![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1324226
¼¼°èÀÇ ¸ðµâ·¯ ·Îº¿ ½ÃÀå ¿¹Ãø(-2030³â) : À¯Çüº°, ·Îº¿ À¯Çüº°, ºÎǰº°, ¼³°èº°, ±¸¼ºº°, ÃÖ´ë ÀûÀç·®º°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®Modular Robotics Market Forecasts to 2030 - Global Analysis By Type, Robot Type, Component, Design, Configuration, Payload Capacity, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¼¼°è ¸ðµâ·¯ ·Îº¿ ½ÃÀåÀº 2023³â 63¾ï 3,000¸¸ ´Þ·¯¿¡ À̸£°í, ¿¹Ãø ±â°£ µ¿¾È 14%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î È®´ëµÇ¾î 2030³â 158¾ï 6,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¸ðµâ·¯ ·Îº¿ ½Ã½ºÅÛÀº ¼·Î ¹°¸®ÀûÀ¸·Î ¿¬°áµÈ ÀÚÀ²ÀûÀÌ°í µ¶¸³ÀûÀÎ ÇÁ·Î±×·¡¹ÖÀÌ °¡´ÉÇÑ ´Ù¼öÀÇ ¸ðµâ·Î ±¸¼ºµÇ¾î ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ·Îº¿À» À籸¼º °¡´ÉÇÑ ·Îº¿À̶ó°í Çϸç, ȯ°æ ¿äÀο¡ µû¶ó ±¸¼ºÀ» º¯°æÇÒ ¼ö ÀÖ½À´Ï´Ù. À§Çè Áö¿ª Á¢±Ù, ¿ìÁÖ Å½»ç, ¼ö»ö ¹× ±¸Á¶, ÆÄÀÌÇÁ ¹× ±³·® °Ë»ç, Á¼Àº °ø°£ ¼³Ä¡¿Í °°Àº Áß¿äÇÑ ÀÀ¿ë ºÐ¾ß¿¡´Â ÀϹÝÀûÀ¸·Î ¸ðµâ·¯ ·Îº¿ÀÌ »ç¿ëµË´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº °ß°í¼º, ÇüÅ ÀûÀÀ¼º, ÀÚ±â ȸº¹¼º µî ¸¹Àº ÀåÁ¡À¸·Î ÀÎÇØ ½ÃÀå¿¡¼ Àα⸦ ²ø°í ÀÖ½À´Ï´Ù.
IFR(±¹Á¦·Îº¿¿¬¸Í, °¢±¹ ·Îº¿ÇùȸÀÇ ±¹Á¦ ÃѰý±â±¸)ÀÇ 2016³â Åë°è¿¡ µû¸£¸é, ¼³Ä¡ ´ë¼ö´Â ¾à 3¸¸ 1,500´ë·Î ¹Ì±¹Àº 2015³â ´ëºñ 15% Áõ°¡ÇÑ »ê¾÷¿ë ·Îº¿ÀÇ »ç»ó ÃÖ°íÄ¡¸¦ ±â·ÏÇß½À´Ï´Ù.
È®À强, »ç¿ëÀÚ Á¤ÀÇ, À¯¿¬¼º, »óÈ£ ¿î¿ë¼º, ºñ¿ë È¿À²¼º µî ¸ðµâ·¯ ·Îº¿ÀÌ ´Ù¾çÇÑ »ê¾÷¿¡ °¡Á®´ÙÁÖ´Â ¿©·¯ °¡Áö ÀåÁ¡À¸·Î ÀÎÇØ ¼¼°è ½ÃÀå¿¡¼ ¸ðµâ·¯ ·Îº¿ÀÌ Å©°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ¸ðµâ·¯ ·Îº¿Àº ½±°Ô È®Àå, Ä¿½ºÅ͸¶ÀÌ¡ ¹× À籸¼ºÇÏ¿© ´õ ³ôÀº Á¤È®µµ¿Í È¿À²¼ºÀ¸·Î ÀÛ¾÷À» ¼öÇàÇÒ ¼ö ÀÖ¾î º¯È¹«½ÖÇÑ È¯°æ°ú ´Ù¾çÇÑ ÀÛ¾÷¿¡ ÀûÇÕÇÕ´Ï´Ù. ¶ÇÇÑ ´Ù¸¥ ·Îº¿ ½Ã½ºÅÛ ¹× ±â¼ú°úÀÇ ÅëÇÕÀ» ÅëÇØ ´Ù¾çÇÑ ÀÛ¾÷ ¹× ÀÛ¾÷¿¡ ÀûÀÀÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ Àüü ½Ã½ºÅÛÀ» ±³Ã¼ÇÏ´Â ´ë½Å Çʿ信 µû¶ó °³º° ¸ðµâÀ» ¾÷±×·¹À̵åÇϰųª ±³Ã¼ÇÒ ¼ö Àֱ⠶§¹®¿¡ ¸ðµâ½Ä ¼³°è´Â »ý»ê, À¯Áöº¸¼ö ¹× ¼ö¸® ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¸ðµç ¿äÀεéÀÌ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù.
´ÙÀç´Ù´ÉÇϰí ÀûÀÀ¼ºÀÌ ³ôÀº ±¸¼º ¿ä¼Ò¸¦ ¸¸µå´Â °Í°ú ¸ðµâ·¯ ·Îº¿ÀÇ Çùµ¿ ¹× ÀûÀÀÇü µ¿ÀÛÀ» À§ÇÑ ¾Ë°í¸®ÁòÀ» ¸¸µå´Â °ÍÀº ¼¼°è ¸ðµâ·¯ ·Îº¿ ½ÃÀåÀÌ Á÷¸éÇÑ µÎ °¡Áö °úÁ¦ÀÔ´Ï´Ù. ½Å·ÚÇÒ ¼ö ÀÖ´Â Åë½Å ½Ã½ºÅÛ ±¸Ãà°ú »óÈ£ ¿î¿ë¼ºÀ» À§ÇÑ ÀÎÅÍÆäÀ̽º ¹× ÇÁ·ÎÅäÄÝÀÇ Ç¥ÁØÈ´Â ¶Ç ´Ù¸¥ ¾î·Á¿òÀ» ¾ß±âÇÕ´Ï´Ù. ¶ÇÇÑ, ¸ðµâ·¯ ·Îº¿Àº ±× º¹À⼺À¸·Î ÀÎÇØ ½ÇÁ¦ ȯ°æ¿¡¼ÀÇ µ¿ÀÛÀ» ¿¹ÃøÇÏ±â ¾î·Æ±â ¶§¹®¿¡ È¿°úÀûÀÎ Å×½ºÆ® ¹× Æò°¡ ±â¼úÀÌ ÇÊ¿äÇÕ´Ï´Ù.
ÀÚµ¿Â÷ »ê¾÷Àº ¸ðµâ·¯ ·Îº¿ÀÌ µîÀåÇÑ ÀÌ·¡·Î ÀÌ·¯ÇÑ ·Îº¿ ½Ã½ºÅÛÀ» ¸¹ÀÌ È°¿ëÇϰí ÀÖ½À´Ï´Ù. ÀÌ »ê¾÷¿¡¼ ¸ðµâ·¯ ·Îº¿ÀÇ »õ·Î¿î ±â´ÉÀº º¯ÈÇÏ´Â ¼ö¿ä¿¡ º¸´Ù È¿°úÀûÀÌ°í °æÁ¦ÀûÀ¸·Î ´ëÀÀÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ¸ÅÀå, ÇÁ·¹½º °øÀå, µµÀå °øÀå¿¡¼ÀÇ ÀÛ¾÷ºÎÅÍ Ã¢°í¿¡¼ÀÇ ÃÖÁ¾ Á¶¸³ ¹× À¯Åë¿¡ À̸£±â±îÁö Àüü »ý»ê üÀÎÀº ¸ðµâ·¯ ·Îº¿ ½Ã½ºÅÛÀ» ÅëÇØ Å©°Ô °³¼±µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ, ¸ðµâ·¯ ·Îº¿À¸·Î ÀÎÇØ »õ·Î¿î ¼öÁØÀÇ ¼Óµµ, Á¤È®¼º, À¯¿¬¼º, ¹Îø¼ºÀÌ °¡´ÉÇØÁü¿¡ µû¶ó Á¦Á¶ °øÁ¤Àº ÀÌÁ¦ ´õ ³ôÀº ¼öÁØÀÇ »ý»ê¼º, ǰÁú, °æÀï·ÂÀ» °®Ãß°Ô µÇ¾ú½À´Ï´Ù.
¸ðµâ·¯ ·Îº¿ÀÇ ¼³°è ¹× ÅëÇÕÀÇ º¹À⼺À¸·Î ÀÎÇØ Á¦Á¶ ºñ¿ëÀÌ ±ÞÁõÇÏ¿© ½ÃÀå È®´ëÀÇ ÁÖ¿ä Àå¾Ö¹° Áß Çϳª°¡ µÉ ¼ö ÀÖ½À´Ï´Ù. ´õ ³ªÀº ÀÛ¾÷ ÃÖÀûȸ¦ º¸ÀåÇϱâ À§ÇØ ÀÌ·¯ÇÑ ·Îº¿ÀÇ Çϵå¿þ¾î ¹× ¼ÒÇÁÆ®¿þ¾î ¼³°è´Â ¶§¶§·Î ÃÖ÷´Ü ±â¼ú°ú ÅëÇյǾî¾ß Çϸç, ÀÌ´Â Á¦Á¶¾÷ü¿¡°Ô ºñ½Ñ ºÎǰ ºñ¿ëÀ» ÃÊ·¡ÇÕ´Ï´Ù. ¶ÇÇÑ, Á¤È®¼º, °ß°í¼º, ±â´É¼º°ú °°Àº Ư¼ºÀ» ÇÔ²² °®Ãá ·Îº¿À» °³¹ßÇÏ´Â °ÍÀº º¹ÀâÇϱ⠶§¹®¿¡ ÀÚ°ÝÀ» °®Ãá Àü¹® Áö½ÄÀ» »ç¿ëÇØ¾ß ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀÎÀ¸·Î ÀÎÇØ ±¸¸Å ºñ¿ëÀÌ »ó½ÂÇϰí Áß¼Ò±â¾÷ÀÇ µµÀÔÀÌ ÁÙ¾îµé¾î ½ÃÀå È®´ë°¡ Á¦Çѵǰí ÀÖ½À´Ï´Ù.
Äڷγª19´Â ¸ðµâ·¯ ·Îº¿ »ê¾÷¿¡µµ ¿µÇâÀ» ¹ÌÃÄ ¸Å´Ïǽ·¹ÀÌÅÍ, ÄÁÆ®·Ñ·¯, µå¶óÀÌºê ¸ðµâ µî ºÎǰ °ø±ÞÀÌ Áߴܵǰí ÀÖ½À´Ï´Ù. ÀÌ·Î ÀÎÇØ ¸ðµâ·¯ ·Îº¿À» Á¦Á¶ÇÏ´Â °øÀå¿¡¼´Â »ý»êÀÌ Áß´ÜµÇ¾î ¿ÏÁ¦Ç° ³³Ç°ÀÌ Áߴܵǰí ÀÖ½À´Ï´Ù. ƯÈ÷ ¹ÙÀÌ·¯½º È®»êÀ» ¸·±â À§ÇØ ±¤¹üÀ§ÇÑ ºÀ¼â Á¶Ä¡°¡ ÃëÇØÁö¸é¼ ÃÖÁ¾ »ç¿ëÀÚ ºÎ¹®µµ ½É°¢ÇÑ ¿µÇâÀ» ¹Þ¾Æ ÀÌ ±â°£ µ¿¾È ¸ðµâ·¯ ·Îº¿ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ °¨¼ÒÇß½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ÀÚµ¿Â÷ »ê¾÷Àº ½ÃÀå¿¡¼ °¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÚµ¿Â÷ ºÐ¾ß¿¡¼´Â ¸ðµâ·¯ ·Îº¿ÀÇ »õ·Î¿î ±â´ÉÀÌ º¯ÈÇÏ´Â ¼ö¿ä¿¡ º¸´Ù È¿°úÀûÀÌ°í °æÁ¦ÀûÀ¸·Î ´ëÀÀÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¸ðµâ·¯ ·Îº¿ÀÌ °¡´ÉÇÏ°Ô ÇÏ´Â »õ·Î¿î ¼öÁØÀÇ ¹ÝÀÀ¼º, À¯¿¬¼º ¹× ¹Îø¼ºÀº Á¦Á¶ °øÁ¤ÀÇ °æÀï·Â, ǰÁú ¹× »ý»ê¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. ÀÚµ¿Â÷ OEM°ú Á¦Á¶¾÷üµéÀº ƯÈ÷ °³¹ßµµ»ó±¹ÀÇ ÀÚµ¿Â÷ ¼ö¿ä Áõ°¡¿¡ ¿µÇâÀ» ¹Þ¾Æ »ý»ê·®À» ´Ã¸®°í ¼ÒºñÀÚ ¼ö¿ä¸¦ ÃæÁ·½Ã۱â À§ÇÑ ¹æ¹ýÀ¸·Î ÀÚµ¿È¸¦ ¼±ÅÃÇß½À´Ï´Ù. ÀÌ¿¡ µû¶ó ÀÚµ¿Â÷ »ê¾÷¿¡¼ ¸ðµâ·¯ ·Îº¿¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È Çùµ¿ ¸ðµâ·¯ ·Îº¿ ºÎ¹®Àº °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ´Â ÀÌ·¯ÇÑ ·Îº¿ÀÌ Á¦°øÇÏ´Â ´Ù¾çÇÑ ÀåÁ¡À¸·Î ÀÎÇØ ÀüÀÚ ¹× ÀÚµ¿Â÷ »ê¾÷¿¡¼ ±¤¹üÀ§ÇÏ°Ô Ã¤Åõǰí Àֱ⠶§¹®ÀÎ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. Çùµ¿ ¸ðµâ·¯ ·Îº¿ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä´Â ±×¸®ÆÛ, ÄÁÆ®·Ñ·¯ ¹× ´Ù¾çÇÑ ·Îº¿ ¸ðµâ°ú °°Àº ÃÖÁ¾ ÀÌÆåÅÍ¿Í °ü·ÃµÈ ¸Ó½Å ºñÀü ¹× À½¼º Àνİú °°Àº ºÐ¾ßÀÇ Áß¿äÇÑ °³¹ß ¹× ¹ßÀüÀ¸·Î ÀÎÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù.
À¯¸íÇÑ ÀÚµ¿Â÷ ¹× ÀüÀÚÁ¦Ç° Á¦Á¶¾÷üÀÇ Á¸Àç·Î ÀÎÇØ ¾Æ½Ã¾ÆÅÂÆò¾çÀº ¿¹Ãø ±â°£ µ¿¾È ¸ðµâ·¯ ·Îº¿ ½ÃÀåÀ» µ¶Á¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¸ðµâ·¯ ·Îº¿ ½ÃÀåÀº Áß±¹, ÀϺ», Çѱ¹, Àεµ µî ½ÅÈï±¹ÀÌ ÁÖµµÇϰí ÀÖ½À´Ï´Ù. Áß±¹Àº »ê¾÷ ÀÚµ¿È¿¡ ´ëÇÑ ´ë±Ô¸ð ÅõÀÚ·Î ÀÎÇØ ¸ðµâ·¯ ·Îº¿¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ½ÃÀå¿¡¼ À¯¸®ÇÑ ¼ºÀå ±âȸ¸¦ Á¦°øÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ, ½ÃÀåÀ» À̲ô´Â ¶Ç ´Ù¸¥ Áß¿äÇÑ ¿äÀÎÀº ¾Æ½Ã¾ÆÅÂÆò¾ç Àüü¿¡¼ »ê¾÷ ÀÚµ¿È µµÀÔ·üÀÌ ³ô´Ù´Â Á¡ÀÔ´Ï´Ù.
°íµµÀÇ ÀÚÀ² ·Îº¿ÀÇ º¸±ÞÀ¸·Î ºÏ¹Ì°¡ °¡Àå ³ôÀº CAGR ¼ºÀå·üÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±×¸³ ½Ã½ºÅÛ ¹× °ü·Ã ±â¼úÀÇ ¹ßÀüÀÌ ¼ºÀåÀ» °ßÀÎÇϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ ·Îº¿ ºñÁî´Ï½º ÇÁ·Î¼¼½º¸¦ °³¼±Çϱâ À§ÇØ ÁÖ¿ä ±â¾÷µéÀº ±×¸³ ½Ã½ºÅÛ ¹× °ü·Ã ±â¼úÀ» Á¦°øÇÏ´Â ¸¹Àº ±â¾÷µé°ú Çù·ÂÇÏ´Â µ¥ ÁÖ·ÂÇϰí ÀÖ½À´Ï´Ù. °á°úÀûÀ¸·Î ÀÌ·¯ÇÑ ¿ä¼ÒµéÀº ÀÌ Áö¿ª¿¡¼ ¸ðµâ·¯ ·Îº¿¿¡ ´ëÇÑ ¼ö¿ä¸¦ Áõ°¡½Ãų °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.
According to Stratistics MRC, the Global Modular Robotics Market is accounted for $6.33 billion in 2023 and is expected to reach $15.86 billion by 2030 growing at a CAGR of 14% during the forecast period. Robotic systems that are modular in nature consist of numerous autonomous, independent, and programmable modules that are physically connected to one another. These robots are referred to as reconfigurable robots and are capable of changing their configuration in response to environmental factors. In critical applications like accessing hazardous areas, space exploration, search and rescue, inspecting tubes and bridges, and fitting into small spaces, modular robotics are typically used. These systems are gaining traction in the market owing to their many benefits, which include the potential for robustness, morphological adaptability, and self-repair.
According to statistics from the IFR (International Federation of Robotics, the international umbrella organization of all national robotics associations) in 2016, with about 31,500 installed units, the US recorded an all-time high for industrial robots, a 15 percent increase over 2015.
Due to the many benefits it offers different industries, including scalability, customization, flexibility, interoperability, and cost effectiveness, modular robotics is significantly expanding in the global market. Modular robots are suitable for environments that change quickly or for a variety of tasks because they can be easily scaled, customized, and reconfigured to carry out tasks with greater precision and efficiency. They are adaptable to various operations and tasks thanks to their integration with other robotic systems and technologies. Additionally, because individual modules can be upgraded or replaced as needed rather than having to replace the entire system, modular design can result in cost savings in production, maintenance, and repair. All of these factors are fueling market growth.
Creating versatile and adaptable components and creating algorithms for coordinated and adaptive behavior in modular robots are two challenges facing the global market for modular robotics. The creation of reliable communication systems and the standardization of interfaces and protocols for interoperability present additional difficulties. Additionally, effective testing and evaluation techniques are required for modular robots because it can be challenging to predict how these systems will behave in actual environments due to their complexity.
The automotive industry has heavily utilized these robotic systems since the inception of modular robotics. In this industry, the new capabilities of modular robotics have more effectively and economically responded to changing demands. The entire production chain, from operations in stores, press shops, and paint shops to the final assembly and distribution in warehouses, has been significantly improved by modular robotics systems. Additionally, the manufacturing processes now have higher levels of productivity, quality, and competitiveness due to the new levels of speed, accuracy, flexibility, and agility made possible by modular robotics.
Modular robot design and integration complexity result in high manufacturing costs, which can be seen as one of the main obstacles to the market's expansion. In order to ensure better work optimization, these robots' hardware and software designs occasionally need to be integrated with cutting-edge technologies, which cost the manufacturers money for expensive components. Additionally, the complexity of developing robots that combine features like precision, robustness, functionality, and others necessitates the use of qualified expertise. These factors contribute to an increase in its purchase costs, a decrease in adoption by small and mid-sized businesses which restrict the market's expansion.
The COVID-19 pandemic has had an impact on the modular robotics industry, causing stagnation in the supply of parts like manipulators, controllers, and drive modules. This causes a slowdown in the factories that make modular robots, which causes a halt in the delivery of finished goods. Even the end-user sector has been severely impacted, particularly as a result of the widespread implementation of lockdowns to stop the virus's spread, which has decreased the demand for modular robotic systems during this period.
During the forecast period, the automotive industry is anticipated to hold the largest share of the market. In the automotive sector, the new capabilities of modular robotics have more effectively and economically responded to changing demands. Furthermore, the new levels of responsiveness, flexibility, and agility made possible by modular robotics enhance the competitiveness, quality, and output of manufacturing processes. Automobile OEMs and manufacturers have been influenced by the rising demand for vehicles, particularly from developing nations, to choose automation as a way to boost production and satisfy consumer demand. This has influenced the automotive industry's high demand for modular robots.
Over the forecast period, the collaborative modular robots segment is expected to grow at the highest rate. This can be attributed to the numerous benefits that these robots provide, which have led to their widespread adoption in the electronics and automotive industries. The demand for collaborative modular robotics systems is also being driven by important developments and advancements in areas like machine vision and speech recognition in relation to end-effectors like grippers, controllers, and different robotic modules.
Due to the presence of well-known automotive and electronics manufacturers, the Asia-Pacific region is expected to dominate the modular robotics market during the forecast period. The modular robotics market is dominated by developing nations like China, Japan, South Korea, and India. Due to significant investments in industrial automation, which increase demand for modular robotics, China is anticipated to present lucrative growth opportunities in the market. Furthermore, another significant factor driving the market is the high rate of industrial automation adoption throughout the Asia-Pacific region.
Due to the widespread adoption of advanced and autonomous robots, North America is predicted to register the highest CAGR growth. The growth is being fueled by advances in gripping systems and related technology. To improve their robotics business processes in the region, major players are concentrating on working together with numerous businesses that offer gripping systems and related technology. As a result, these elements will probably increase the demand for modular robotics in this area.
Some of the key players profiled in the Modular Robotics Market include: 3D HUBS B.V., ABB, Acmi S.p.A., Aurotek Corporation, b+m surface systems GmbH, Cassioli Group, Comau S.P.A., DENSO Products and Services Americas, Inc., Durr Group, Fanuc Corporation, igm Robotersysteme AG, John Wiley & Sons, Inc., Kawasaki Heavy Industries, Ltd., Mitsubishi Electric Corporation, Omron Adept Technology, Inc., OTC DAIHEN Inc., Rethink Robotics GmbH, Seiko Epson Corporation, Shibaura Machine Co., Ltd., ST Robotics Limited, Staubli International AG, TM Robotics (Americas) Inc., Unbox Robotics, Universal Robots A/S, Vision Machinery Inc., Yamaha Motor Co. Ltd. and Yaskawa Electric Corporation.
In January 2023, Exotec, a robotics provider, expanded its product portfolio with three modular innovations. The innovations aimed at enabling greater flexibility, versatility, and efficiency in the warehousing industry. The first innovation is the "Skypod 2," which is an autonomous, high-density storage solution that can store up to 50% more products than traditional warehouse storage systems. Exotec's new products are designed to help businesses optimize their warehouse operations and increase their efficiency
In July 2022, Beckhoff showcases its latest modular industrial robot system at Automatica 2022, the ATRO, which features added link modules of different designs and dimensions, giving users the flexibility to meet their automation needs.
In July 2022, Beckhoff Introduces the ATRO Modular Robot. This forthcoming modular, customizable, do-it-yourself robot technology adds new dimensions to how end users, system integrators, and OEMs will think about robotic automation.