![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1324209
¼¼°èÀÇ µðÁöÅÐ ³ó¾÷ ½ÃÀå ¿¹Ãø(-2030³â) : À¯Çüº°, ±â¼úº°, ¿î¿µº°, ±â¾÷ À¯Çüº°, ¿ëµµº° ¹× Áö¿ªº° ºÐ¼®Digital Agriculture Market Forecasts to 2030 - Global Analysis By Type, Technology, Operation, Company Type, Application and By Geography |
Stratistics MRC¿¡ µû¸£¸é, ¼¼°è µðÁöÅÐ ³ó¾÷ ½ÃÀåÀº 2023³â 181¾ï 1,000¸¸ ´Þ·¯·Î ¿¹Ãø ±â°£ µ¿¾È ¿¬Æò±Õ 12.5% ¼ºÀåÇØ 2030³â 413¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
³óºÎµéÀº ³óÀÛ¹°ÀÇ »ýÀ°À» ½Ç½Ã°£À¸·Î ¸ð´ÏÅ͸µÇϱâ À§ÇØ µðÁöÅÐ ³ó¾÷ µµ±¸¸¦ Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ¹ç¿¡ ¼³Ä¡ÇÏ¿© ¿Âµµ¿Í Åä¾ç ǰÁúÀ» ±â·ÏÇÏ´Â ¼¾¼, °æÀÛÁöµµ¸¦ ÀÛ¼ºÇÏ°í ¼öÈ®·® Áöµµ¸¦ ¸¸µå´Â µµ±¸ÀÎ Climate Field view¿Í °°Àº ÄÄÇ»ÅÍ ÇÁ·Î±×·¥, ±×¸®°í ±âŸ À¯»çÇÑ ÇÁ·Î±×·¥ µîÀÌ ÀÖ½À´Ï´Ù. ±³À°, ±ÝÀ¶ ¹× ¹ý·ü ¼ºñ½º¿¡ ´ëÇÑ Á¢±ÙÀ» °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á, ³ó¾÷¿¡¼ÀÇ µðÁöÅÐ ±â¼ú Ȱ¿ëÀº ÀÌÇØ°ü°èÀÚ °£ÀÇ Á¤º¸ ±³È¯À» ÃËÁøÇϰí, °ø±Þ¾÷ü¿Í Á÷¿ø °£ÀÇ Àü·«Àû ÆÄÆ®³Ê½ÊÀ» ½±°Ô ±¸ÃàÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù.
FAO µ¥ÀÌÅÍ¿¡ µû¸£¸é ½Ò, ¹Ð, º¸¸®, ¿Á¼ö¼ö µî ÁÖ¿ä °î¹°ÀÇ ¼öÈ®·®Àº ¹ÐÀÌ 2019³â 41,079 hg/ha¿¡¼ 2020³â 40,708 hg/ha·Î Å©°Ô °¨¼ÒÇÏ°í º¸¸® ¹× ±âŸ Á¶ÀâÇÑ °î¹°ÀÇ ¼öÈ®·®µµ ºñ½ÁÇÑ °¨¼Ò Ãß¼¼¸¦ º¸¿´½À´Ï´Ù.
³ó¹ÎµéÀº ´õ ÀûÀº ³ó¾à »ç¿ëÀ¸·Î ´õ ¸¹Àº ½Ä·®°ú »ç·á¸¦ »ý»êÇØ¾ß ÇÑ´Ù´Â ¾Ð·ÂÀ» Áö¼ÓÀûÀ¸·Î ¹Þ°í ÀÖ½À´Ï´Ù. ´õ ÀûÀº ¿¡³ÊÁö¿Í ³ëµ¿·ÂÀ» »ç¿ëÇϰí ȯ°æÀûÀÎ ÅäÁö ¹× ¹° °ü¸®¸¦ °³¼±ÇØ¾ß ÇÕ´Ï´Ù. Àα¸°¡ ±Þ¼ÓÈ÷ Áõ°¡ÇÔ¿¡ µû¶ó Áõ°¡ÇÏ´Â Àα¸¿¡ ´ëÇÑ ½Ä·® °ø±ÞÀÌ ¾î·Á¿öÁö¸é¼ ³ó¾÷ »ý»ê·®À» ´Ã·Á¾ß ÇÑ´Ù´Â ¾Ð¹ÚÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¸ðµç ¿ä±¸´Â Á¤¹Ð³ó¾÷°ú °°Àº »ç¹°ÀÎÅͳÝ(IoT) Àåºñ¿Í ¼ÒÇÁÆ®¿þ¾î¸¦ ÅëÇØ ÃæÁ·µÉ ¼ö ÀÖ½À´Ï´Ù. µû¶ó¼ MapShots, AgDNA, AgroSense¿Í °°Àº Á¤¹Ð ³ó¾÷ µµ±¸ÀÇ »ç¿ëÀº ÀÛ¹° ¼öÈ®·® Áõ°¡, Åä¾ç ǰÁú °³¼±¿¡ µµ¿òÀÌ µÉ °ÍÀ̸ç, µðÁöÅÐ ³ó¾÷¿¡ ´ëÇÑ Àü ¼¼°èÀûÀÎ ¼ö¿ä¸¦ ÀÚ±ØÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.
ÀÚµ¿ÈµÈ ³ó¾÷ Àåºñ´Â ±âÁ¸ ³ó¾÷ Àåºñº¸´Ù ÈξÀ ´õ ºñ½Ô´Ï´Ù. ÃֽŠÀÚµ¿Â÷ÀÇ ³ôÀº À¯Áöº¸¼ö ºñ¿ëÀ¸·Î ÀÎÇØ ¼Ò±Ô¸ð ³ó°¡ÀÇ ½º¸¶Æ® µðÁöÅÐ ³ó¾÷ ±â¼ú Ȱ¿ëÀÌ Á¦ÇѵǴ °Í°ú ¸¶Âù°¡Áö´Ù. Ä«¸Þ¶ó, ¼¾¼, ¼ÒÇÁÆ®¿þ¾î, Çϵå¿þ¾îÀÇ À¯Áöº¸¼ö ºñ¿ëÀ¸·Î ÀÎÇØ ½ÃÀå È®´ë°¡ Á¦Çѵǰí ÀÖ½À´Ï´Ù. ³óºÎµéÀº ³ó¾÷ »ý»ê·®°ú ¼öÀÍÀ» ³ôÀ̱â À§ÇØ ÀÚµ¿È ¹× ±â¼úÀûÀ¸·Î Áøº¸µÈ Â÷·®¿¡ ÅõÀÚÇÏ´Â °ÍÀÌ Áß¿äÇÏÁö¸¸, Ãʱâ ÅõÀÚºñ¿ëÀ» °¨´çÇϱ⠾î·Á¿î »óȲÀÔ´Ï´Ù. Àεµ, ºê¶óÁú, Áß±¹ µî ±¹°¡ÀÇ ³ó¹ÎµéÀº ½º¸¶Æ® ³ó¾÷ ±â¼úÀÇ ³ôÀº Ãʱ⠺ñ¿ëÀ¸·Î ÀÎÇØ ¾î·Á¿òÀ» °Þ°í ÀÖ½À´Ï´Ù.
ÀΰøÁö´É°ú ±â°èÇнÀÀº ³ó±â°è¿Í ¹ç ÀÛ¾÷¿¡ ºü¸£°Ô µµÀԵǰí ÀÖ½À´Ï´Ù. »ý»ê¼ºÀ» Çâ»ó½Ã۰í, ÇнÀ, ÀÌÇØ ¹× ´Ù¾çÇÑ »óȲ¿¡ ´ëÀÀÇÒ ¼ö ÀÖ´Â ´É·ÂÀ» °®Ãá ÀÎÁö ÄÄÇ»ÆÃÀº ¾÷°è Àü¹Ý¿¡ °ÉÃÄ Àα⸦ ²ø°í ÀÖ½À´Ï´Ù. 꺿 ¹× ±âŸ ´ëÈÇü Ç÷§Æû°ú °°Àº ¼ºñ½ºÇü ¼Ö·ç¼ÇÀº ³óºÎµéÀÌ Ãֽбâ¼ú ¹ßÀü¿¡ ´ëÀÀÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ¸¶Âù°¡Áö·Î IoT ¼Ö·ç¼ÇÀº ¹°, Àü·Â µî õ¿¬ÀÚ¿øÀÇ È¿À²ÀûÀΠȰ¿ëÀ» Áö¿øÇϸç, IoT ±â±â´Â ºû, ½Àµµ, ¿Âµµ µî ´Ù¾çÇÑ ¼¾¼¸¦ ÅëÇØ ÀÛ¹°ÀÇ °Ç° »óÅÂ¿Í Åä¾çÀÇ ½Àµµ¸¦ ÃßÀûÇÕ´Ï´Ù.
³óÀå °æ¿µ¿¡ ´ëÇÑ Çö¸íÇÑ ÆÇ´Ü°ú ³óÀå ¿î¿µÀÇ °È´Â µ¥ÀÌÅÍ °ü¸®¿¡ ´Þ·Á ÀÖ½À´Ï´Ù. Á¤º¸´Â ¿ø½Ã ÇüÅ·Π¼öÁýµÇ°í, ¸Æ¶ô, °ü·Ã¼º, ¿ì¼±¼øÀ§¿¡ µû¶ó 󸮵Ǿî ÀÇ»ç°áÁ¤À» °¡´ÉÇÏ°Ô ÇÏ´Â ÇüÅ·ΠÁ¦½ÃµË´Ï´Ù. µ¥ÀÌÅÍ °ü¸®´Â µðÁöÅÐ ³ó¾÷¿¡¼ ³óºÎµé°ú ´Ù¸¥ ½ÃÀå ÁøÀÔÀÚµéÀÌ ÇØ°áÇØ¾ß ÇÒ Áß¿äÇÑ ¹®Á¦ÀÔ´Ï´Ù. ¼öÁýµÈ Á¤º¸´Â ³óºÎ¿Í °¡Ä¡»ç½½ÀÇ ´Ù¸¥ Âü¿©ÀÚµéÀÌ Çö¸íÇÑ ¼±ÅÃÀ» ÇÒ ¼ö ÀÖµµ·Ï Çϱ⠶§¹®¿¡ ÇʼöÀûÀÔ´Ï´Ù. ±×·¯³ª ¸¹Àº ³óºÎµé°ú »ý»êÀÚµéÀº µ¥ÀÌÅͰ¡ ÀÇ»ç°áÁ¤¿¡ ¾î¶»°Ô È¿°úÀûÀ¸·Î Ȱ¿ëµÇ´ÂÁö ¾ËÁö ¸øÇÕ´Ï´Ù. µû¶ó¼ ³óºÎ¿Í »ý»êÀÚ¿¡°Ô ÀûÀýÇÑ µ¥ÀÌÅÍ °ü¸® µµ±¸¿Í Àü·«À» Á¦°øÇÏ´Â °ÍÀÌ ¸Å¿ì Áß¿äÇÕ´Ï´Ù.
COVID-19 ÆÒµ¥¹Í ±â°£ µ¿¾È, ÀÌÁÖ ³ëµ¿ÀÚ¿Í ³óÃÌ ³ëµ¿ÀÚÀÇ À̵¿ÀÌ Á¦Çѵǰí, °Ý¸®, ¿©Çà Á¦ÇÑ, ¼öÃâÀÔ È°µ¿ÀÌ ±¤¹üÀ§ÇÏ°Ô Áß´ÜµÇ¸é¼ ½É°¢ÇÑ ³ëµ¿·Â ºÎÁ·ÀÌ ¹ß»ýÇÏ¿© Àü ¼¼°è ³óÀÛ¹° »ý»ê¿¡ ¾Ç¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. °Å·¡¿¡ ºÒ¸®ÇÑ ¿µÇâÀ» ¹ÌÃÄ ³ó±â°è ÆÇ¸Å°¡ °¨¼ÒÇß½À´Ï´Ù. ³ó±â°è »ç¾÷ÀÇ À¯Åë¸ÁÀÌ ¿µÇâÀ» ¹Þ¾Æ Áö´ÉÇü ³ó±â°èÀÇ ÆÇ¸Å¿¡ ÁöÀåÀ» ÃÊ·¡Çß½À´Ï´Ù.
ÀΰøÁö´É ºÎ¹®Àº AI, Ŭ¶ó¿ìµå, IoT, ¾Ö³Î¸®Æ½½º¸¦ Ȱ¿ëÇÑ ³ó¾÷ ÀåºñÀÇ ±Þ¼ÓÇÑ ¹ßÀüÀ¸·Î ÀÎÇØ ¼ºÀå¿¡ À¯¸®ÇÒ °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù. ±â¾÷µéÀº ³¯¾¾, Åä¾ç »óÅÂ, ÀÛ¹° °Ç°, ÀâÃÊ ¹× ÇØÃæÀ» ½Äº°ÇÏ´Â ÃÖ÷´Ü AI Áö¿ø ½Ã½ºÅÛÀ» °³¹ßÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, AI ±â¹Ý µµ±¸ÀÎ Plantix´Â µ¶ÀÏ¿¡ º»»ç¸¦ µÐ ±â¼ú ±â¾÷ PEAT°¡ °³¹ßÇß½À´Ï´Ù. ÀÌ ¼ÒÇÁÆ®¿þ¾î´Â Åä¾çÀÇ ¿µ¾ç ºÎÁ·, ÇØÃæ ¹× Áúº´À» ½Äº°ÇÏ¿© ³óºÎµéÀÌ ÀûÀýÇÑ ºñ·á¸¦ °ø±ÞÇÏ°í ¼öÈ®·®À» ´Ã¸± ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù. ¸¶Âù°¡Áö·Î AI ±â¹Ý µå·Ð, ·Îº¿, ¾ÛÀÌ ³ó¾÷ ºÐ¾ß¿¡¼ ±â¼ú Ȱ¿ëÀ» °¡¼ÓÈÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
ÀÛ¹° °ü¸® ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Åä¾ç ¾ÇÈ, ¹° ºÎÁ·, ³óÀÛ¹° ÈäÀÛ À§Çè Áõ°¡·Î ÀÎÇØ ¼öÈ®·® ¸ð´ÏÅ͸µ, Åä¾ç ¹× ºñ·á °ü¸®, Áö´ÉÇü °ü°³ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí Àֱ⠶§¹®ÀÔ´Ï´Ù. ÀÌ¿Í ¸¶Âù°¡Áö·Î, ½º¸¶Æ® ³ó¾÷ ±â¼úÀº ³óºÎµéÀÌ ³¯¾¾ ÆÐÅÏÀ» ÀÌÇØÇÏ°í ±âÈÄ¿¡ ÀûÇÕÇÑ ÀÛ¹°À» ¼±ÅÃÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. µû¶ó¼ ¼¼°è¿¡¼ °¡Àå °¡¹³¿¡ Ãë¾àÇÑ ±¹°¡µéÀº ÇâÈÄ ¸î ³â ¾È¿¡ ±â»ó ¿¹Ãø ±â¼úÀ» µµÀÔÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ¿ä¼ÒµéÀº µðÁöÅÐ ³ó¾÷ »ê¾÷ÀÇ È®ÀåÀ» °¡¼ÓÈÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¾Æ½Ã¾ÆÅÂÆò¾çÀº Áß±¹ÀÇ ³ó¾÷ »ê¾÷¿¡¼ ½º¸¶Æ® ³ó¾÷ ±â¼ú »ç¿ëÀÇ Çõ¸íÀûÀÎ º¯È·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. »ç¹°ÀÎÅͳÝ(IoT) ¼¿·ê·¯ ÀåÄ¡, ±â¾îÅõ½º ¼¾¼ ±â¹Ý °ü°³ ¹× ½Ãºñ ÀåÄ¡, ¹ëºê À§Ä¡ ¼¾¼¿Í °°Àº ¼¾¼ ±â¹Ý ±â¼úÀº ¾ÆÁ÷ ÀÌ ºÐ¾ß¿¡¼ ºñ±³Àû »õ·Î¿î ±â¼úÀÌÁö¸¸, ³ó¹ÎµéÀÌ º¸´Ù Á¤±³ÇÑ ³ó¾÷ ±â¼úÀ» äÅÃÇÏ°í ±â°èÈÀ²ÀÌ ³ô¾ÆÁü¿¡ µû¶ó ÃÖ±Ù ¼¾¼¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¿©·¯ ¼Ò½º¿¡¼ µ¥ÀÌÅ͸¦ ¼öÁýÇϰí À̸¦ ¸Ó½Å·¯´×(ML) ¹× ÀΰøÁö´É(AI) ¾Ë°í¸®Áò¿¡ Á¢¸ñÇÏ¿© Á¤È®ÇÏ°í °³º°ÈµÈ ÁöħÀ» Á¦°øÇÏ´Â °í±Þ ±â´ÉÀÌ ÀÌ Áö¿ªÀÇ ½ÃÀå ¼ºÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù.
ºÏ¹Ì Áö¿ªÀº ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ºÏ¹Ì°¡ µðÁöÅÐ ³ó¾÷ ¼¼°è ½ÃÀåÀ» Àå¾ÇÇϰí ÀÖ´Â ÁÖ¿ä ÀÌÀ¯´Â Á¤ºÎ°¡ Ãֽгó¾÷ ±â¼úÀ» µµÀÔÇϱâ À§ÇÑ Á¤Ã¥À» °ÈÇϰí ÀÎÇÁ¶ó°¡ Àß ±¸ÃàµÇ¾î Àֱ⠶§¹®ÀÔ´Ï´Ù. ¿¹Ãø ±â°£ µ¿¾È ÁÖ¿ä ±â¾÷ÀÇ Á¸Àç´Â ¶ÇÇÑ ÀÌ Áö¿ªÀÇ µðÁöÅÐ ³ó¾÷ ½ÃÀåÀÇ ¹ø¿µÀ» ÃËÁøÇÒ °ÍÀÔ´Ï´Ù. µû¶ó¼ ±â¼úÀûÀ¸·Î Áøº¸ µÈ ³ó¾÷ ÀåºñÀÇ °¡¿ë¼º Áõ°¡¿Í ÷´Ü ±â¼ú ±â¾÷ Çü¼º¿¡ ´ëÇÑ Á¤ºÎ Áö¿ø Áõ°¡´Â ºÏ¹Ì Áö¿ªÀÇ µðÁöÅÐ ³ó¾÷ »ê¾÷À» ÁÖµµÇϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Digital Agriculture Market is accounted for $18.11 billion in 2023 and is expected to reach $41.30 billion by 2030 growing at a CAGR of 12.5% during the forecast period. In order to monitor the growth of crops in real time, farmers are using digital agriculture tools, such as sensors that are placed on the fields and record the temperature and soil quality, computer programmes like Climate Field view, a tool designed to produce farming maps and yield maps, and other similar programmes. By enabling access to training, financial services, and legal services, the use of digital technology in agriculture promotes the exchange of information between stakeholders and facilitates the building of strategic alliances between suppliers and employees.
According to the FAO data, the yield for major cereal crops like rice, wheat, barley, corn, and other grains reduced considerably from 41,079 hg/ha in 2019 to 40,708 hg/ha in 2020 for wheat; a similar reduced trend for barley and other coarse grains was observed.
Farmers are under continual pressure to produce more food and animal feed while using fewer pesticides. Less energy and labour must also be used, and environmental land and water management must be improved. Increasing agricultural production is under pressure as a result of the population's fast growth and the resulting difficulty in feeding the rising population. All of these needs may be satisfied by using Internet of Things (IoT) equipment and software like precision farming. Thus, the usage of precision farming tools like MapShots, AgDNA, AgroSense, and others will aid in boosting crop yield, improve soil quality, and stimulate global demand for digital agriculture.
Automated agricultural equipment is substantially more expensive than conventional farming equipment. Similar to how high maintenance costs for modern cars limit the use of smart digital agricultural techniques by small farms. The cost of maintaining these vehicles' cameras, sensors, software, and hardware restrains market expansion. It is important for farmers to invest in automated and technologically advanced vehicles to boost agricultural output and earnings, but it is challenging for them to make a larger initial investment. Farmers in nations like India, Brazil, and China have challenges due to the high initial cost of smart agricultural technologies.
Artificial intelligence and machine learning are being quickly incorporated into farming equipment and field practises. With its ability to improve productivity and aid in learning, understanding, and responding to various circumstances, cognitive computing is gaining popularity across the industry. The solutions as a service, such chatbots and other conversational platforms, assist the farmers in keeping up with the most recent technological advancements. Similar to this, IoT solutions support the effective use of natural resources like water, power, and others. The IoT devices employ a variety of sensors, including light, humidity, temperature, and others, to track the health of the crops and the wetness of the soil.
Making wise judgements about farm management and enhancing farm operations depend on data management. The information is gathered in a raw format, processed according to context, relevance, and priority, and then presented in a way that allows for decision-making. The management of data is a significant issue that farmers and other market participants in digital agriculture must deal with. The information gathered is essential because it enables farmers and other participants in the value chain to choose wisely. Many farmers and producers are not aware of how data may be used effectively for decision-making. Consequently, it is crucial to give farmers and producers the right data management tools and strategies.
Due to the COVID-19 pandemic's widespread lockdown, travel restrictions, and suspension of import and export activities due to the restricted movement of migrant workers and rural labourers during the pandemic, there was a severe labour shortage that adversely affected crop production around the world. Sales of agricultural equipment have decreased as a result of the COVID-19 epidemic due to constrained shipments and unfavourable transactional consequences. The distribution network for the agricultural equipment business was impacted, which hindered the sales of intelligent farming equipment.
The artificial intelligence segment is estimated to have a lucrative growth, due to the expansion driven by the quick development of agricultural equipment using AI, cloud, IoT, and analytics. Businesses are developing cutting-edge AI-enabled systems to identify the weather, soil health, crop health, weeds, and pests. For instance, Plantix, an AI-based tool, was created by PEAT, a technology firm with headquarters in Germany. This software helps farmers apply the proper fertilisers to increase yield by identifying nutrient deficits, pests, and illnesses in the soil. Similarly, it is projected that AI-based drones, robots, and apps would accelerate the use of technology in farming.
The crop management segment is anticipated to witness the highest CAGR growth during the forecast period, due to there is a requirement for yield monitoring, soil and fertiliser management, and intelligent irrigation systems due to increasing soil degradation, water scarcity, and rising crop failure risk. Similar to this, smart farming technologies assist farmers in understanding weather patterns so they can choose the appropriate crops for the climate. The most drought-prone nations in the world are thus anticipated to implement weather forecasting technologies in the upcoming years. These elements are anticipated to accelerate the expansion of the digital farming industry.
Asia Pacific is projected to hold the largest market share during the forecast period owing to a revolutionary shift in the use of smart farming techniques in the Chinese agriculture industry. Although sensor-based technologies, such as Internet of Things (IoT) cellular devices, gear tooth sensor-based irrigation and fertilisation equipment, and valve position sensors, among others, are still relatively new in the field, the nation has recently seen a rise in the demand for sensors, largely as a result of the farmers' adoption of more sophisticated agricultural techniques and a higher rate of mechanisation. The sophisticated features gather data from multiple sources, put it into machine learning (ML) and artificial intelligence (AI) algorithms, and then deliver precise, individualised guidance are propelling the growth of the market in this region.
North America is projected to have the highest CAGR over the forecast period, owing to the government's increased measures for the adoption of contemporary agricultural technology and its established infrastructure are the main reasons why North America dominates the global market for digital agriculture. During the projection period, the presence of significant important players will also help the region's digital agriculture market flourish. Therefore, a growth in the availability of technologically advanced agricultural equipment and an increase in government support for the formation of tech enterprises are what are propelling the digital agriculture industry in the North American area.
Some of the key players profiled in the Digital Agriculture Market include: IBM Corporation, Accenture, CISCO Systems, Inc, Trimble INC., Hexagon AB, Bayer Cropscience AG, Vodafone Group PLC., Deere & Company, DeLaval, Raven Industries, PrecisionHawk, Agricultural Consulting Services, Eurofins Scientific, Epicor Software Corporation, Gamaya, Arable, AKVA Group and TELUS Agriculture
In June 2021, Deere & Company (US) partnered with Mobile Track Solution (US) to provide digital solutions for precision farming. Under this, Mobile Track Solutions provided John Deere & Company with greater than 27 cubic yard capacity towed scrapers for its distribution channels. This will help improve earthmoving efficiency and precision in large-scale applications.
In December 2020, IBM Services and the German Society for International Cooperation (GIZ) launched a three-stage support for the Digital4Agriculture Initiative (D4Ag) for small-scale agriculture ventures or start-ups in Africa to predict the weather information and services accessible to improve their crop production.
In April 2020, Trimble partnered with HORSCH (Germany) to develop automation solutions for the agriculture industry. HORSCH and Trimble, in collaboration, will focus on developing solutions, including autonomous machines and workflow management systems that improve farm productivity.