½ÃÀ庸°í¼­
»óǰÄÚµå
1324384

¼¼°èÀÇ Áö¿­ ¹ßÀü ½ÃÀå ¿¹Ãø(-2030³â) : ¿Âµµº°, Ãâ·Âº°, ±â¼úº°, ¿ëµµº°, Áö¿ªº° ºÐ¼®

Geothermal Power Market Forecasts to 2030 - Global Analysis By Temperature (Low Temperature, Medium Temperature and High Temperature ), Power Output, Technology, Application and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 175+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¼¼°èÀÇ Áö¿­ ¹ßÀü(Geothermal Power) ½ÃÀåÀº 2023³â¿¡ 64¾ï 5,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇϰí, 2030³â¿¡´Â 103¾ï 6,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ¿¹Ãø ±â°£ Áß CAGR 7%¸¦ ±â·Ï ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

Áö¿­ ¹ßÀüÀº Áö±¸ÀÇ ÀÚ¿¬ ¿­¿¡¼­ ÆÄ»ýµÈ Àç»ý °¡´É ¿¡³ÊÁö¸¦ »ý»êÇϰí Ȱ¿ëÇÏ´Â °ÍÀ» Æ÷ÇÔÇÕ´Ï´Ù. Áö¿­ ¹ßÀü¼Ò´Â Áö±¸ ³»ºÎÀÇ ¿­À» Ȱ¿ëÇÏ¿© Áõ±â ¶Ç´Â ¿Â¼öÀÇ º¯È¯À» ÅëÇØ Àü±â¸¦ »ý»êÇÕ´Ï´Ù. ÀÌ °úÁ¤¿¡´Â Áö¿­ Àú¼öÁö¿¡ ¿ì¹°À» ¶Õ¾î ¶ß°Å¿î À¯Ã¼¿¡ Á¢±ÙÇÑ ´ÙÀ½ ¹ßÀü±â¿¡ ¿¬°áµÈ ÅͺóÀ» ±¸µ¿ÇÏ´Â µ¥ »ç¿ëÇÏ´Â ÀÛ¾÷ÀÌ Æ÷ÇԵ˴ϴÙ. Áö¿­ ¿¡³ÊÁö´Â ¿Â½Ç°¡½º ¹èÃâÀ» ÃÖ¼ÒÈ­ÇÏ´Â Áö¼Ó °¡´ÉÇϰí ģȯ°æÀûÀÎ ¹ßÀü ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù.

±¹Á¦Àç»ý°¡´É¿¡³ÊÁö±â±¸(IRENA)¿¡ µû¸£¸é 2016³â ¹ßÀü·®Àº 83,477GWh·Î, 2020³â¿¡´Â 94,949GWh¿¡ ´ÞÇß½À´Ï´Ù.

Áö¼Ó °¡´ÉÇÑ ¹æ¹ýÀ¸·Î ¹ßÀü¿¡ ´ëÇÑ ¿ä±¸ Áõ°¡

±âÈÄ º¯È­¿Í ź¼Ò ¹èÃâ¿¡ °üÇÑ ¼¼°èÀÇ ¿ì·Á°¡ Ä¿Áü¿¡ µû¶ó, Àç»ý °¡´ÉÇϰí ȯ°æÄ£È­ÀûÀÎ ¿¡³ÊÁö¿øÀ¸·ÎÀÇ ÀüȯÀÌ Á߽õǰí ÀÖ½À´Ï´Ù. Áö¿­¹ßÀüÀº Áö±¸ÀÇ ÀÚ¿¬¿­À» ÀÌ¿ëÇÏ¿© ¿Â½Ç°¡½º¸¦ ¹èÃâÇÏÁö ¾Ê°í ¹ßÀüÇϹǷΠ½Å·Ú¼º ÀÖ°í Áö¼Ó °¡´ÉÇÑ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ¼¼°è Á¤ºÎ¿Í ¿¡³ÊÁö Á¤Ã¥ ÀÔ¾ÈÀÚµéÀº ¿¡³ÊÁö ¹Í½º¸¦ ´Ù¾çÈ­Çϰí È­¼® ¿¬·á¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀ̱â À§ÇØ Áö¿­ ¿¡³ÊÁö äÅÃÀ» Á¡Á¡ ÃßÁøÇϰí ÀÖ½À´Ï´Ù.

±¼Âø¡¤Å½»ç ¹æ¹ýÀÇ ºÎÁ·

³ôÀº Áö¿­ ÀáÀç·ÂÀ» °¡Áø ÀûÀýÇÑ Àå¼Ò¸¦ ãÀ¸·Á¸é Á¤È®ÇÑ Å½»ç°¡ ÇÊ¿äÇÕ´Ï´Ù. »õ·Î¿î Áö¿­ Àú·ùÃþÀÇ Å½»öÀ̳ª ÀÌ¹Ì Á¸ÀçÇÏ´Â Áö¿­ Àú·ùÃþÀÇ È®´ë´Â ÃÖ÷´ÜÀÇ Å½±¤¡¤±¼Âø ¼ö¹ýÀÇ ºÎÁ·¿¡ ÀÇÇØ ¹æÇØµÉ °¡´É¼ºÀÌ ÀÖ½À´Ï´Ù. ±Ùº»ÀûÀÎ Á¶°Ç°ú ÀÚ¿øÀÇ °¡¿ë¼º¿¡ ´ëÇÑ Á¤º¸ ºÎÁ·À¸·Î ÀÎÇØ ºñÈ¿À²ÀûÀÎ ½ÃÃß ÀÛ¾÷°ú ³ôÀº »ç¾÷ºñ°¡ ¹ß»ýÇÒ ¼ö ÀÖ½À´Ï´Ù. Áö¿­ ¿¡³ÊÁö´Â ÃÖ÷´Ü ±â¼úÀÇ µµ¿òÀ¸·Îº¸´Ù È¿°úÀûÀ¸·Î ½Äº°µÇ°í °æÀï·Â ÀÖ°í ½ÇÇö °¡´ÉÇÑ Àç»ý °¡´É ¿¡³ÊÁö¿øÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù.

Áö¿­¿¡ ÀÇÇÑ Àú¿Â¡¤Á߿ ÀÚ¿øÀÇ °¡´É¼º

ÀüÅëÀûÀ¸·Î °í¿Â Áö¿­ ÀÚ¿øÀÌ Àü·Â »ý»êÀÇ ÁÖ¿ä ÃÊÁ¡À̾úÁö¸¸, ÃÖ±Ù¿¡´Â Àú¿Â ¹× Á߿ ÀÚ¿øÀÇ È°¿ëÀÌ ÁÖ¸ñ¹Þ°í ÀÖ½À´Ï´Ù. ¹ÙÀ̳ʸ® »çÀÌŬ ¹ßÀü¼Ò ¹× Çâ»óµÈ Áö¿­ ½Ã½ºÅÛ°ú °°Àº ÷´Ü ±â¼úÀ» ÅëÇØ Àú¿Â Áö¿­ Àú·ùÃþ¿¡¼­ ºñ¿ë È¿À²ÀûÀ¸·Î ¿¡³ÊÁö¸¦ ÃßÃâÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Áö¿­ ÀÀ¿ë ºÐ¾ßÀÇ È®ÀåÀº Áö¿­ ¹ßÀüÀ» À§ÇÑ ½ÇÇà °¡´ÉÇÑ ºÎÁöÀÇ ¼ö¸¦ Áõ°¡½ÃÄÑ ½ÃÀåÀÇ ¹üÀ§¸¦ ³ÐÈ÷°í ÀÌÀü¿¡´Â ºÎÀûÇÕÇÑ °ÍÀ¸·Î °£ÁֵǾú´ø Áö¿ª¿¡¼­µµ Áö¿­ ¿¡³ÊÁö¸¦ ÀÌ¿ëÇÒ ¼ö ÀÖ°Ô ÇÕ´Ï´Ù.

ȯ°æ ÆÄ±«

Áö¿­ ¹ßÀü¼Ò´Â ÁöÇÏÀÇ Àú¼öÁö¿¡ Á¢±ÙÇÏ¿© ¿­À» ÃßÃâÇÏ´Â °Í¿¡ ÀÇÁ¸Çϰí ÀÖÀ¸¸ç ȯ°æ º¯È­ÀÇ ¿µÇâÀ» ¹Þ±â ½±½À´Ï´Ù. ÁöÁø, È­»ê Ȱµ¿, ÁöÁú º¯µ¿ µîÀÇ ÀÚ¿¬ Çö»óÀº Áö¿­ ÀÚ¿øÀÇ ¾ÈÁ¤¼º°ú ¼º´É¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ¹ßÀü·®¿¡ ¿µÇâÀ» ÁÙ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÁöÇÏ ¾Ð·Â°ú À¯Ã¼ È帧ÀÇ º¯È­´Â Àú·ùÃþÀÇ »ý»ê¼º ÀúÇÏ·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù. ȯ°æ ÆÄ±«´Â ÇÁ·ÎÁ§Æ® Áö¿¬, À¯Áö º¸¼ö ºñ¿ë Áõ°¡, ½ÉÁö¾î Áö¿­ ¹ßÀü¼ÒÀÇ ¿µ±¸ÀûÀÎ ¼Õ»óÀ» ÃÊ·¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ À§ÇùÀ» ¿ÏÈ­ÇÏ·Á¸é ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÃÖ¼ÒÈ­Çϸ鼭 Áö¼ÓÀûÀÌ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â Áö¿­ ¹ßÀüÀ» º¸ÀåÇϱâ À§ÇØ ½ÅÁßÇÑ »çÀÌÆ® ¼±ÅÃ, Áö¼ÓÀûÀÎ ¸ð´ÏÅ͸µ ¹× ÀûÀÀ °ü¸® Àü·«ÀÌ ÇʼöÀûÀÔ´Ï´Ù.

COVID-19ÀÇ ¿µÇâ :

COVID-19 ÆÒµ¥¹ÍÀº ±Û·Î¹ú °ø±Þ¸Á¿¡ ¿©·¯ Â÷·Ê Áß´ÜÀ» ÃÊ·¡ÇÏ°í °èȹµÈ ÇÁ·ÎÁ§Æ®¿¡ ´ëÇÑ ½ÃÀå Âü¿©ÀÚÀÇ ÅõÀÚ¸¦ °¨¼Ò½ÃÄױ⠶§¹®¿¡ Áö¿­ ¿¡³ÊÁö ºñÁî´Ï½º¿¡ Å« ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ¾÷°è¿¡ Ȱ·ÂÀ» ºÒ¾î³ÖÀ» °ÍÀ¸·Î ¿¹»óµÇ´Â Áö¿­ ¹ßÀü ¿ë·®ÀÇ ¿¬°£ Áõ°¡ ¿Ü¿¡µµ, COVID-19¿Í Àü ¼¼°è ¿©·¯ ±¹°¡¿¡¼­ ½ÃÇàÇÑ ¶ô´Ù¿î Á¶Ä¡·Î ÀÎÇØ ¿©·¯ ÇÁ·ÎÁ§Æ®°¡ Áö¿¬µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ȯ°æÀûÀ¸·Î À¯ÀÍÇÏ°í ±ú²ýÇÑ ÀÚ¿øÀÇ »ç¿ëÀ¸·Î ÀÎÇÑ Àü±âÀÇ ¾ÈÀü¼º¿¡ ´ëÇÑ ¿ì·Á°¡ Ä¿Áö¸é¼­ Áö¿­ ¹ßÀüÀÇ ½ÃÀå È®´ë°¡ ÃßÁøµÇ°í ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È »ó¾÷¿ë ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ Àü¸Á

¿ÀÇǽº ºôµù, È£ÅÚ, Çб³, º´¿ø µî ÇÊ¿äÇÑ °æ¿ì ¿¡¾îÄÁ ¹× ³Ã¹æ¿¡ »ç¿ëµÇ´Â È÷Æ® ÆßÇÁ ¼ö¿ä°¡ Áõ°¡Çϰí Àֱ⠶§¹®¿¡ »ó¾÷ ºÎ¹®ÀÌ ½ÃÀå¿¡¼­ °¡Àå Å« Á¡À¯À²À» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÁÖÅÿ¡¼­ Áö¿­ ¿¡³ÊÁöÀÇ ÁÖ¿ä °ø±Þ¿ø Áß Çϳª´Â Áö¿ª ³­¹æÀÔ´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¹ÙÀ̳ʸ® »çÀÌŬ Ç÷£Æ® ºÎ¹®ÀÇ CAGRÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¹ÙÀ̳ʸ® »çÀÌŬ Ç÷£Æ® ºÎ¹®ÀÇ CAGRÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¹ÙÀ̳ʸ® »çÀÌŬÀº Àú¿Â Áö¿­ ÀÚ¿ø¿¡¼­ ¹ßÀüÇÏ´Â µ¥ »ç¿ëµÇ´Â °íµµ·Î È¿À²ÀûÀÎ ¹æ¹ýÀÔ´Ï´Ù. ¹ÙÀ̳ʸ® »çÀÌŬ °øÁ¤¿¡¼­ ¿Âµµ°¡ ³·Àº °í¿ÂÀÇ Áö¿­ À¯Ã¼´Â ¿­±³È¯±â¸¦ Åë°úÇÏ¿© ¿­ ¿¡³ÊÁö°¡ ºñµîÁ¡ÀÌ ³·Àº 2Â÷ À¯Ã¼·Î Àü´ÞµË´Ï´Ù. 2Â÷ À¯Ã¼´Â Áõ¹ßÇÏ¿© ¹ßÀü±â¿¡ ¿¬°áµÈ ÅͺóÀ» ±¸µ¿ÇÏ¿© ±ú²ýÇϰí Àç»ý °¡´ÉÇÑ Àü·ÂÀ» »ý»êÇÕ´Ï´Ù. ¹ÙÀ̳ʸ® »çÀÌŬ ±â¼úÀº Áö±Ý±îÁö ¹Ì°³Ã´µÇ¾ú´ø Àú¿ÂÀÇ Áö¿­ Àú·ùÃþÀÇ ÀÌ¿ëÀ» °¡´ÉÇÏ°Ô Çϰí, Áö¿­ÀÇ °¡´É¼ºÀ» ³ÐÈ÷°í, Áö¿­ ¿¡³ÊÁö¸¦ º¸´Ù Æø³ÐÀº Áö¿ª¿¡¼­ ÀÌ¿ëÇÒ ¼ö ÀÖµµ·Ï ÇØ, Áö¿­ ¹ßÀü ½ÃÀåÀÇ ¼ºÀå¿¡ °øÇåÇØ ÀÖ½À´Ï´Ù.

ÃÖ´ë Á¡À¯À² Áö¿ª :

¾Æ½Ã¾Æ ÅÂÆò¾ç ½ÃÀåÀº dzºÎÇÑ Áö¿­ ÀáÀç·Â°ú Àç»ý °¡´É ¿¡³ÊÁö ÀÌ¿ë Áõ°¡·Î ¿¹Ãø ±â°£ µ¿¾È ¼¼°è Áö¿­ ¹ßÀü ½ÃÀå¿¡¼­ °¡Àå ³ôÀº Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ÃßÁ¤µÇ°í ¿¹ÃøµË´Ï´Ù. Áö¿­ ¹ßÀü ÇÁ·ÎÁ§Æ®°¡ ÁøÇà ÁßÀ̸ç Áö¿­ ¿¡³ÊÁö »ý»ê ´É·ÂÀÌ ÀÎÁ¤µÇ´Â ±¹°¡¿¡´Â Àεµ³×½Ã¾Æ, Çʸ®ÇÉ, ´ºÁú·£µå µîÀÌ ÀÖ½À´Ï´Ù. ½ÃÀå È®´ë´Â Á¤ºÎ Àμ¾Æ¼ºê, À¯¸®ÇÑ ¹ý·ü ¹× Áö¿­ ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ·Î ´õ¿í °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. Áö¿­ ¿¡³ÊÁö´Â ¾Æ½Ã¾Æ ÅÂÆò¾çÀÌ ±ú²ýÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â ¹ßÀüÀ» ¿ì¼±Çϰí Àå±âÀûÀÎ °æÁ¦Àû¡¤È¯°æÀû ÀÌÁ¡À» ÃËÁøÇÏ´Â °¡¿îµ¥ ÀÌ Áö¿ªÀÇ ¿¡³ÊÁö ¹Í½º¿¡ Å©°Ô °øÇåÇÏ´Â °ÍÀ¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ´Ù¾çÇÑ Áö¿­ ÀÚ¿ø°ú ±â¼úÀû ³ëÇϿ츦 Ȱ¿ëÇÔÀ¸·Î½á ºÏ¹Ì´Â Áö¿­ ¹ßÀü ½ÃÀåÀÇ ÁÖ¿ä ±â¾÷ÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¹Ì±¹°ú ¸ß½ÃÄÚ¿¡´Â Áö±¸ °íÀ¯ÀÇ ¿­À» ÀÌ¿ëÇÏ¿© ¹ßÀüÇÏ´Â Áö¿­ ¹ßÀü¼Ò°¡ ¿©·¯ °³ ÀÖ½À´Ï´Ù. Àç»ý °¡´ÉÇÏ°í ±ú²ýÇÑ ¿¡³ÊÁöÀ̸ç ÀÌ»êȭź¼Ò ¹èÃâ·®À» ÁÙÀ̰í Áö¼Ó °¡´ÉÇÑ ¿¡³ÊÁö °üÇàÀ» ÃßÁøÇÏ´Â Áö¿ªÀÇ °ø¾à¿¡ µû¸¥ °ÍÀ̱⠶§¹®¿¡ Áö¿­¹ßÀüÀº ºÏ¹Ì¿¡¼­ ±àÁ¤ÀûÀ¸·Î º¸¿©Áö°í ÀÖ½À´Ï´Ù. Áö¿­¹ßÀüÀº ¿¡³ÊÁö ¾Èº¸¿Í ȯ°æ¿¡ ´ëÇÑ ¹è·Á¸¦ °­Á¶Çϱ⠶§¹®¿¡ ÀÌ Áö¿ªÀÇ ¿¡³ÊÁö Àüȯ°ú Àç»ý °¡´É ¿¡³ÊÁöÀÇ È®´ë¿¡ À־ Á¡Á¡ Áß¿äÇÑ ¿ªÇÒÀ»ÇÒ °ÍÀ¸·Î ¿¹»óµÇ°í ÀÖ½À´Ï´Ù.

¹«·á »ç¿ëÀÚ Á¤ÀÇ ¼­ºñ½º :

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´¿¡°Ô´Â ´ÙÀ½ ¹«·á »ç¿ëÀÚ Á¤ÀÇ ¿É¼Ç Áß Çϳª¸¦ Á¦°øÇÕ´Ï´Ù.

  • ±â¾÷ °³¿ä
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀû ÇÁ·ÎÆÄÀϸµ(3»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(3»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡ ½ÃÀå ÃßÁ¤ ¹× ¿¹Ãø¡¤CAGR(ÁÖ : Ÿ´ç¼º È®Àο¡ µû¶ó ´Ù¸§)
  • °æÀï º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû ÀÔÁö, Àü·«Àû Á¦ÈÞ¿¡ ±â¹ÝÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç ¼Ò½º
    • 1Â÷ Á¶»ç ¼Ò½º
    • 2Â÷ Á¶»ç ¼Ò½º
    • °¡Á¤

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø ¿äÀÎ
  • ¾ïÁ¦ ¿äÀÎ
  • ±âȸ
  • À§Çù
  • ±â¼ú ºÐ¼®
  • ¿ëµµ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
  • ±¸¸ÅÀÚÀÇ Çù»ó·Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü°¡¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ Áö¿­ ¹ßÀü ½ÃÀå : ¿Âµµº°

  • Àú¿Â(900¡É±îÁö)
  • Áß¿Â(900¡É-1500¡É)
  • °í¿Â(1500¡É ÀÌ»ó)

Á¦6Àå ¼¼°èÀÇ Áö¿­ ¹ßÀü ½ÃÀå : Ãâ·Âº°

  • 5MW ¹Ì¸¸
  • 5MW ÀÌ»ó

Á¦7Àå ¼¼°èÀÇ Áö¿­ ¹ßÀü ½ÃÀå : ±â¼úº°

  • ¹ÙÀ̳ʸ® »çÀÌŬ Ç÷£Æ®
  • Ç÷¡½Ã ½ºÆÀ Ç÷£Æ®
  • °Ç½Ä Áõ±â Ç÷£Æ®
  • Áö¿­ È÷Æ® ÆßÇÁ
  • Á÷Á¢ ½Ã½ºÅÛ
  • ±âŸ ±â¼ú

Á¦8Àå ¼¼°èÀÇ Áö¿­ ¹ßÀü ½ÃÀå : ¿ëµµº°

  • ¹ßÀü
  • ÁÖÅÃ
  • »ê¾÷
  • »ó¾÷
  • ±âŸ ¿ëµµ

Á¦9Àå ¼¼°èÀÇ Áö¿­¹ßÀü½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾Æ ÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾Æ ÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦10Àå ÁÖ¿ä ¹ßÀü

  • °è¾à/ÆÄÆ®³Ê½Ê/Çù¾÷/ÇÕÀÛÅõÀÚ(JV)
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦11Àå ±â¾÷ °³¿ä

  • Ansaldo Energia
  • Atlas Copco AB
  • Berkshire Hathaway Inc.
  • Calpine
  • Chevron Corp.
  • Enel Spa
  • EthosEnergy Group
  • Fuji Electric Co Ltd
  • General Electric
  • Gradient Resources
  • Green Mountain Energy Company
  • Halliburton
  • KenGen
  • Macquarie Group Limited
  • Ormat Technologies Inc.
  • Reykjavik Geothermal
  • Sumitomo Corporation
  • Supreme Energy
  • Terra-Gen Power LLC
  • ThermaSource LLC
  • Toshiba International Corp.
  • Turboden SpA
  • US Geothermal Inc.
LYJ 23.09.21

According to Stratistics MRC, the Global Geothermal Power Market is accounted for $6.45 billion in 2023 and is expected to reach $10.36 billion by 2030 growing at a CAGR of 7% during the forecast period. The Geothermal Power involves the production and utilization of renewable energy derived from the Earth's natural heat. Geothermal power plants harness the Earth's internal heat to generate electricity through the conversion of steam or hot water. The process involves drilling wells into geothermal reservoirs to access the hot fluids, which are then used to drive turbines connected to electricity generators. Geothermal energy offers a sustainable and eco-friendly power generation solution with minimal greenhouse gas emissions.

According to the International Renewable Energy Agency (IRENA), the electricity generation was 83,477 GWh in 2016 and it is reached by 94,949 GWh in 2020.

Market Dynamics:

Driver:

Increasing need for power production using sustainable methods

As global concerns regarding climate change and carbon emissions intensify, there is a growing emphasis on transitioning towards renewable and environmentally friendly energy sources. Geothermal power offers a reliable and sustainable solution, as it utilizes the Earth's natural heat to generate electricity without greenhouse gas emissions. Governments and energy policymakers worldwide are increasingly promoting the adoption of geothermal energy to diversify the energy mix and reduce reliance on fossil fuels.

Restraint:

Lack of drilling and exploratory methods

Accurate exploration is necessary to find suitable locations with high geothermal potential. The search for new geothermal reservoirs and the expansion of those that already exist may be hampered by a lack of cutting-edge exploration and drilling methods. Drilling efforts that are ineffective and higher project expenses could result from a lack of information about the underlying conditions and resource availability. Geothermal energy may be identified more effectively with the help of cutting-edge technology, making it a more competitive and feasible renewable energy source.

Opportunity:

Low- and medium-temperature resource potential from geothermal sources

While high-temperature geothermal resources have traditionally been the primary focus for power generation, the utilization of low- and medium-temperature resources has gained prominence. Advanced technologies, such as binary cycle power plants and enhanced geothermal systems, allow for the cost-effective extraction of energy from lower-temperature geothermal reservoirs. This expansion of geothermal applications increases the number of viable sites for geothermal power generation, broadening the market's reach and making geothermal energy accessible to regions previously considered unsuitable.

Threat:

Environmental disruptions

Geothermal power plants rely on accessing and extracting heat from underground reservoirs, which can be susceptible to environmental changes. Natural events like earthquakes, volcanic activities, and geological shifts can impact the stability and performance of geothermal resources, affecting power generation. Additionally, changes in underground pressure or fluid flow may lead to declining reservoir productivity. Environmental disruptions can cause project delays, increased maintenance costs, and even permanent damage to geothermal sites. To mitigate this threat, careful site selection, ongoing monitoring, and adaptive management strategies are essential to ensure sustainable and reliable geothermal power generation while minimizing environmental impacts.

COVID-19 Impact:

The COVID-19 pandemic's existence had a significant impact on the geothermal energy business since it caused multiple interruptions in the global supply chain and decreased investment from market participants in their planned projects. Aside from the yearly increases in geothermal power capacity that are expected to fuel the industry, several projects are facing delays because to COVID-19 and global lockout measures implemented by many nations across the world. In addition, growing worries about the security of electricity resulting from the use of environmentally beneficial and clean resources are propelling market expansion for geothermal power.

The commercial segment is expected to be the largest during the forecast period

The commercial segment held the largest share in the market owing to the increasing demand for heat pump which is used for air conditioning and cooling down inside the environment when needed, including office buildings, hotels, schools, and hospitals. In addition, one of the major sources of geothermal energy in residential structures is district heating.

The binary cycle plants segment is expected to have the highest CAGR during the forecast period

During the projection period, the binary cycle plants segment is expected to have the greatest CAGR. It is an advanced and efficient method used to generate electricity from low-temperature geothermal resources. In the Binary Cycle process, hot geothermal fluid with lower temperatures is passed through a heat exchanger, where it transfers its thermal energy to a secondary fluid with a lower boiling point. The secondary fluid vaporizes and drives a turbine connected to an electricity generator, producing clean and renewable power. Binary Cycle technology allows for the utilization of previously untapped low-temperature geothermal reservoirs, expanding the geothermal potential and making geothermal energy accessible to a broader range of regions, contributing to the growth of the geothermal power market.

Region with largest share:

The Asia Pacific region market is estimated to witness the highest share of the global Geothermal Power market during the forecast period, due to its abundant geothermal potential and rising use of renewable energy sources. Countries with ongoing geothermal power projects and recognized competence in geothermal energy production include Indonesia, the Philippines, and New Zealand. The market's expansion is further accelerated by government incentives, advantageous laws, and investments in geothermal technology. Geothermal energy is positioned to significantly contribute to the region's energy mix as the Asia Pacific region continues to prioritize clean and dependable power generation, encouraging long-term economic and environmental advantages.

Region with highest CAGR:

The North America region is expected to have the highest growth rate over the forecast period. By utilizing its wide variety of geothermal resources and technological know-how, North America is a major player in the geothermal power market. Several geothermal power stations that use the Earth's inherent heat to produce electricity are located in the United States and Mexico. Due to its renewable and clean energy qualities, which are in line with regional pledges to cut carbon emissions and advance sustainable energy practices, geothermal power is seen positively in North America. Geothermal power is anticipated to play an increasingly important role in the region's energy transition and expansion of renewable energy as it stresses energy security and environmental stewardship.

Key players in the market:

Some of the key players in Geothermal Power market include: Ansaldo Energia, Atlas Copco AB, Berkshire Hathaway Inc., Calpine, Chevron Corp., Enel Spa, EthosEnergy Group, Fuji Electric Co Ltd, General Electric, Gradient Resources, Green Mountain Energy Company, Halliburton, KenGen, Macquarie Group Limited, Ormat Technologies Inc., Reykjavik Geothermal, Sumitomo Corporation, Supreme Energy, Terra-Gen Power LLC, ThermaSource LLC, Toshiba International Corp., Turboden S.p.A. and U.S. Geothermal Inc..

Key Developments:

In July 2022, Ormat announced the commercial operation of the Casa Diablo-IV (CD4) 30 MW geothermal power plant. The CD4 facility provides 7 MW of geothermal power to two Community Choice Aggregators, Silicon Valley Clean Energy and Central Coast Community Energy, each under a 10-year power purchase agreement (PPA).

In May 2022, Baker Hughes Company announced an investment in San Francisco-based GreenFire Energy Inc., a company involved in the development of closed-loop Advanced Geothermal Systems (AGS).

In February 2022, SLB announced the introduction of the GeoSphere 360 3D reservoir mapping-while-drilling service at the International Petroleum Technology Conference (IPTC).

Temperatures Covered:

  • Low Temperature (Up to 900C)
  • Medium Temperature (900C - 1500C)
  • High Temperature (Above 1500C)

Power Outputs Covered:

  • Up to 5 MW
  • Above 5 MW

Technologies Covered:

  • Binary Cycle Plants
  • Flash Steam Plants
  • Dry Steam Plants
  • Ground Source Heat Pumps
  • Direct Systems
  • Other Technologies

Applications Covered:

  • Power Generation
  • Residential
  • Industrial
  • Commercial
  • Other Applications

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2021, 2022, 2023, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Geothermal Power Market, By Temperature

  • 5.1 Introduction
  • 5.2 Low Temperature (Up to 900C)
  • 5.3 Medium Temperature (900C - 1500C)
  • 5.4 High Temperature (Above 1500C)

6 Global Geothermal Power Market, By Power Output

  • 6.1 Introduction
  • 6.2 Up to 5 MW
  • 6.3 Above 5 MW

7 Global Geothermal Power Market, By Technology

  • 7.1 Introduction
  • 7.2 Binary Cycle Plants
  • 7.3 Flash Steam Plants
  • 7.4 Dry Steam Plants
  • 7.5 Ground Source Heat Pumps
  • 7.6 Direct Systems
  • 7.7 Other Technologies

8 Global Geothermal Power Market, By Application

  • 8.1 Introduction
  • 8.2 Power Generation
  • 8.3 Residential
  • 8.4 Industrial
  • 8.5 Commercial
  • 8.6 Other Applications

9 Global Geothermal Power Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 Ansaldo Energia
  • 11.2 Atlas Copco AB
  • 11.3 Berkshire Hathaway Inc.
  • 11.4 Calpine
  • 11.5 Chevron Corp.
  • 11.6 Enel Spa
  • 11.7 EthosEnergy Group
  • 11.8 Fuji Electric Co Ltd
  • 11.9 General Electric
  • 11.10 Gradient Resources
  • 11.11 Green Mountain Energy Company
  • 11.12 Halliburton
  • 11.13 KenGen
  • 11.14 Macquarie Group Limited
  • 11.15 Ormat Technologies Inc.
  • 11.16 Reykjavik Geothermal
  • 11.17 Sumitomo Corporation
  • 11.18 Supreme Energy
  • 11.19 Terra-Gen Power LLC
  • 11.20 ThermaSource LLC
  • 11.21 Toshiba International Corp.
  • 11.22 Turboden S.p.A.
  • 11.23 U.S. Geothermal Inc.
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦