![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1339911
¼¼°èÀÇ È÷µå¶óÁø ¼öȹ° ½ÃÀå ¿¹Ãø(2030³â) : ³óµµº°, ¿ëµµº°, Áö¿ªº° ºÐ¼®Hydrazine Hydrate Market Forecasts to 2030 - Global Analysis By Concentration Level (24%-35%, 40%-55%, 60%-85% and 100%), Application and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ È÷µå¶óÁø ¼öȹ°(Hydrazine Hydrate) ½ÃÀåÀº 2023³â 2¾ï 5,790¸¸ ´Þ·¯¿¡ ´ÞÇß½À´Ï´Ù. 2030³â 7.8%ÀÇ CAGR ¼ºÀåÀÌ Àü¸ÁµÇ¸ç, 4¾ï 3,640¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
È÷µå¶óÁø ÈÇÕ¹° ¼öȹ°Àº ¹ÝÀÀ¼ºÀÌ ³ô°í ¹«»öÀ̸ç ÀÚ±Ø ³¿»õ°¡ ÀÖ½À´Ï´Ù. ÁÖ·Î ¼öó¸®, ÀǾàǰ Á¦Á¶, ÁßÇÕ¿¡ ÀÌ¿ëµË´Ï´Ù. Æú¸®¸Ó Á¦Á¶ ¶Ç´Â ¹ßÆ÷Á¦·Î ÀÚÁÖ »ç¿ëµË´Ï´Ù. È÷µå¶óÁø ¼öȹ°Àº ·ÎÄÏ ¿¬·á·Î »ç¿ëµÇ¸ç ÀÚµ¿Â÷ °¡¼Ö¸° Àü±¸Ã¼ Á¦Á¶¿¡µµ »ç¿ëµË´Ï´Ù. ¶ÇÇÑ, ¿ìÁÖ¼±Àº ´ë±â Áß ¿ëÁ¸ »ê¼Ò·®À» ³·Ãß±â À§ÇÑ ÃßÁøÁ¦·Î¼ È÷µå¶óÁøÀ» »ç¿ëÇϰí ÀÖ½À´Ï´Ù.
Áß¾Ó°øÇذü¸®À§¿øÈ¸°¡ ÃÖ±Ù ¹ßÇ¥ÇÑ º¸°í¼(2021³â 3¿ù)¿¡ µû¸£¸é ÀεµÀÇ ÇöÀç ¼öó¸® ´É·ÂÀº 27.3%, Çϼöó¸® ´É·ÂÀº 18.6%ÀÔ´Ï´Ù. 2022³âµµ Àεµ Á¤ºÎ ¼£»þƼ¼º¿¡ µû¸£¸é 2021³â 55.23%¿¡¼ 61.52%ÀÇ CAGR·Î ¼ºÀåÇÒ Àü¸ÁÀ̸ç, ºÎÁöÀÇ ¾ÈÀüÇϰí ÀûÀýÇÑ ½Ä¼ö¸¦ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ³óÃÌ Àα¸ ºñÀ²ÀÌ Áõ°¡Çß½À´Ï´Ù.
È÷µå¶óÁø ¼öȹ°À» ±â¹ÝÀ¸·Î ÇÏ´Â ¿¬·áÀüÁö ¼ö¿ä´Â ´ë±âÁßÀ¸·Î ÀÌ»êÈź¼Ò ¹èÃâÀ» ÁÙÀÏ Çʿ伺ÀÌ ³ô¾ÆÁü¿¡ µû¶ó Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ ¶§¹®¿¡ È÷µå¶óÁø ¼öȹ° ¼ö¿ä°¡ ÇöÀúÇÏ°Ô Áõ°¡Çϰí ÀÖÀ¸¸ç, ±× °á°ú ½ÃÀå ÁøÃâ±â¾÷¿¡°Ô Å« ½ÃÀå °¡´É¼ºÀÌ Åº»ýÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¿¬·áÀüÁö ¼ö¼Ò ¹× »ê¼Ò À¯¿ëÇÑ ´ë¾ÈÀ¸·Î¼ È÷µå¶óÁø ¼öȹ° »ç¿ëÀº ½ÃÀå ÁøÃâ±â¾÷¿¡°Ô À¯¸®ÇÑ ±âȸ¸¦ Á¦°øÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
È÷µå¶óÁø ¼öȹ°Àº ºÒ¾ÈÁ¤ÇÑ »óÅ·Πº¸°üÇÏ¸é °·ÂÇÑ È¯¿øÁ¦ÀÌ¸ç ¸Å¿ì ¹ÝÀÀ¼ºÀÌ ³ô°í ºÒ¾ÈÁ¤ÇÑ ¹«±â ÈÇÐ ºÐÀÚ·Î »ó´çÇÑ Æø¹ß¼ºÀÌ ÀÖ½À´Ï´Ù. ¶ÇÇÑ µ¿¹°ÀÌ È÷µå¶óÁø ¼öȹ°À» ÈíÀÔÇÏ¸é °©»ó¼±, °£, ºñÀå, Æó¿¡ ¾Ç¿µÇâÀ» ¹ÌÄ¡´Â µîÀÇ ¸¸¼º ¾Ç¿µÇâÀÌ º¸°íµÇ¾ú½À´Ï´Ù. ¶ÇÇÑ È÷µå¶óÁø ¼öȹ°Àº ¹ß¾Ï¼º°ú µ¶¼ºÀ» °¡Áö°í ÀÖÀ¸¸ç, È÷µå¶óÁø ¼öȹ° ½ÃÀå È®´ë¿¡ ½É°¢ÇÑ À§ÇèÀ» ÃÊ·¡Çϰí ÀÖ½À´Ï´Ù.
¼¼°èÀÇ Àα¸ ±Þ°ÝÇÑ Áõ°¡, ½Ä·® ¾Èº¸ ¿ì·Á Áõ°¡, °æÁö ¸éÀû °¨¼Ò·Î °í¼ö·® ³ó¾÷ Çʿ伺ÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ±× °á°ú, »ì±ÕÁ¦³ª »ìÃæÁ¦¸¦ Æ÷ÇÔÇÑ ÀÛ¹° º¸È£ ´ëÃ¥ÀÌ º¸´Ù ¸¹ÀÌ »ç¿ëµÇ¾ú½À´Ï´Ù. ¶ÇÇÑ, È÷µå¶óÁø ¼öȹ°Àº ½Ä¹° ¹ß´ÞÀ» ÃËÁøÇϰí Åä¾ç ÁúÀ» Çâ»ó½Ã۰í ÀÛ¹° »ý»ê·®À» Áõ°¡½Ãų ¼ö ÀÖ½À´Ï´Ù. ±× °á°ú, È÷µå¶óÁø ¼öȹ°Àº ¸¹Àº ³ó¾à ¿ëµµ¿¡ ³Î¸® äÅÃµÇ¾î ¾÷°è È®´ë¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
È÷µå¶óÁø ¼öȹ° ´ëºÎºÐÀº ¹°·Î¼ ¼Ò·®ÀÌ¸é¼ ´ë±â¿Í Åä¾çÀ¸·Î ¹èÃâµË´Ï´Ù. ¼ö»ý »ý¹°À̳ª ½Ä¹°Àº ¹ß¾Ï¼ºÀÌ Àֱ⠶§¹®¿¡ ƯÈ÷ À§ÇèÇÕ´Ï´Ù. ¶ÇÇÑ ¼öÁß È÷µå¶óÁø ºÐÇØ´Â ȯ°æ¿¡ µû¶ó ½Ã°£ÀÌ °É¸± ¼ö ÀÖ½À´Ï´Ù. ÇÑÆí, È÷µå¶óÁø ¼öȹ° Æó±â¹° ¿Ã¹Ù¸¥ Ãë±Þ, º¸°ü, óºÐÀº Åä¾ç, ¹°, ´ë±â ¿À¿°À» ¿¹¹æÇÒ ¼ö ÀÖ½À´Ï´Ù. È÷µå¶óÁø ¼öȹ°À» Á¦Á¶ÇÏ°í »ç¿ëÇÒ ¶§ ÀÌ·¯ÇÑ ¿äÀÎÀ» °í·ÁÇÏ´Â »ý»êÀÚ´Â ¸Å¿ì Àû½À´Ï´Ù.
¿ø·á ºÎÁ·°ú °ø±Þ¸Á È¥¶õÀ¸·Î ÀÎÇØ COVID-19´Â ¾÷°è ¼ºÀå¿¡ Å« ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ±×·¯³ª À¯Çà ÈÄ ÀǾàǰ ºÎ¹® Æø¹ßÀû ¼ºÀåÀÌ »ê¾÷ È®´ë¸¦ °ßÀÎÇß½À´Ï´Ù. ¶ÇÇÑ, ¹ßÆ÷ ½ºÆ¼·Ñ »ý»êÀÚ´Â ºñÁß¿ä ¿ëµµ »ý»ê¾÷¹« Á¤Áö³ª Á¦ÇÑÀ» Ã˱¸Çϰí ÀÖ½À´Ï´Ù. ±×·¯³ª Äڷγª ¹ÙÀÌ·¯½º À¯ÇàÀÌ Á¦¾à »ê¾÷°ú ¼öó¸® ¾÷°è È÷µå¶óÁø ¼öȹ° ¼ö¿ä¿¡ ¿µÇâÀ» ¹ÌÄ£´Ù°í »ý°¢ÇÏ±â ¾î·Æ½À´Ï´Ù. ÀÌ ±â°£ µ¿¾È ¹ß»ýÇÏ´Â ¼Õ½ÇÀº ÀǾàǰ Áß°£Ã¼ ¹× À½·á¼ö ¼ö¿ä µîÀÇ ¿ëµµ¿¡ µû¶ó ´Ù¼Ò »ó¼âµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
60%-85% ºÎ¹®Àº À¯¸®ÇÑ ¼ºÀåÀ» ÀÌ·ê °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù. µ¿¹°¿ë ÀǾàǰ Á¦Á¶, ÈÇÐ ÇÕ¼º, ÁßÇÕ °øÁ¤, 60%-85% ³óµµ´Â Åë»ó, °³½ÃÁ¦³ª ¹ßÆ÷Á¦·Î¼, ¶Ç ´Ü¹ß Ç×°ø±â³ª F16 ÀüÅõ±â ºñ»ó¿ë µ¿·Â ÀåÄ¡(EPU) ÃßÁøÁ¦·Î¼ ÀÌ¿ëµÇ°í ÀÖ½À´Ï´Ù. ½ÃÀå Á¡À¯À²Àº ³óµµ 60%-85% È÷µå¶óÁø ¼öȹ°ÀÌ ¾ÐµµÀûÀÔ´Ï´Ù.
°¡Àå ºü¸£°Ô ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â °Ç ÁßÇÕ ºÎ¹®ÀÔ´Ï´Ù. ¸Å¿ì ¹ÝÀÀ¼ºÀÌ ³ô°í ºÒ¾ÈÁ¤ÇÑ ¹«±â ¹°ÁúÀÔ´Ï´Ù. ¹«Ãë ¹°Áú·Î °ÇÑ Çâ±â°¡ ÀÖ½À´Ï´Ù. °Ô´Ù°¡, È÷µå¶óÁø ¼öȹ°Àº °í¹« ¹× ÇÃ¶ó½ºÆ½À» À§ÇÑ ÈÇÐÁ¦Ç° Á¦Á¶¿¡ »ç¿ëµË´Ï´Ù. È÷µå¶óÁø ¼öȹ° ½ÃÀåÀº ÀÚµ¿Â÷, ÀüÀÚ Àåºñ, ½Å¹ß µî ´Ù¾çÇÑ ÃÖÁ¾ »ç¿ëÀÚ, ºÐ¾ß °íºÐÀÚ Á¦Ç° ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó °ßÀε˴ϴÙ.
¼öó¸® ¼ö¿ä Áõ°¡·Î ºÏ¹Ì°¡ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. È÷µå¶óÁø ¼öȹ°Àº ¹° Á¤È¿Í ǰÁú Çâ»óÀ» À§ÇØ »ó¾÷, °¡Á¤ ºÐ¾ßÀÇ ¼ö󸮿¡ ³Î¸® »ç¿ëµÇ°í ÀÖÀ¸¸ç, À̰ÍÀÌ ½ÃÀå ¼ºÀåÀ» Å©°Ô µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. È÷µå¶óÁø ¼öȹ°Àº ¹° ¸ÕÁö, º´¿ø±Õ, »ì±ÕÁ¦¸¦ Á¦°ÅÇÏ´Â µ¥ »ç¿ëµË´Ï´Ù. ¶ÇÇÑ Á¦¾à ºÐ¾ß´Â È÷µå¶óÁø ¼öȹ°À» »ç¿ëÇÑ ÀǾàǰ »ý»êÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç, ÀÌ ºÐ¾ß È®´ë¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù.
´Ù¾çÇÑ »ê¾÷ È÷µå¶óÁø ¼öȹ° ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ¾Æ½Ã¾ÆÅÂÆò¾ç °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. È÷µå¶óÁø À¯µµÃ¼´Â ÇÃ¶ó½ºÆ½ »ê¾÷ ¹ßÆ÷Á¦ ¹× ÁßÇÕ °³½ÃÁ¦ Á¦Á¶¿¡ »ç¿ëµË´Ï´Ù. ¶ÇÇÑ ÀÌ·¯ÇÑ ÈÇÕ¹°À» »ç¿ëÇÏ¿© Æú¸®¸Ó¸¦ ¸¸µé °¡´É¼ºµµ ¿¬±¸µÇ¾ú½À´Ï´Ù. °Ô´Ù°¡ °ÇÃà, ÀÚµ¿Â÷, Æ÷Àå »ê¾÷ ±Þ¼ºÀåÀ¸·Î ÀÎÇØ Æú¸®¸Ó ¹ßÆ÷ü ¼ö¿ä°¡ ³ô¾ÆÁö°í ÀÖÀ¸¸ç, ÀÌ´Â ½ÃÀå ¼ºÀåÀ» °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Hydrazine Hydrate Market is accounted for $257.9 million in 2023 and is expected to reach $436.4 million by 2030 growing at a CAGR of 7.8% during the forecast period. The chemical compound hydrate of hydrazine is highly reactive, colourless, and pungent-smelling. It is mostly utilised in water treatment, pharmaceutical manufacturing, and polymerization. It is frequently employed as a foaming agent in the production of polymers. In addition to being utilised as rocket fuel, hydrazine hydrate is also used to make the petrol precursors for automobiles. Additionally, spacecraft employ hydrazine as a propellant to lower the amount of dissolved oxygen in the atmosphere.
According to a recent report published by Central Pollution Control Board (March 2021), India's current water treatment capacity is 27.3%, and the sewage treatment capacity is 18.6%. According to the Ministry of Jal Shakti of the Government of India, in FY 2022, the percentage of the rural population having access to safe and adequate drinking water within premises increased to 61.52% from 55.23% in FY2 021.
The demand for hydrazine hydrate-based fuel cells has increased as a result of the growing need to reduce carbon emissions into the atmosphere. This is leading to a marked increase in the demand for hydrazine hydrate and, as a result, is creating enormous market potential for industry participants. Additionally, it is anticipated that the use of hydrazine hydrate as a useful alternative for hydrogen and oxygen in fuel cells will offer market participants lucrative opportunities.
When kept in an unstable form, hydrazine hydrate is a potent reducing agent, highly reactive, and unstable inorganic chemical molecule that is quite explosive. Additionally, animals have reported experiencing chronic negative consequences from the inhalation of hydrazine hydrate, which include negative effects on the thyroid, liver, spleen, and lungs. Additionally, it is carcinogenic and poisonous, which pose a severe risk to the market's expansion for hydrazine hydrate.
The need for high yield agriculture is rising as a result of the exponential increase in world population, growing concerns about food security, and a decline in the amount of arable land. As a result, more crop protection measures including fungicides and insecticides are being used. Additionally, hydrazine hydrate can boost plant development, enhance soil quality, and raise crop production. As a result, it is widely employed in many agrochemical applications, which stimulates the industry's expansion.
Most of the hydrazine hydrate is discharged as water, in lower amounts, into the air and soil. For aquatic species and plant life, it is particularly dangerous due to its carcinogenic qualities. Additionally, hydrazine's breakdown in water may take a while depending on the environment. The correct handling, storage, and disposal of hydrazine hydrate waste, on the other hand, can prevent soil, water, and air contamination. Only a small number of producers consider these factors when producing and using hydrazine hydrate.
Due to the scarcity of raw materials and the disruption of the supply chain, COVID-19 had a significant influence on industry growth. After the epidemic, however, the pharmaceutical sector's explosive growth drove industrial expansion. Additionally, producers of foam are being pushed to halt or restrict production operations for non-critical uses. The corona virus outbreak is unlikely to have an impact on the demand for hydrazine hydrate in the pharmaceutical and water treatment industries, though. Any losses incurred during this time are anticipated to be somewhat offset by applications like pharmaceutical intermediates and the demand for potable water.
The 60%-85% segment is estimated to have a lucrative growth. In the production of veterinary pharmaceuticals, chemical synthesis, and polymerization processes, 60%-85% concentration level is typically utilised as an initiator or blowing agent as well as a propellant in emergency power units (EPU) in single-engine aircraft and F16 fighter aircrafts. The market share was dominated by hydrazine hydrate at a concentration of 60%-85%.
The polymerization segment is anticipated to witness the fastest CAGR growth during the forecast period. A very reactive and unstable inorganic substance is hydrazine hydrate. It is an odourless substance with a strong scent. In addition, hydrazine hydrate is employed in the production of chemicals for rubber and plastic. The market for hydrazine hydrate is being driven by the rising demand for polymer goods in a variety of end-user sectors, including automotive, electronic device, and footwear.
North America is projected to hold the largest market share during the forecast period owing to the increasing demand for water treatment. Hydrazine hydrate is widely used for water treatment in both the commercial and domestic sectors to purify and improve the quality of water, which is considerably boosting the market's growth. It is used to remove dust particles, pathogens, and disinfectants from the water. In addition, the growing production of numerous medications using hydrazine hydrate in the pharmaceutical sector is fueling the expansion of the sector.
Asia Pacific is projected to have the highest CAGR over the forecast period, owing to the rising demand for hydrazine hydrate in various industries. Hydrazine derivatives are used in the manufacture of blowing agents and polymerization initiators in the plastics industry. Additionally, the possibility of creating polymers with these compounds is being researched. Additionally, the demand for polymer foams is rising due to the rapid growth of the construction, automotive, and packaging industries, which is subsequently accelerating the growth of the market.
Some of the key players profiled in the Hydrazine Hydrate Market include: GFS Chemicals Inc., Bayer AG, Mil-Spec Industries, Inc., Arrow Fine Chemicals, Fison, Sandrine Corporation, Lansdowne Chemicals Plc, Haviland USA, Chemtex Specialty Limited., Palm Commodities International, LLC, Charkit Chemical Company LLC, Arkema, Spectrum Chemical, Japan Finechem Inc., Chemicals Incorporated, Nippon Carbide Industries Co.,, BOC Sciences, Capot Chemical Co. Ltd, Lonza Group Ltd. and Layson Bio, Inc.