½ÃÀ庸°í¼­
»óǰÄÚµå
1324209

¼¼°èÀÇ µðÁöÅÐ ³ó¾÷ ½ÃÀå ¿¹Ãø(-2030³â) : À¯Çüº°, ±â¼úº°, ¿î¿µº°, ±â¾÷ À¯Çüº°, ¿ëµµº° ¹× Áö¿ªº° ºÐ¼®

Digital Agriculture Market Forecasts to 2030 - Global Analysis By Type, Technology, Operation, Company Type, Application and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 175+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é, ¼¼°è µðÁöÅÐ ³ó¾÷ ½ÃÀåÀº 2023³â 181¾ï 1,000¸¸ ´Þ·¯·Î ¿¹Ãø ±â°£ µ¿¾È ¿¬Æò±Õ 12.5% ¼ºÀåÇØ 2030³â 413¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

³óºÎµéÀº ³óÀÛ¹°ÀÇ »ýÀ°À» ½Ç½Ã°£À¸·Î ¸ð´ÏÅ͸µÇϱâ À§ÇØ µðÁöÅÐ ³ó¾÷ µµ±¸¸¦ Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ¹ç¿¡ ¼³Ä¡ÇÏ¿© ¿Âµµ¿Í Åä¾ç ǰÁúÀ» ±â·ÏÇÏ´Â ¼¾¼­, °æÀÛÁöµµ¸¦ ÀÛ¼ºÇÏ°í ¼öÈ®·® Áöµµ¸¦ ¸¸µå´Â µµ±¸ÀÎ Climate Field view¿Í °°Àº ÄÄÇ»ÅÍ ÇÁ·Î±×·¥, ±×¸®°í ±âŸ À¯»çÇÑ ÇÁ·Î±×·¥ µîÀÌ ÀÖ½À´Ï´Ù. ±³À°, ±ÝÀ¶ ¹× ¹ý·ü ¼­ºñ½º¿¡ ´ëÇÑ Á¢±ÙÀ» °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á, ³ó¾÷¿¡¼­ÀÇ µðÁöÅÐ ±â¼ú Ȱ¿ëÀº ÀÌÇØ°ü°èÀÚ °£ÀÇ Á¤º¸ ±³È¯À» ÃËÁøÇϰí, °ø±Þ¾÷ü¿Í Á÷¿ø °£ÀÇ Àü·«Àû ÆÄÆ®³Ê½ÊÀ» ½±°Ô ±¸ÃàÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù.

FAO µ¥ÀÌÅÍ¿¡ µû¸£¸é ½Ò, ¹Ð, º¸¸®, ¿Á¼ö¼ö µî ÁÖ¿ä °î¹°ÀÇ ¼öÈ®·®Àº ¹ÐÀÌ 2019³â 41,079 hg/ha¿¡¼­ 2020³â 40,708 hg/ha·Î Å©°Ô °¨¼ÒÇÏ°í º¸¸® ¹× ±âŸ Á¶ÀâÇÑ °î¹°ÀÇ ¼öÈ®·®µµ ºñ½ÁÇÑ °¨¼Ò Ãß¼¼¸¦ º¸¿´½À´Ï´Ù.

½ÃÀå ¿ªÇÐ:

»ý»ê¼º Çâ»ó ¹× ÀÛ¹° °Ç°­ °³¼±¿¡ ´ëÇÑ ¾Ð·Â

³ó¹ÎµéÀº ´õ ÀûÀº ³ó¾à »ç¿ëÀ¸·Î ´õ ¸¹Àº ½Ä·®°ú »ç·á¸¦ »ý»êÇØ¾ß ÇÑ´Ù´Â ¾Ð·ÂÀ» Áö¼ÓÀûÀ¸·Î ¹Þ°í ÀÖ½À´Ï´Ù. ´õ ÀûÀº ¿¡³ÊÁö¿Í ³ëµ¿·ÂÀ» »ç¿ëÇϰí ȯ°æÀûÀÎ ÅäÁö ¹× ¹° °ü¸®¸¦ °³¼±ÇØ¾ß ÇÕ´Ï´Ù. Àα¸°¡ ±Þ¼ÓÈ÷ Áõ°¡ÇÔ¿¡ µû¶ó Áõ°¡ÇÏ´Â Àα¸¿¡ ´ëÇÑ ½Ä·® °ø±ÞÀÌ ¾î·Á¿öÁö¸é¼­ ³ó¾÷ »ý»ê·®À» ´Ã·Á¾ß ÇÑ´Ù´Â ¾Ð¹ÚÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¸ðµç ¿ä±¸´Â Á¤¹Ð³ó¾÷°ú °°Àº »ç¹°ÀÎÅͳÝ(IoT) Àåºñ¿Í ¼ÒÇÁÆ®¿þ¾î¸¦ ÅëÇØ ÃæÁ·µÉ ¼ö ÀÖ½À´Ï´Ù. µû¶ó¼­ MapShots, AgDNA, AgroSense¿Í °°Àº Á¤¹Ð ³ó¾÷ µµ±¸ÀÇ »ç¿ëÀº ÀÛ¹° ¼öÈ®·® Áõ°¡, Åä¾ç ǰÁú °³¼±¿¡ µµ¿òÀÌ µÉ °ÍÀ̸ç, µðÁöÅÐ ³ó¾÷¿¡ ´ëÇÑ Àü ¼¼°èÀûÀÎ ¼ö¿ä¸¦ ÀÚ±ØÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

ÀÚÀ²Çü ³ó±â°èÀÇ ³ôÀº Ãʱâºñ¿ë

ÀÚµ¿È­µÈ ³ó¾÷ Àåºñ´Â ±âÁ¸ ³ó¾÷ Àåºñº¸´Ù ÈξÀ ´õ ºñ½Ô´Ï´Ù. ÃֽŠÀÚµ¿Â÷ÀÇ ³ôÀº À¯Áöº¸¼ö ºñ¿ëÀ¸·Î ÀÎÇØ ¼Ò±Ô¸ð ³ó°¡ÀÇ ½º¸¶Æ® µðÁöÅÐ ³ó¾÷ ±â¼ú Ȱ¿ëÀÌ Á¦ÇѵǴ °Í°ú ¸¶Âù°¡Áö´Ù. Ä«¸Þ¶ó, ¼¾¼­, ¼ÒÇÁÆ®¿þ¾î, Çϵå¿þ¾îÀÇ À¯Áöº¸¼ö ºñ¿ëÀ¸·Î ÀÎÇØ ½ÃÀå È®´ë°¡ Á¦Çѵǰí ÀÖ½À´Ï´Ù. ³óºÎµéÀº ³ó¾÷ »ý»ê·®°ú ¼öÀÍÀ» ³ôÀ̱â À§ÇØ ÀÚµ¿È­ ¹× ±â¼úÀûÀ¸·Î Áøº¸µÈ Â÷·®¿¡ ÅõÀÚÇÏ´Â °ÍÀÌ Áß¿äÇÏÁö¸¸, Ãʱâ ÅõÀÚºñ¿ëÀ» °¨´çÇϱ⠾î·Á¿î »óȲÀÔ´Ï´Ù. Àεµ, ºê¶óÁú, Áß±¹ µî ±¹°¡ÀÇ ³ó¹ÎµéÀº ½º¸¶Æ® ³ó¾÷ ±â¼úÀÇ ³ôÀº Ãʱ⠺ñ¿ëÀ¸·Î ÀÎÇØ ¾î·Á¿òÀ» °Þ°í ÀÖ½À´Ï´Ù.

AI¿Í IoT ±â¼ú ÀÌ¿ë È®´ë

ÀΰøÁö´É°ú ±â°èÇнÀÀº ³ó±â°è¿Í ¹ç ÀÛ¾÷¿¡ ºü¸£°Ô µµÀԵǰí ÀÖ½À´Ï´Ù. »ý»ê¼ºÀ» Çâ»ó½Ã۰í, ÇнÀ, ÀÌÇØ ¹× ´Ù¾çÇÑ »óȲ¿¡ ´ëÀÀÇÒ ¼ö ÀÖ´Â ´É·ÂÀ» °®Ãá ÀÎÁö ÄÄÇ»ÆÃÀº ¾÷°è Àü¹Ý¿¡ °ÉÃÄ Àα⸦ ²ø°í ÀÖ½À´Ï´Ù. 꺿 ¹× ±âŸ ´ëÈ­Çü Ç÷§Æû°ú °°Àº ¼­ºñ½ºÇü ¼Ö·ç¼ÇÀº ³óºÎµéÀÌ Ãֽбâ¼ú ¹ßÀü¿¡ ´ëÀÀÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ¸¶Âù°¡Áö·Î IoT ¼Ö·ç¼ÇÀº ¹°, Àü·Â µî õ¿¬ÀÚ¿øÀÇ È¿À²ÀûÀΠȰ¿ëÀ» Áö¿øÇϸç, IoT ±â±â´Â ºû, ½Àµµ, ¿Âµµ µî ´Ù¾çÇÑ ¼¾¼­¸¦ ÅëÇØ ÀÛ¹°ÀÇ °Ç°­ »óÅÂ¿Í Åä¾çÀÇ ½Àµµ¸¦ ÃßÀûÇÕ´Ï´Ù.

µ¥ÀÌÅÍ °ü¸®¿¡ ´ëÇÑ °ü½É Áõ°¡

³óÀå °æ¿µ¿¡ ´ëÇÑ Çö¸íÇÑ ÆÇ´Ü°ú ³óÀå ¿î¿µÀÇ °­È­´Â µ¥ÀÌÅÍ °ü¸®¿¡ ´Þ·Á ÀÖ½À´Ï´Ù. Á¤º¸´Â ¿ø½Ã ÇüÅ·Π¼öÁýµÇ°í, ¸Æ¶ô, °ü·Ã¼º, ¿ì¼±¼øÀ§¿¡ µû¶ó 󸮵Ǿî ÀÇ»ç°áÁ¤À» °¡´ÉÇÏ°Ô ÇÏ´Â ÇüÅ·ΠÁ¦½ÃµË´Ï´Ù. µ¥ÀÌÅÍ °ü¸®´Â µðÁöÅÐ ³ó¾÷¿¡¼­ ³óºÎµé°ú ´Ù¸¥ ½ÃÀå ÁøÀÔÀÚµéÀÌ ÇØ°áÇØ¾ß ÇÒ Áß¿äÇÑ ¹®Á¦ÀÔ´Ï´Ù. ¼öÁýµÈ Á¤º¸´Â ³óºÎ¿Í °¡Ä¡»ç½½ÀÇ ´Ù¸¥ Âü¿©ÀÚµéÀÌ Çö¸íÇÑ ¼±ÅÃÀ» ÇÒ ¼ö ÀÖµµ·Ï Çϱ⠶§¹®¿¡ ÇʼöÀûÀÔ´Ï´Ù. ±×·¯³ª ¸¹Àº ³óºÎµé°ú »ý»êÀÚµéÀº µ¥ÀÌÅͰ¡ ÀÇ»ç°áÁ¤¿¡ ¾î¶»°Ô È¿°úÀûÀ¸·Î Ȱ¿ëµÇ´ÂÁö ¾ËÁö ¸øÇÕ´Ï´Ù. µû¶ó¼­ ³óºÎ¿Í »ý»êÀÚ¿¡°Ô ÀûÀýÇÑ µ¥ÀÌÅÍ °ü¸® µµ±¸¿Í Àü·«À» Á¦°øÇÏ´Â °ÍÀÌ ¸Å¿ì Áß¿äÇÕ´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

COVID-19 ÆÒµ¥¹Í ±â°£ µ¿¾È, ÀÌÁÖ ³ëµ¿ÀÚ¿Í ³óÃÌ ³ëµ¿ÀÚÀÇ À̵¿ÀÌ Á¦Çѵǰí, °Ý¸®, ¿©Çà Á¦ÇÑ, ¼öÃâÀÔ È°µ¿ÀÌ ±¤¹üÀ§ÇÏ°Ô ÁߴܵǸ鼭 ½É°¢ÇÑ ³ëµ¿·Â ºÎÁ·ÀÌ ¹ß»ýÇÏ¿© Àü ¼¼°è ³óÀÛ¹° »ý»ê¿¡ ¾Ç¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. °Å·¡¿¡ ºÒ¸®ÇÑ ¿µÇâÀ» ¹ÌÃÄ ³ó±â°è ÆÇ¸Å°¡ °¨¼ÒÇß½À´Ï´Ù. ³ó±â°è »ç¾÷ÀÇ À¯Åë¸ÁÀÌ ¿µÇâÀ» ¹Þ¾Æ Áö´ÉÇü ³ó±â°èÀÇ ÆÇ¸Å¿¡ ÁöÀåÀ» ÃÊ·¡Çß½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ÀΰøÁö´É ºÐ¾ß°¡ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î Àü¸Á

ÀΰøÁö´É ºÎ¹®Àº AI, Ŭ¶ó¿ìµå, IoT, ¾Ö³Î¸®Æ½½º¸¦ Ȱ¿ëÇÑ ³ó¾÷ ÀåºñÀÇ ±Þ¼ÓÇÑ ¹ßÀüÀ¸·Î ÀÎÇØ ¼ºÀå¿¡ À¯¸®ÇÒ °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù. ±â¾÷µéÀº ³¯¾¾, Åä¾ç »óÅÂ, ÀÛ¹° °Ç°­, ÀâÃÊ ¹× ÇØÃæÀ» ½Äº°ÇÏ´Â ÃÖ÷´Ü AI Áö¿ø ½Ã½ºÅÛÀ» °³¹ßÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, AI ±â¹Ý µµ±¸ÀÎ Plantix´Â µ¶ÀÏ¿¡ º»»ç¸¦ µÐ ±â¼ú ±â¾÷ PEAT°¡ °³¹ßÇß½À´Ï´Ù. ÀÌ ¼ÒÇÁÆ®¿þ¾î´Â Åä¾çÀÇ ¿µ¾ç ºÎÁ·, ÇØÃæ ¹× Áúº´À» ½Äº°ÇÏ¿© ³óºÎµéÀÌ ÀûÀýÇÑ ºñ·á¸¦ °ø±ÞÇÏ°í ¼öÈ®·®À» ´Ã¸± ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù. ¸¶Âù°¡Áö·Î AI ±â¹Ý µå·Ð, ·Îº¿, ¾ÛÀÌ ³ó¾÷ ºÐ¾ß¿¡¼­ ±â¼ú Ȱ¿ëÀ» °¡¼ÓÈ­ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ÀÛ¹° °ü¸® ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»ó

ÀÛ¹° °ü¸® ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Åä¾ç ¾ÇÈ­, ¹° ºÎÁ·, ³óÀÛ¹° ÈäÀÛ À§Çè Áõ°¡·Î ÀÎÇØ ¼öÈ®·® ¸ð´ÏÅ͸µ, Åä¾ç ¹× ºñ·á °ü¸®, Áö´ÉÇü °ü°³ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí Àֱ⠶§¹®ÀÔ´Ï´Ù. ÀÌ¿Í ¸¶Âù°¡Áö·Î, ½º¸¶Æ® ³ó¾÷ ±â¼úÀº ³óºÎµéÀÌ ³¯¾¾ ÆÐÅÏÀ» ÀÌÇØÇÏ°í ±âÈÄ¿¡ ÀûÇÕÇÑ ÀÛ¹°À» ¼±ÅÃÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. µû¶ó¼­ ¼¼°è¿¡¼­ °¡Àå °¡¹³¿¡ Ãë¾àÇÑ ±¹°¡µéÀº ÇâÈÄ ¸î ³â ¾È¿¡ ±â»ó ¿¹Ãø ±â¼úÀ» µµÀÔÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ¿ä¼ÒµéÀº µðÁöÅÐ ³ó¾÷ »ê¾÷ÀÇ È®ÀåÀ» °¡¼ÓÈ­ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

¾Æ½Ã¾ÆÅÂÆò¾çÀº Áß±¹ÀÇ ³ó¾÷ »ê¾÷¿¡¼­ ½º¸¶Æ® ³ó¾÷ ±â¼ú »ç¿ëÀÇ Çõ¸íÀûÀÎ º¯È­·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. »ç¹°ÀÎÅͳÝ(IoT) ¼¿·ê·¯ ÀåÄ¡, ±â¾îÅõ½º ¼¾¼­ ±â¹Ý °ü°³ ¹× ½Ãºñ ÀåÄ¡, ¹ëºê À§Ä¡ ¼¾¼­¿Í °°Àº ¼¾¼­ ±â¹Ý ±â¼úÀº ¾ÆÁ÷ ÀÌ ºÐ¾ß¿¡¼­ ºñ±³Àû »õ·Î¿î ±â¼úÀÌÁö¸¸, ³ó¹ÎµéÀÌ º¸´Ù Á¤±³ÇÑ ³ó¾÷ ±â¼úÀ» äÅÃÇÏ°í ±â°èÈ­À²ÀÌ ³ô¾ÆÁü¿¡ µû¶ó ÃÖ±Ù ¼¾¼­¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¿©·¯ ¼Ò½º¿¡¼­ µ¥ÀÌÅ͸¦ ¼öÁýÇϰí À̸¦ ¸Ó½Å·¯´×(ML) ¹× ÀΰøÁö´É(AI) ¾Ë°í¸®Áò¿¡ Á¢¸ñÇÏ¿© Á¤È®ÇÏ°í °³º°È­µÈ ÁöħÀ» Á¦°øÇÏ´Â °í±Þ ±â´ÉÀÌ ÀÌ Áö¿ªÀÇ ½ÃÀå ¼ºÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª

ºÏ¹Ì Áö¿ªÀº ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ºÏ¹Ì°¡ µðÁöÅÐ ³ó¾÷ ¼¼°è ½ÃÀåÀ» Àå¾ÇÇϰí ÀÖ´Â ÁÖ¿ä ÀÌÀ¯´Â Á¤ºÎ°¡ Ãֽгó¾÷ ±â¼úÀ» µµÀÔÇϱâ À§ÇÑ Á¤Ã¥À» °­È­Çϰí ÀÎÇÁ¶ó°¡ Àß ±¸ÃàµÇ¾î Àֱ⠶§¹®ÀÔ´Ï´Ù. ¿¹Ãø ±â°£ µ¿¾È ÁÖ¿ä ±â¾÷ÀÇ Á¸Àç´Â ¶ÇÇÑ ÀÌ Áö¿ªÀÇ µðÁöÅÐ ³ó¾÷ ½ÃÀåÀÇ ¹ø¿µÀ» ÃËÁøÇÒ °ÍÀÔ´Ï´Ù. µû¶ó¼­ ±â¼úÀûÀ¸·Î Áøº¸ µÈ ³ó¾÷ ÀåºñÀÇ °¡¿ë¼º Áõ°¡¿Í ÷´Ü ±â¼ú ±â¾÷ Çü¼º¿¡ ´ëÇÑ Á¤ºÎ Áö¿ø Áõ°¡´Â ºÏ¹Ì Áö¿ªÀÇ µðÁöÅÐ ³ó¾÷ »ê¾÷À» ÁÖµµÇϰí ÀÖ½À´Ï´Ù.

¹«·á ¸ÂÃãÇü ¼­ºñ½º:

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´¿¡°Ô´Â ´ÙÀ½ Áß ÇϳªÀÇ ¹«·á ¸ÂÃãÈ­ ¿É¼ÇÀ» Á¦°øÇÕ´Ï´Ù:

  • ±â¾÷ ÇÁ·ÎÇÊ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀûÀÎ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤ ¹× ¿¹Ãø, CAGR(Âü°í: Ÿ´ç¼º °ËÅä¿¡ µû¸¥)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • ÁÖ¿ä ¿ä¾à
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù¹ý
  • Á¶»ç ¼Ò½º
    • 1Â÷ Á¶»ç Á¤º¸ Ãâó
    • 2Â÷ Á¶»ç Á¤º¸ Ãâó
    • °¡Á¤

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ±â¼ú ºÐ¼®
  • ¾ÖÇø®ÄÉÀÌ¼Ç ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ±¸¸ÅÀÚÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü¿©¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷ °£ÀÇ °æÀï °ü°è

Á¦5Àå µðÁöÅÐ ³ó¾÷ ¼¼°è ½ÃÀå : À¯Çüº°

  • ¼ÒÇÁÆ®¿þ¾î
    • ¿ÂÇÁ·¹¹Ì½º
    • ¿ÂŬ¶ó¿ìµå
    • AI¡¤µ¥ÀÌÅÍ ºÐ¼®
  • ¼­ºñ½º
    • ¸Å´ÏÁöµå ¼­ºñ½º
    • ¾î½Ã½ºÅÏÆ®¡¤ÇÁ·ÎÆä¼Å³Î¡¤¼­ºñ½º
    • Ä¿³ØÆ¼ºñƼ ¼­ºñ½º
    • ½Ã½ºÅÛ ÅëÇÕ&ÄÁ¼³ÆÃ
    • À¯Áöº¸¼ö&¼­Æ÷Æ® ¼­ºñ½º
  • Çϵå¿þ¾î
    • ÀÚµ¿È­&ÄÁÆ®·Ñ ½Ã½ºÅÛ
      • °ü°³ ÄÁÆ®·Ñ·¯
      • µå·Ð/¹«ÀÎÇ×°ø±â(UAV)
      • ¼öÈ®±â&Æ÷¿ö´õ
      • ÀüÁö±¸ ÃøÀ§ ½Ã½ºÅÛ(GPS)/ÀüÁö±¸ Ç×¹ý À§¼º ½Ã½ºÅÛ(GNSS)
      • LED Àç¹è ¶óÀÌÆ®
      • °¡ÀÌ´ø½º&½ºÆ¼¾î¸µ ½Ã½ºÅÛ
      • Ç÷οì&¾ÖÇø®ÄÉÀÌ¼Ç Á¦¾îÀåÄ¡
      • µð½ºÇ÷¹ÀÌ
      • HVAC ½Ã½ºÅÛ
      • ·Îº¿°øÇÐ Çϵå¿þ¾î
      • ÇÚµåÇïµå¡¤¸ð¹ÙÀÏ ±â±â/ÇÚµåÇïµå¡¤ÄÄÇ»ÅÍ
      • ±âŸ ÀÚµ¿È­&Á¦¾î ½Ã½ºÅÛ
    • ¼¾½Ì&¸ð´ÏÅ͸µ¡¤µð¹ÙÀ̽º
      • ±âÈÄ ¼¾¼­
      • ¹°¼¾¼­
      • Åä¾ç ¼¾¼­
      • Àü±â ÀüµµÀ²(EC) ¼¾¼­
      • ¿Âµµ¡¤È¯°æ ¸ð´ÏÅ͸µ ¼¾¼­
      • ½º¸¶Æ® ¿Â½Ç¿ë ¼¾¼­
    • ±âŸ ¼¾½Ì&¸ð´ÏÅ͸µ¡¤µð¹ÙÀ̽º
  • ±âŸ À¯Çü

Á¦6Àå µðÁöÅÐ ³ó¾÷ ¼¼°è ½ÃÀå : ±â¼úº°

  • ÀÛ¹° ¸ð´ÏÅ͸µ
    • °¡ÀÌ´ø½º ½Ã½ºÅÛ
    • º¯·® »ìÆ÷ ±â¼ú
    • ¿ø°ÝŽ»ç
  • ÀΰøÁö´É
  • Á¤¹Ð ³ó¾÷
  • ÁÖº¯ ±â¼ú
    • ¾Û
    • Ç÷§Æû
  • ÄÚ¾î Å×Å©³î·¯Áö
    • ·Îº¸Æ½½º
    • µå·Ð
    • ÀÚµ¿È­
  • ±âŸ ±â¼ú

Á¦7Àå µðÁöÅÐ ³ó¾÷ ¼¼°è ½ÃÀå : ¿ÀÆÛ·¹À̼Ǻ°

  • ¸ð´ÏÅ͸µ&½ºÄ«¿ìÆÃ
  • ¸¶ÄÉÆÃ&¼ö¿ä âÃâ
  • ³ó»çÀϰú ±ÞÀÌ
    • Á¤¹Ð µ¿¹° »çÀ°¡¤±ÞÀÌ
    • Á¤¹Ð ¼ö»ê¾ç½Ä
    • Á¤¹Ð ³ó¾÷
    • ½º¸¶Æ® ¿Â½Ç
    • Á¤¹Ð ÀÓ¾÷
  • ±âŸ ¾÷¹«

Á¦8Àå µðÁöÅÐ ³ó¾÷ ¼¼°è ½ÃÀå : ±â¾÷ À¯Çüº°

  • Tier 1-55
  • Tier 2-20
  • Tier 3-25

Á¦9Àå µðÁöÅÐ ³ó¾÷ ¼¼°è ½ÃÀå : ¿ëµµº°

  • Åä¾ç ¸ð´ÏÅ͸µ
  • Æ÷Àå ¸ÅÇÎ
  • ¼öÈ®·® ¸ð´ÏÅ͸µ
  • °¡º¯ ·¹ÀÌÆ® ¾ÖÇø®ÄÉÀ̼Ç
  • ÀÛ¹° ½ºÄ«¿ìÆÃ
  • µå·Ð ºÐ¼®
  • ³óÀå Àç°í °ü¸®
  • ÀÛ¹° °ü¸®
  • Àλç°ü¸®
  • À繫 °ü¸®
  • ±âÈÄ ÃßÀû°ú ¿¹Ãø
  • ±âŸ ¿ëµµ

Á¦10Àå µðÁöÅÐ ³ó¾÷ ¼¼°è ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦11Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Á¦ÈÞ, ÇÕÀÛÅõÀÚ
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° Ãâ½Ã
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦12Àå ±â¾÷ °³¿ä

  • IBM Corporation
  • Accenture
  • CISCO Systems, Inc
  • Trimble INC.
  • Hexagon AB
  • Bayer Cropscience AG
  • Vodafone Group PLC.
  • Deere & Company
  • DeLaval
  • Raven Industries
  • PrecisionHawk
  • Agricultural Consulting Services
  • Eurofins Scientific
  • Epicor Software Corporation
  • Gamaya
  • Arable
  • AKVA Group
  • TELUS Agriculture
ksm 23.09.19

According to Stratistics MRC, the Global Digital Agriculture Market is accounted for $18.11 billion in 2023 and is expected to reach $41.30 billion by 2030 growing at a CAGR of 12.5% during the forecast period. In order to monitor the growth of crops in real time, farmers are using digital agriculture tools, such as sensors that are placed on the fields and record the temperature and soil quality, computer programmes like Climate Field view, a tool designed to produce farming maps and yield maps, and other similar programmes. By enabling access to training, financial services, and legal services, the use of digital technology in agriculture promotes the exchange of information between stakeholders and facilitates the building of strategic alliances between suppliers and employees.

According to the FAO data, the yield for major cereal crops like rice, wheat, barley, corn, and other grains reduced considerably from 41,079 hg/ha in 2019 to 40,708 hg/ha in 2020 for wheat; a similar reduced trend for barley and other coarse grains was observed.

Market Dynamics:

Driver:

Pressure to increase productivity and enhance crop health

Farmers are under continual pressure to produce more food and animal feed while using fewer pesticides. Less energy and labour must also be used, and environmental land and water management must be improved. Increasing agricultural production is under pressure as a result of the population's fast growth and the resulting difficulty in feeding the rising population. All of these needs may be satisfied by using Internet of Things (IoT) equipment and software like precision farming. Thus, the usage of precision farming tools like MapShots, AgDNA, AgroSense, and others will aid in boosting crop yield, improve soil quality, and stimulate global demand for digital agriculture.

Restraint:

High initial cost for autonomous farming equipments

Automated agricultural equipment is substantially more expensive than conventional farming equipment. Similar to how high maintenance costs for modern cars limit the use of smart digital agricultural techniques by small farms. The cost of maintaining these vehicles' cameras, sensors, software, and hardware restrains market expansion. It is important for farmers to invest in automated and technologically advanced vehicles to boost agricultural output and earnings, but it is challenging for them to make a larger initial investment. Farmers in nations like India, Brazil, and China have challenges due to the high initial cost of smart agricultural technologies.

Opportunity:

Increased use of AI and IoT technologies

Artificial intelligence and machine learning are being quickly incorporated into farming equipment and field practises. With its ability to improve productivity and aid in learning, understanding, and responding to various circumstances, cognitive computing is gaining popularity across the industry. The solutions as a service, such chatbots and other conversational platforms, assist the farmers in keeping up with the most recent technological advancements. Similar to this, IoT solutions support the effective use of natural resources like water, power, and others. The IoT devices employ a variety of sensors, including light, humidity, temperature, and others, to track the health of the crops and the wetness of the soil.

Threat:

Escalating concerns about data management

Making wise judgements about farm management and enhancing farm operations depend on data management. The information is gathered in a raw format, processed according to context, relevance, and priority, and then presented in a way that allows for decision-making. The management of data is a significant issue that farmers and other market participants in digital agriculture must deal with. The information gathered is essential because it enables farmers and other participants in the value chain to choose wisely. Many farmers and producers are not aware of how data may be used effectively for decision-making. Consequently, it is crucial to give farmers and producers the right data management tools and strategies.

COVID-19 Impact:

Due to the COVID-19 pandemic's widespread lockdown, travel restrictions, and suspension of import and export activities due to the restricted movement of migrant workers and rural labourers during the pandemic, there was a severe labour shortage that adversely affected crop production around the world. Sales of agricultural equipment have decreased as a result of the COVID-19 epidemic due to constrained shipments and unfavourable transactional consequences. The distribution network for the agricultural equipment business was impacted, which hindered the sales of intelligent farming equipment.

The artificial intelligence segment is expected to be the largest during the forecast period

The artificial intelligence segment is estimated to have a lucrative growth, due to the expansion driven by the quick development of agricultural equipment using AI, cloud, IoT, and analytics. Businesses are developing cutting-edge AI-enabled systems to identify the weather, soil health, crop health, weeds, and pests. For instance, Plantix, an AI-based tool, was created by PEAT, a technology firm with headquarters in Germany. This software helps farmers apply the proper fertilisers to increase yield by identifying nutrient deficits, pests, and illnesses in the soil. Similarly, it is projected that AI-based drones, robots, and apps would accelerate the use of technology in farming.

The crop management segment is expected to have the highest CAGR during the forecast period

The crop management segment is anticipated to witness the highest CAGR growth during the forecast period, due to there is a requirement for yield monitoring, soil and fertiliser management, and intelligent irrigation systems due to increasing soil degradation, water scarcity, and rising crop failure risk. Similar to this, smart farming technologies assist farmers in understanding weather patterns so they can choose the appropriate crops for the climate. The most drought-prone nations in the world are thus anticipated to implement weather forecasting technologies in the upcoming years. These elements are anticipated to accelerate the expansion of the digital farming industry.

Region with largest share:

Asia Pacific is projected to hold the largest market share during the forecast period owing to a revolutionary shift in the use of smart farming techniques in the Chinese agriculture industry. Although sensor-based technologies, such as Internet of Things (IoT) cellular devices, gear tooth sensor-based irrigation and fertilisation equipment, and valve position sensors, among others, are still relatively new in the field, the nation has recently seen a rise in the demand for sensors, largely as a result of the farmers' adoption of more sophisticated agricultural techniques and a higher rate of mechanisation. The sophisticated features gather data from multiple sources, put it into machine learning (ML) and artificial intelligence (AI) algorithms, and then deliver precise, individualised guidance are propelling the growth of the market in this region.

Region with highest CAGR:

North America is projected to have the highest CAGR over the forecast period, owing to the government's increased measures for the adoption of contemporary agricultural technology and its established infrastructure are the main reasons why North America dominates the global market for digital agriculture. During the projection period, the presence of significant important players will also help the region's digital agriculture market flourish. Therefore, a growth in the availability of technologically advanced agricultural equipment and an increase in government support for the formation of tech enterprises are what are propelling the digital agriculture industry in the North American area.

Key players in the market:

Some of the key players profiled in the Digital Agriculture Market include: IBM Corporation, Accenture, CISCO Systems, Inc, Trimble INC., Hexagon AB, Bayer Cropscience AG, Vodafone Group PLC., Deere & Company, DeLaval, Raven Industries, PrecisionHawk, Agricultural Consulting Services, Eurofins Scientific, Epicor Software Corporation, Gamaya, Arable, AKVA Group and TELUS Agriculture

Key Developments:

In June 2021, Deere & Company (US) partnered with Mobile Track Solution (US) to provide digital solutions for precision farming. Under this, Mobile Track Solutions provided John Deere & Company with greater than 27 cubic yard capacity towed scrapers for its distribution channels. This will help improve earthmoving efficiency and precision in large-scale applications.

In December 2020, IBM Services and the German Society for International Cooperation (GIZ) launched a three-stage support for the Digital4Agriculture Initiative (D4Ag) for small-scale agriculture ventures or start-ups in Africa to predict the weather information and services accessible to improve their crop production.

In April 2020, Trimble partnered with HORSCH (Germany) to develop automation solutions for the agriculture industry. HORSCH and Trimble, in collaboration, will focus on developing solutions, including autonomous machines and workflow management systems that improve farm productivity.

Types Covered:

  • Software
  • Service
  • Hardware
  • Other Types

Technologies Covered:

  • Crop Monitoring
  • Artificial Intelligence
  • Precision Farming
  • Peripheral Technologies
  • Core Technologies
  • Other Technologies

Operations Covered:

  • Monitoring & Scouting
  • Marketing & Demand Generation
  • Farming & Feeding
  • Other Operations

Company Types Covered:

  • Tier 1-55 %
  • Tier 2-20%
  • Tier 3-25%

Applications Covered:

  • Soil Monitoring
  • Field Mapping
  • Yield Monitoring
  • Variable Rate Application
  • Crop Scouting
  • Drone Analytics
  • Farm Inventory Management
  • Crop Management
  • Personnel Management
  • Financial Management
  • Weather Tracking & Forecasting
  • Other Applications

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2021, 2022, 2023, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Digital Agriculture Market, By Type

  • 5.1 Introduction
  • 5.2 Software
    • 5.2.1 On-Premises
    • 5.2.2 On-Cloud
    • 5.2.3 AI & Data Analytics
  • 5.3 Service
    • 5.3.1 Managed Services
    • 5.3.2 Assistant Professional Services
    • 5.3.3 Connectivity Services
    • 5.3.4 System Integration & Consulting
    • 5.3.5 Maintenance & Support Services
  • 5.4 Hardware
    • 5.4.1 Automation & Control Systems
      • 5.4.1.1 Irrigation Controllers
      • 5.4.1.2 Drones/ Unmanned Aerial Vehicle (UAVs)
      • 5.4.1.3 Harvesters & Forwarders
      • 5.4.1.4 Global Positioning Systems (GPS)/ Global Navigation Satellite System (GNSS)
      • 5.4.1.5 LED Grow Lights
      • 5.4.1.6 Guidance & Steering Systems
      • 5.4.1.7 Flow & Application Control Devices
      • 5.4.1.8 Displays
      • 5.4.1.9 HVAC Systems
      • 5.4.1.10 Robotics Hardware
      • 5.4.1.11 Handheld Mobile Devices/Handheld Computers
      • 5.4.1.12 Other Automation & Control Systems
    • 5.4.2 Sensing & Monitoring Device
      • 5.4.2.1 Climate Sensors
      • 5.4.2.2 Water Sensors
      • 5.4.2.3 Soil Sensors
      • 5.4.2.4 Electrical Conductivity (EC) Sensors
      • 5.4.2.5 Temperature & Environmental Monitoring Sensors
      • 5.4.2.6 Sensors For Smart Greenhouse
    • 5.4.3 Other Sensing & Monitoring Devices
  • 5.5 Other Types

6 Global Digital Agriculture Market, By Technology

  • 6.1 Introduction
  • 6.2 Crop Monitoring
    • 6.2.1 Guidance System
    • 6.2.2 Variable Rate Technology
    • 6.2.3 Remote Sensing
  • 6.3 Artificial Intelligence
  • 6.4 Precision Farming
  • 6.5 Peripheral Technologies
    • 6.5.1 Apps
    • 6.5.2 Platforms
  • 6.6 Core Technologies
    • 6.6.1 Robotics
    • 6.6.2 Drones
    • 6.6.3 Automation
  • 6.7 Other Technologies

7 Global Digital Agriculture Market, By Operation

  • 7.1 Introduction
  • 7.2 Monitoring & Scouting
  • 7.3 Marketing & Demand Generation
  • 7.4 Farming & Feeding
    • 7.4.1 Precision Animal Rearing & Feeding
    • 7.4.2 Precision Aquaculture
    • 7.4.3 Precision Agriculture
    • 7.4.4 Smart Greenhouse
    • 7.4.5 Precision Forestry
  • 7.5 Other Operations

8 Global Digital Agriculture Market, By Company Type

  • 8.1 Introduction
  • 8.2 Tier 1-55 %
  • 8.3 Tier 2-20%
  • 8.4 Tier 3-25%

9 Global Digital Agriculture Market, By Application

  • 9.1 Introduction
  • 9.2 Soil Monitoring
  • 9.3 Field Mapping
  • 9.4 Yield Monitoring
  • 9.5 Variable Rate Application
  • 9.6 Crop Scouting
  • 9.7 Drone Analytics
  • 9.8 Farm Inventory Management
  • 9.9 Crop Management
  • 9.10 Personnel Management
  • 9.11 Financial Management
  • 9.12 Weather Tracking & Forecasting
  • 9.13 Other Applications

10 Global Digital Agriculture Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 IBM Corporation
  • 12.2 Accenture
  • 12.3 CISCO Systems, Inc
  • 12.4 Trimble INC.
  • 12.5 Hexagon AB
  • 12.6 Bayer Cropscience AG
  • 12.7 Vodafone Group PLC.
  • 12.8 Deere & Company
  • 12.9 DeLaval
  • 12.10 Raven Industries
  • 12.11 PrecisionHawk
  • 12.12 Agricultural Consulting Services
  • 12.13 Eurofins Scientific
  • 12.14 Epicor Software Corporation
  • 12.15 Gamaya
  • 12.16 Arable
  • 12.17 AKVA Group
  • 12.18 TELUS Agriculture
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦