![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1324349
¼¼°èÀÇ ¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½ Æ÷Àå ½ÃÀå ¿¹Ãø(-2030³â) : Àç·áº°, À¯Çüº°, ¿ëµµº°, Áö¿ªº° ºÐ¼®Bioplastics Packaging Market Forecasts to 2030 - Global Analysis By Material (Non Biodegradable, Biodegradable and Other Materials), Type, Application and By Geography |
¼¼°èÀÇ ¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½ Æ÷Àå(Bioplastics Packaging) ½ÃÀåÀº 2023³â¿¡ 69¾ï ´Þ·¯¸¦ Â÷ÁöÇßÀ¸¸ç, ¿¹Ãø ±â°£ µ¿¾È CAGR 16.0%·Î ÃßÀÌÇÏ¿© 2030³â¿¡´Â 196¾ï ´Þ·¯¿¡ À̸¦ Àü¸ÁÀÔ´Ï´Ù.
¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½Àº ȯ°æ Ä£ÈÀûÀÎ Æ÷Àå Àç·áÀÌ¸ç ´Ù¾çÇÑ ¹°Ç°ÀÇ ¿î¼Û, º¸È£ ¹× º¸°ü¿¡ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. ¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½Àº À¯Á¦Ç°, ¾ËÄÚ¿Ã(ź»ê, ź»ê ¾øÀ½), °³ÀÎ °ü¸® Á¦Ç°ÀÇ Æ÷Àå ¹× º¸°ü¿¡ ÀÚÁÖ »ç¿ëµË´Ï´Ù. ¹ÙÀÌ¿ÀÆú¸®ºÎÆ¿·» ¾ÆµðÆäÀÌÆ® Å×·¹ÇÁÅ»·¹ÀÌÆ®(PBAT), ¹ÙÀÌ¿ÀÆú¸®¿¡Æ¿·», ¹ÙÀÌ¿ÀÆú¸®¾Æ¹Ìµå(PA), ¹ÙÀÌ¿ÀÆú¸®¿¡Æ¿·»Å×·¹ÇÁÅ»·¹ÀÌÆ®(PET) µîÀÇ ÀüºÐ È¥ÇÕ¹°À» Æ÷ÇÔÇÕ´Ï´Ù. Çʸ§, º´, Ä®Áý, ÆÄ¿ìÄ¡, ¶óº§, Æ®·¹ÀÌ, ÄÅÀº ¸ðµÎ ¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½ ¼ÒÀ縦 »ó¿ëÇÏ´Â °æÁú¡¤¿¬Áú Æ÷ÀåÀÇ ¿¹ÀÔ´Ï´Ù. ¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½ ÆÐŰÁö´Â ±âÁ¸ ÇÃ¶ó½ºÆ½ ÆÐŰÁöº¸´Ù ÀÌ»êÈź¼Ò ¹èÃâ·®ÀÌ Àû°í À¯¿¬¼º, °Àμº, ÀÎÀå °µµ°¡ ¿ì¼öÇÕ´Ï´Ù.
FEA Åë°è¿¡ µû¸£¸é µ¶ÀÏ¿¡¼´Â ¸Å³â ¾à 628¸¸ ÅæÀÇ ÇÃ¶ó½ºÆ½ Æó±â¹°ÀÌ ¹ß»ýÇϰí ÀÖÀ¸¸ç, ¼¼°è Àüü¿¡¼´Â ¾à 4¾ï Åæ¿¡ À̸¨´Ï´Ù. ÀϹÝÀûÀ¸·Î ÇÃ¶ó½ºÆ½ º´ÀÇ ºÐÇØ¿¡´Â ¾à 500³â¿¡¼ 1,000³âÀÌ ¼Ò¿äµË´Ï´Ù.
½ÃÀå È®´ë¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ´Â ÁÖ¿ä ¿äÀÎ Áß Çϳª´Â ȯ°æ Ä£ÈÀûÀ̰í Áö¼Ó °¡´ÉÇÑ ÆÐŰ¡ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¿ä±¸°¡ ¼¼°è¿¡¼ ³ô¾ÆÁö°í ÀÖ´Ù´Â °ÍÀÔ´Ï´Ù. Àç»ç¿ë °¡´ÉÇÏ°í ºÐÇØ°¡ ºü¸¥ ¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½ Æ÷ÀåÀç´Â õ¿¬ ÀÚ¿ø º¸È£ ¹× À¯ÇØÇÑ Æó±â¹° °¨¼Ò¿¡ µµ¿òÀÌ µË´Ï´Ù. µû¶ó¼ ȯ°æ ÀǽÄÀÌ Áõ°¡ÇÏ°í ¸Å¸³Áö¿Í ¹Ù´Ù¿¡ ´ëÇÑ ÇÃ¶ó½ºÆ½ÀÇ ¿µÇâÀ» ÁÙÀÌ·Á´Â ¿ä±¸·Î ½ÃÀå È®´ë°¡ ¿¹»óµË´Ï´Ù. ¶ÇÇÑ 3Â÷¿ø(3D) ÀμâµÈ ¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½ Æ÷ÀåÀçÀÇ Åº»ý µî ¸¹Àº Á¦Ç° °³Ã´ÀÌ ½ÃÀå È®´ë¸¦ µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.
¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½À̳ª ¹ÙÀÌ¿ÀÆú¸®¸ÓÀÇ ¼º´ÉÀ̳ª ³»±¸¼º¿¡´Â ÇѰ谡 Àֱ⠶§¹®¿¡ Æ÷Àå, ÀÏ·ºÆ®·Î´Ð½º, ³ó¾÷, ÀÚµ¿Â÷ »ê¾÷ µî ´Ù¾çÇÑ »ê¾÷¿¡¼ ³Î¸® »ç¿ëµÇ±â¿¡´Â À̸£Áö ¸øÇß½À´Ï´Ù. ±âÁ¸ÀÇ ¼®À¯°è Æú¸®¸Ó¿Í ºñ±³ÇßÀ» °æ¿ì, ¹ÙÀÌ¿À º£À̽º Æú¸®¸Ó´Â °ø±â, ¹°, »ê¼Ò, ¿¿¡ ´ëÇÑ ¹è¸®¾î¼ºÀÌ ³·´Ù µî ±â´É Ư¼ºÀÌ ´Ù¸£±â ¶§¹®¿¡ ½Äǰ, ÀǾàǰ, ÆÛ½º³ÎÄÉ¾î ¿ëǰ, ÀüÀÚ ±â±âÀÇ ÆÐŰ¡¿¡ »ç¿ë °¡ Á¦Çѵ˴ϴÙ.
°æÁú ¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½ÀÇ ¼ö¿ä°¡ Ä¿Áö°í ÀÖÀ¸¸ç ½ÃÀå È®´ë¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ÀÌ ÇÃ¶ó½ºÆ½Àº Å©¸², ¸³½ºÆ½, ¼ÒÇü ºÐ¸», ÆÄ¿îµ¥À̼ǰú °°Àº ÈÀåǰ Æ÷Àå¿¡ »ç¿ëµË´Ï´Ù. ¶ÇÇÑ ÀÚ¿ø È¿À²À» È®º¸ÇÏ°í ¿Â½Ç°¡½º(GHG) ¹èÃâ·®À» ÁÙÀ̱â À§ÇØ ¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½ Àç·á¿Í ±âŸ Çã¿ë°¡´ÉÇÑ Æó±â¹°À» °áÇÕÇÏ´Â µ¿Çâ Áõ°¡°¡ ½ÃÀå È®´ë¸¦ °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù. ½ÃÀåÀº À½½Ä ¹× À½·á ºÐ¾ß¿¡¼ Á¦Ç° »ç¿ë·®À» Áõ°¡½Ã۰í ģȯ°æ ÆÐŰÁö¸¦ »ç¿ëÇÏ´Â °ÍÀ» ÃËÁøÇϱâ À§ÇÑ ¸î¸î Á¤ºÎ ³ë·ÂÀÇ ÀÌÇà¿¡ ÀÇÇØ ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
»ýºÐÇØ¼ºÀº ÀǽÉÇÒ ¿©Áö¾øÀÌ ÀåÁ¡ÀÌÁö¸¸, ´ëºÎºÐÀÇ µî±ÞÀº ºÐÇØÇϱâ À§ÇØ Æ¯¼öÇÑ »ê¾÷ ÅðºñÈ ¹æ¹ýÀÌ ÇÊ¿äÇϸç, ÀÌ·¯ÇÑ Ç°¸ñÀ» ó¸®ÇÒ ¼ö ÀÖ´Â ÀÎÇÁ¶ó°¡ ÃæºÐÈ÷ ¹ÐÁýµÈ ±¹°¡´Â ¼Ò¼ö¿¡ ºÒ°úÇÕ´Ï´Ù. ±× °á°ú ÀçȰ¿ë ¿ø·á¸¦ ¿À¿°½ÃŰ°Å³ª ¸Å¸³Áö¿¡ ¹ö·ÁÁ® ȯ°æ¿¡ ÇØ¸¦ ³¢Ä¥ ¼ö ÀÖ½À´Ï´Ù. µû¶ó¼ ÀÌ·¯ÇÑ Æú¸®¸Ó¸¦ Á¦°ÅÇϱâ À§Çؼ´Â º°µµÀÇ ¹æ¹ýÀÌ ÇÊ¿äÇϸç, ÀÌ´Â ÃÖÁ¾ Á¦Ç°ÀÇ °¡°ÝÀ» »ó½Â½Ãŵ´Ï´Ù.
COVID-19ÀÇ ÆÒµ¥¹ÍÀÌ »ý»ê, ¿î¼Û ¹× ±âŸ °ø±Þ¸Á¿¡ ¿µÇâÀ» ¹ÌÄ£ °á°ú, ±âÁ¸ÀÇ ÇÃ¶ó½ºÆ½ °¡°ÝÀº Ç϶ôÇß½À´Ï´Ù. ÀÌ ½ÃÀåÀÇ ¼ºÀå·ü ÀúÇÏÀÇ ±Ùº» ¿øÀÎÀº ¿¬·á¿ë ¿øÀ¯ÀÇ »ç¿ë·®ÀÌ Á¦2Â÷ ¼¼°è´ëÀü ÀÌÈÄÀÇ ÃÖÀú ¼öÁØ¿¡ À̸£·¶±â ¶§¹®¿¡ ±âÁ¸ ÇÃ¶ó½ºÆ½ÀÇ °¡°Ýµµ ÀúÇϵǰí ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ÆÒµ¥¹Í¿¡ µû¶ó ÀÏȸ¿ë ÇÃ¶ó½ºÆ½¿¡ ´ëÇÑ ¹ý·ü°ú ¸¹Àº Á¤ºÎ ¹× Á¶Á÷ÀÌ Á¦¾ÈÇÑ ³ì»ö ÅõÀÚ°¡ Áö¿¬µÇ¾î ¹ÙÀÌ¿À ´ëüǰ¿¡ ´ëÇÑ ¿ä±¸°¡ ³·¾ÆÁö°í ÀÖ½À´Ï´Ù.
»ýºÐÇØ¼º ºÎ¹®Àº ´Ù¾çÇÑ ÃÖÁ¾ ÀÌ¿ë »ê¾÷¿¡¼ ¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë°¡ µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Æú¸®À¯»ê, ÀüºÐ ºí·»µå, PBAT, PBS, PHA, Æú¸®Ä«ÇÁ·Î¶ôÅæ, ¼¿·ê·Î¿À½º ¾Æ¼¼Å×ÀÌÆ®´Â »ýºÐÇØ¼º ÇÃ¶ó½ºÆ½ÀÇ ¿¹ÀÔ´Ï´Ù. ÀüºÐ ºí·»µå´Â ´ë·®À¸·Î ÀÔ¼öÇϱ⠽±±â ¶§¹®¿¡ ±âÁ¸ ÇÃ¶ó½ºÆ½ÀÇ ´ëüǰÀ¸·Î ÃÖÀûÀÔ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È CAGRÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹»óµÇ´Â °ÍÀº ¿¬Æ÷Àå ºÎ¹®ÀÔ´Ï´Ù. ¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½ »ý»ê ±â¼úÀÇ °³¹ß, ÄÉÀ̽º ·¹À̵ð Æ÷ÀåÀÇ ÀÌ¿ë »ç·Ê, Æ÷Àå ¹æ¹ýÀÇ °³¼±ÀÌ ¿¬Æ÷Àå¿¡¼ ¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½ ¼ö¿ä¸¦ ÃËÁøÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. °Ô´Ù°¡, ¿¬Æ÷Àå ¼ö¿ä´Â ƯÈ÷ °£½Ä ¹× À½½Ä°ú À½½Ä¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô½À´Ï´Ù.
¾Æ½Ã¾Æ ÅÂÆò¾ç Áö¿ªÀº ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½Àº Çdzó °¡¹æ, ¼îÇιé, ´À½¼ÇÑ Æ÷Àå, ³ó¾÷¿ë ¸ÖÄ¡ Çʸ§, º´ µî ´Ù¾çÇÑ Çʼö ¿ëµµ·Î ±¤¹üÀ§ÇÏ°Ô »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÌ Áö¿ªÀÇ °í°´µéÀº ÇÃ¶ó½ºÆ½ ¹× ºñ»ýºÐÇØ¼º Æ÷ÀåÀÌ È¯°æ¿¡ ¹ÌÄ¡´Â ¿µÇâ¿¡ ´ëÇØ Á¡Á¡ ´õ ¸¹ÀÌ ÀνÄÇϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ª¿¡¼´Â ģȯ°æ Æ÷ÀåÀç, ƯÈ÷ ¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½À¸·Î ¸¸µç Æ÷ÀåÀç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
À¯·´Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¾ö°ÝÇÑ È¯°æ Ä£ÈÀûÀÎ ¹ý·üÀÌ Á¸ÀçÇÏ°í ¼ÒºñÀÚµé »çÀÌ¿¡¼ ȯ°æ ¹®Á¦°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÏȸ¿ë ÇÃ¶ó½ºÆ½ Á¦Ç°ÀÇ Àüü ¼Òºñ¸¦ ÃÖ¼ÒÈÇϱâ·Î ÇÑ EUÀÇ °áÁ¤°ú °°Àº Á¤ºÎ ÀÌ´Ï¼ÅÆ¼ºê´Â Æò°¡ ±â°£ µ¿¾È ¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁø ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
According to Stratistics MRC, the Global Bioplastics Packaging Market is accounted for $6.9 billion in 2023 and is expected to reach $19.6 billion by 2030 growing at a CAGR of 16.0% during the forecast period. Bioplastics are eco-friendly materials for packaging that can be used to transport, protect, and preserve a variety of items. They are often used for the packaging and storage of dairy products, alcohol (both carbonated and non-carbonated), and personal care products. They contain biopolybutylene adipate terephthalate (PBAT), biopolyethylene, biopolyamide (PA), and biopolyethylene terephthalate (PET) among other starch mixes. Films, bottles, cutlery, pouches, labels, trays, and cups are all examples of rigid and flexible packaging that regularly use bioplastic materials. Packaging made of bioplastic has a lower carbon footprint than conventional plastic packaging and offers superior flexibility, toughness, and tensile strength.
According to statistics from the FEA, Germany produces almost 6.28 million tons of plastic waste each year, and globally, the figure is about 400 million tons. In general, a plastic bottle takes approximately 500 to 1,000 years to decompose.
One of the main factors fueling the market's expansion is the rising need for environmentally friendly and sustainable packaging solutions around the world. Reusable and quicker-decomposing bioplastic packaging materials help conserve natural resources and reduce harmful waste. Accordingly, the market is expected to increase as a result of growing environmental awareness and the desire to lessen the impact of plastic on landfills and seas. Additionally, a number of product developments, like the creation of three-dimensional (3D) printed bioplastic packaging materials, are boosting market expansion.
Bioplastics and biopolymers' performance and durability limitations prevent them from being widely used in a variety of industries, such as packaging, electronics, agriculture, and the automobile industry. When compared to traditional petroleum-based polymers, bio-based polymers have different functional characteristics, including lower barriers to air, water, oxygen, and heat, which limit their use in the packaging of food, medicines, personal care items, and electronics.
The need for rigid bioplastics is rising, which is helping the market expand. These plastics are used to package cosmetic products like creams, lipstick, compact powders, and foundations. In addition, growing trends to combine bioplastic materials with other acceptable wastes to assure resource efficiency and reduce greenhouse gas (GHG) emissions are accelerating market expansion. The market is expected to grow thanks to rising product usage in the food and beverage sector and the implementation of several government efforts to promote the use of eco-friendly packaging.
Even though biodegradability is unquestionably a benefit, the majority of grades require specialised industrial composting methods to break down, and only a small number of economies have a dense enough infrastructure to handle these items. As a result, they could contaminate the recycling feedstock or end up in landfills, hurting the environment. Therefore, a separate method is needed to get rid of these polymers, which drives up the price of the final product.
Prices for conventional plastics have decreased as a result of the COVID-19 pandemic's effects on production, shipping, and other aspects of the supply chain. The fundamental cause of the decline in this market's growth is the use of crude oil for fuel, which has reached its lowest level since World War II and has resulted in reduced pricing for traditional plastics. Additionally, the pandemic delays legislation on single-use plastics and green investments proposed by numerous governments and organisations, which lowers the need for bio-based alternatives.
The biodegradable segment is expected to be the largest during the forecast period, owing to owing to the rising demand for bio-based plastics in various end-use industries, which is expected to drive their demand during the assessment period. Polylactic acid, starch blends, PBAT, PBS, PHA, polycaprolactone, and cellulose acetate are examples of biodegradable plastics. Starch blends are a great substitute for traditional plastics since they are so readily available in large quantities.
The flexible segment is expected to have the highest CAGR during the forecast period. Developments in the production of bioplastic technologies, the use of case-ready packaging, and improved packaging practices are anticipated to drive the demand for bioplastics in flexible packaging. Furthermore, the demand for flexible packaging is high, especially for snack foods and beverages.
Asia Pacific is projected to hold the largest market share during the forecast period. Bioplastics are broadly used in various essential applications such as refuge bags, shopping bags, loose packaging, agricultural mulch films, and bottles, among others. Additionally, customers in the area are becoming more and more aware of how plastic and non-biodegradable packaging affects the environment. In the area, there is a growing need for eco-friendly packaging, especially packaging made of bioplastic.
Europe is projected to hold the highest market share during the forecast period. The presence of stringent environment-friendly laws, and increasing environmental concerns among consumers. In addition, government initiatives, such as the decision of the EU to minimize the overall consumption of single-use plastic products, are anticipated to propel the demand for bioplastics during the assessment period.
Some of the key players in Bioplastics Packaging market include: Alpagro Packaging, Amcor Limited, Mitsubishi Chemical Corporation, BASF SE, Novamont S.p.A, Alpha Packaging, Mondi plc, Transcontinental Inc., Constantia Flexibles Group GmbH, NatureWorks, Coveris, Eastman Chemical Company, Koninklijke DSM N.V., WestRock Company, Braskem and Tetra Laval International SA.
In October 2022, Braskem announced to expand its I'm greenTM biopolymer production capacity by 30%. The company is investing USD 60 million to expand the capacity. Braskem and SCG chemicals are the partners for the project. This partnership helps to double the current capacity for I'm greenTM products.
In June 2021, BASF launched COSMOS-approved texturizing biopolymer Hydagen. The cold processable rheology modifier obtained from the tuber of the konjac plant native to Southwest China is suitable for aqueous systems such as gels, fluids, serums, and novel formats such as patches, jellies, and peel-off formulations.