿øÀç·á

Á¦7Àå ¼¼°èÀÇ ¹ÙÀÌ¿ÀÆú¸®¸Ó ½ÃÀå : ¼ºÇü ÇÁ·Î¼¼½ºº°

  • ¾ÐÃâ
  • ÁÖÀÔ
  • ¿ëÀ¶ ¹èÇÕ
  • ±âŸ ¼ºÇü ÇÁ·Î¼¼½º

Á¦8Àå ¼¼°èÀÇ ¹ÙÀÌ¿ÀÆú¸®¸Ó ½ÃÀå : ¿ëµµº°

  • ÀÚµ¿Â÷ ³»¿ÜÀå
  • º¸Æ²
  • ȸ·Î ±âÆÇ
  • ¼¶À¯
  • ¿µÈ­
  • Àý¿¬Ã¼
  • ¶ó¹Ì³×ÀÌÆ®
  • ÀÇ·á¿ë ÀÓÇöõÆ®
  • Á¾ÀÌ ¹× ÆÇÁö ÄÚÆÃ
  • ½Ãµå ÄÚÆÃ
  • Â÷·® ºÎǰ
  • ±âŸ ¿ëµµ

Á¦9Àå ¼¼°èÀÇ ¹ÙÀÌ¿ÀÆú¸®¸Ó ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • ÀÚµ¿Â÷¿Í ¼ö¼Û
  • ³ó¾÷°ú ¿ø¿¹
  • °ÇÃà°ú °Ç¼³
  • ÄÚÆÃ°ú Á¢ÂøÁ¦
  • ÀÏ·ºÆ®·Î´Ð½º¿Í Àü±â
  • ½Äǰ¡¤À½·á
  • ÀÇ·á¿Í ÇコÄɾî
  • Ç×°ø¿ìÁÖ
  • ÅØ½ºÅ¸ÀÏ
  • Æ÷Àå
    • À¯Æ÷Àå
    • °æÆ÷Àå
  • ±âŸ

Á¦10Àå ¼¼°èÀÇ ¹ÙÀÌ¿ÀÆú¸®¸Ó ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦11Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕÀÛÅõÀÚ
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦12Àå ±â¾÷ °³¿ä

  • BASF
  • Braskem
  • Total Corbion
  • Novamont
  • Mitsubishi Chemical Holding Corporation
  • Biome Bioplastics
  • NatureWorks
  • Biotec
  • Toray Industries
  • Plantic Technologies
  • Mitsubishi Chemical Group Corporation
  • Biotec Biologische Naturverpackungen GmbH & Co.
  • Dupont de Nemours Inc
  • BioBag International AS
  • Danimer Scientific Inc
  • Eastman Chemical Company
  • Rodenburg Biopolymers BV
  • Innovia Films Ltd
  • Solanyl Biopolymers Inc
ksm 23.09.19

According to Stratistics MRC, the Global Biopolymers Market is accounted for $25.16 billion in 2023 and is expected to reach $77.80 billion by 2030 growing at a CAGR of 17.5% during the forecast period. Biopolymers are synthetic polymers made from biological materials, either chemically or wholly through biological processes carried out by live organisms. For many years, many biopolymers have been studied for use in pharmaceutical and biological applications. The biopolymers are useful in a variety of applications because they are biocompatible and biodegradable, including edible films, emulsions, packaging materials for the food industry, drug transport materials, and medical implants like artificial organs, wound healing, tissue scaffolds, and dressing.

According to Plastmart, the major drawback of biopolymers is their higher price tag when compared to traditional polymers. While the typical, conventional polymers cost between US$1000 and US$1500 per metric tonne (MT)

Market Dynamics:

Driver:

Shift in consumer preference for products that are environmentally friendly

The commercial development of bioplastics is being aided by consumer knowledge of sustainable plastic options and inescapable efforts to eliminate the use of conventional, non-biodegradable plastics. Conventional plastics, which are mostly made of oil, take a very long time to separate or degrade and spend a considerable amount of time in landfills. When discarded, biodegradable plastics dissociate more quickly and are reincorporated into the environment's regular structure. Additionally, biodegradable polymers degrade far more quickly than conventional plastics do through the actions of microbes. Compared to traditional plastics, which take around 1,000 years to separate, biodegradable plastics separate 60% or more in as little as 180 days. Growing landfills and trash piles pose severe ecological dangers and have a number of negative effects on the biological system's verdure.

Restraint:

Performance issue with bioplastics

Biopolymers' performance and durability limitations prevent them from being widely used in a variety of industries, such as packaging, electronics, agriculture, and the automobile industry. When compared to traditional petroleum-based polymers, bio-based polymers have different functional characteristics, including lower barriers to air, water, oxygen, and heat, which limits their use in the packaging of food, medicines, personal care items, and electronics. Comparing bio-based polymers to traditional petroleum-based plastics, their low mechanical characteristics and process ability have been limiting their growth and preventing their use in industries like agricultural, automotive, and others.

Opportunity:

Creation of more modern apps

Similar to conventional polymers, bio-based polymers have a wide range of uses. The market for bio-based polymers is anticipated to see tremendous development opportunities in applications for consumer products due to the government's increased focus on sustainability and supportive green procurement rules. It is also anticipated that the packaging application would expand significantly. There are several uses for biodegradable mulch films in the agricultural sector. Catering for food packaging goods, such as trays, cutlery, and cups, is a very demanding and significant use of bio-based polymers.

Threat:

Bioplastics separation and processing

On agricultural ground, the biodegradable bioplastics can be digested, composted, or biodegraded. The kind of product, market size, infrastructure for collection, recovery, laws, and pricing all influence the processing method that is used for bioplastics (PET, PA, and PE) A large number of bioplastics are not biodegradable. Despite coming from renewable, plant-based sources, these materials behave in marine settings in a manner that is comparable to those of plastics derived from fossil fuels. These plastics can be harmful to animals if they consume them and are difficult to degrade into micro plastics. Even biodegradable polymers (PLA) take a long time to disintegrate, necessitating industrial composting.

COVID-19 Impact:

The new corona virus (COVID-19) pandemic outbreak has resulted in stock market instability, strict border controls, and a worldwide lockdown, forcing big businesses, governments, and the plastics industry to replenish supply chains. The COVID-19 epidemic is having a significant impact on the social and financial sectors across the world, and all major businesses are suffering difficulties. The corona virus pandemic has had an uneven effect on the bio-based industry. While some businesses are helping with technical solutions to stop the epidemic, others seem to be witnessing a rise in demand for biodegradable takeout containers.

The biodegradable segment is expected to be the largest during the forecast period

The biodegradable segment is estimated to have a lucrative growth, due to its properties which include microorganisms quickly break down biodegradable polymers, ensuring that the environmental effect of both the original biodegradable polymer and its byproducts is minimised. Enzymes produced by microorganisms are used in enzyme-catalyzed processes to split these polymers into smaller pieces. They gradually deteriorate and are eaten by the soil and other elements of nature. Less pollution will occur from this natural process since no forced chemical reaction is required to initiate the process.

The textiles segment is expected to have the highest CAGR during the forecast period

The textiles segment is anticipated to witness the highest CAGR growth during the forecast period, due to its use in the textile industry for operations ranging from fibre assembly to colouring. Even if engineered polymers are more effective than biopolymers in terms of qualities, the development has absorbed a lot of energy due to the expensive resources needed to assemble produced polymers and the growing demand for using eco-friendly materials in various projects. Additionally, biopolymers provide a variety of advantages when it comes to manufacturing materials, such as lower assembly costs and lightweight textures.

Region with largest share:

Asia Pacific is projected to hold the largest market share during the forecast period owing to widely used much like conventional polymers. Due to the government's growing emphasis on sustainability and helpful green procurement regulations, the market for bio-based polymers is expected to have significant growth prospects in applications for consumer items. Additionally, a major expansion of the packaging application is planned. Biodegradable mulch films have a variety of applications in agriculture. Food packaging products including trays, cutlery, and cups represent a particularly demanding and important application for bio-based polymers.

Region with highest CAGR:

Europe is projected to have the highest CAGR over the forecast period; owing to Europe is a prominent user of biopolymers in the global biopolymers market because of its strict application of Law and Order. According to local rules and regulations, Europe is predicted to maintain its dominance throughout the hypothetical time period. This neighbourhood is expected to have significant growth throughout the projection time range. This is mostly attributed to the areas' rapid industrialisation, the necessity to prevent contamination from produced polymers and artificial plastics, and the need to allocate resources to biopolymers' pioneering work at the time.

Key players in the market:

Some of the key players profiled in the Biopolymers Market include: BASF, Braskem, Total Corbion, Novamont, Mitsubishi Chemical Holding Corporation, Biome Bioplastics, NatureWorks, Biotec, Toray Industries, Plantic Technologies, Mitsubishi Chemical Group Corporation, Biotec Biologische Naturverpackungen GmbH & Co., Dupont de Nemours Inc, BioBag International AS, Danimer Scientific Inc, Eastman Chemical Company, Rodenburg Biopolymers BV, Innovia Films Ltd and Solanyl Biopolymers Inc

Key Developments:

In November 2022, TotalEnergies Corbion announced a long-term collaboration with BGF. Both companies entered into arrangement for application development and the supply of Luminy PLA.

In October 2022, Braskem announced to expand it I'm greenTM biopolymer production capacity by 30%. The company is investing USD 60 million to expand the capacity. Braskem and SCG chemicals are the partners for the project. This partnership helps to double the current capacity for I'm greenTM products.

In June 2021, BASF launched COSMOS-approved texturizing biopolymer Hydagen. The cold processable rheology modifier obtained from the tuber of the konjac plant native to Southwest China is suitable for aqueous systems such as gels, fluids, serums, and novel formats such as patches, jellies, and peel-off formulations.

Product Types Covered:

  • Non-Biodegradable
  • Biodegradable
  • Polyurethanes
  • Polysaccharide Polymers
  • Other Product Types

Raw Materials Covered:

  • Potato
  • Corn Starch
  • Wheat
  • Cassava
  • Switchgrass
  • Sugar Cane/ Sugar Beet
  • Other Raw Materials

Molding Processes Covered:

  • Extrusion
  • Injection
  • Melt Compounding
  • Other Molding Processes

Applications Covered:

  • Automotive Interiors & Exteriors
  • Bottles
  • Circuit Boards
  • Fibers
  • Films
  • Insulators
  • Laminates
  • Medical Implants
  • Paper & Cardboard Coatings
  • Seed Coating
  • Vehicle Components
  • Other Applications

End Users Covered:

  • Automotive & Transport
  • Agriculture & Horticulture
  • Building & Construction
  • Coatings & Adhesives
  • Electronics & Electricals
  • Food & Beverage
  • Medical & Healthcare
  • Aerospace
  • Textiles
  • Packaging
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2021, 2022, 2023, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Product Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Biopolymers Market, By Product Type

  • 5.1 Introduction
  • 5.2 Non-Biodegradable
    • 5.2.1 Bio-Polyethylene (Bio-PE)
    • 5.2.2 Bio-Polypropylene (Bio-PP)
    • 5.2.3 Bio-Polyethylene terephthalate (PET)
    • 5.2.4 Polytrimethylene terephthalate (PTT)
    • 5.2.5 Polyethylene Furanoate (PEF)
    • 5.2.6 Bio-Based Polyolefins
    • 5.2.7 Bio-Based Polyamides (Bio-PA)
      • 5.2.7.1 Homopolyamides
      • 5.2.7.2 Bio-Polyamides (PA) 6
      • 5.2.7.3 Bio-Polyamides (PA) 11
      • 5.2.7.4 Copolyamides
      • 5.2.7.5 Other Bio-Based Polyamides (Bio-PA)
    • 5.2.8 Others Non-Biodegradable
  • 5.3 Biodegradable
    • 5.3.1 Polylactic Acid (PLA)
    • 5.3.2 Polybutylene Adipate Terephthalate (PBSA)
    • 5.3.3 Polyhydroxyalkanoates
    • 5.3.4 Polybutylene Succinate (PBS)
    • 5.3.5 Cellulose Films
    • 5.3.6 Starch Based
    • 5.3.7 Others Biodegradable
  • 5.4 Polyurethanes
  • 5.5 Polysaccharide Polymers
    • 5.5.1 Cellulose-Based Polymers
    • 5.5.2 Starch-Based Polymers
  • 5.6 Other Product Types

6 Global Biopolymers Market, By Raw Material

  • 6.1 Introduction
  • 6.2 Potato
  • 6.3 Corn Starch
  • 6.4 Wheat
  • 6.5 Cassava
  • 6.6 Switchgrass
  • 6.7 Sugar Cane/ Sugar Beet
  • 6.8 Other Raw Materials

7 Global Biopolymers Market, By Molding Process

  • 7.1 Introduction
  • 7.2 Extrusion
  • 7.3 Injection
  • 7.4 Melt Compounding
  • 7.5 Other Molding Processes

8 Global Biopolymers Market, By Application

  • 8.1 Introduction
  • 8.2 Automotive Interiors & Exteriors
  • 8.3 Bottles
  • 8.4 Circuit Boards
  • 8.5 Fibers
  • 8.6 Films
  • 8.7 Insulators
  • 8.8 Laminates
  • 8.9 Medical Implants
  • 8.10 Paper & Cardboard Coatings
  • 8.11 Seed Coating
  • 8.12 Vehicle Components
  • 8.13 Other Applications

9 Global Biopolymers Market, By End User

  • 9.1 Introduction
  • 9.2 Automotive & Transport
  • 9.3 Agriculture & Horticulture
  • 9.4 Building & Construction
  • 9.5 Coatings & Adhesives
  • 9.6 Electronics & Electricals
  • 9.7 Food & Beverage
  • 9.8 Medical & Healthcare
  • 9.9 Aerospace
  • 9.10 Textiles
  • 9.11 Packaging
    • 9.11.1 Flexible Packaging
    • 9.11.2 Rigid Packaging

9..12 Other End Users

10 Global Biopolymers Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 BASF
  • 12.2 Braskem
  • 12.3 Total Corbion
  • 12.4 Novamont
  • 12.5 Mitsubishi Chemical Holding Corporation
  • 12.6 Biome Bioplastics
  • 12.7 NatureWorks
  • 12.8 Biotec
  • 12.9 Toray Industries
  • 12.10 Plantic Technologies
  • 12.11 Mitsubishi Chemical Group Corporation
  • 12.12 Biotec Biologische Naturverpackungen GmbH & Co.
  • 12.13 Dupont de Nemours Inc
  • 12.14 BioBag International AS
  • 12.15 Danimer Scientific Inc
  • 12.16 Eastman Chemical Company
  • 12.17 Rodenburg Biopolymers BV
  • 12.18 Innovia Films Ltd
  • 12.19 Solanyl Biopolymers Inc
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦