![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1351037
¼¼°èÀÇ ¹ÙÀÌ¿À ¾ÆÅ©¸±»ê ½ÃÀå ¿¹Ãø(-2030³â) : À¯Çü, ¿ëµµ ¹× Áö¿ªº° ºÐ¼®Bio-Acrylic Acid Market Forecasts to 2030 - Global Analysis By Type (2-Ethylhexy Acrylate, Butyl Acrylate, Methyl Acrylate, Ethyl Acrylate, Super Absorbent Polymer, Elastomers and Other Types), Application and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¹ÙÀÌ¿À ¾ÆÅ©¸±»ê ¼¼°è ½ÃÀåÀº 2023³â 71¾ï ´Þ·¯·Î ¿¹Ãø ±â°£ µ¿¾È 8.7%ÀÇ CAGR·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 128¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¹ÙÀÌ¿À ¾ÆÅ©¸±»êÀº UV, Èí¼öÁ¦, ÃæÁøÁ¦, À¯±â ¿ë¸Å, Á¢ÂøÁ¦ µî ¸¹Àº Ư¼ºÀ» °¡Áö°í Àֱ⠶§¹®¿¡ ¿Üº® ÆäÀÎÆ®¿¡ ³Î¸® »ç¿ëµÇ°í ÀÖÀ¸¸ç, ÆäÀÎÆ® ¹× ÄÚÆÃÁ¦ Á¦Á¶¿¡ ´ëÇÑ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¾ÆÅ©¸±»êÀÇ ÁÖ¿ä ¿ëµµ´Â ÁÖ·Î ÆäÀÎÆ®¿Í Á¢ÂøÁ¦¿¡ ÁÖ·Î »ç¿ëµÇ´Â ¾ÆÅ©¸±»ê ¿¡½ºÅ׸£¿Í ¼öÁöÀÇ Á¦Á¶ÀÔ´Ï´Ù. ¶ÇÇÑ ¼öó¸® ¾àǰ, ¼¼Á¦ Áß°£Ã¼, À¯Ã³¸® ¾àǰ, Èí¼ö¼º Æú¸® ¾ÆÅ©¸±»ê ÁßÇÕü µî¿¡µµ ÀÌ¿ëµÇ°í ÀÖ½À´Ï´Ù.
°æÁ¦»ê¾÷¼º¿¡ µû¸£¸é 2021³â ÀϺ»ÀÇ ÇÕ¼º¼öÁö µµ·á »ý»ê·®Àº ¾à 101¸¸ ÅæÀ¸·Î ¾öû³ ¾çÀÇ µµ·á¸¦ »ý»êÇϰí ÀÖ½À´Ï´Ù. ÀüüÀûÀ¸·Î ÆäÀÎÆ® »ý»ê·®Àº 2020³â 150¸¸ Åæ¿¡¼ 2021³â¿¡´Â 153¸¸ Åæ¿¡ À°¹ÚÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¾ÆÅ©¸±·¹ÀÌÆ®¿Í °íÈí¼ö¼º °íºÐÀÚ ½ÃÀåÀº ÃÖÁ¾ ¿ëµµ ¹× ½Å±Ô ¿ëµµ ¸ðµÎ¿¡¼ ¼ö¿ä°¡ Áõ°¡ÇÏ¸é¼ ºü¸£°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. °íÈí¼ö¼º Æú¸®¸Ó´Â ¾Ð·ÂÀ» °¡Çصµ ¼Òº¯À̳ª ¿°ºÐÀ» Æ÷ÇÔÇÑ Ã¼¾×ÀÇ ¹«°Ô¸¦ °ßµô ¼ö ÀÖ´Â ÇÃ¶ó½ºÆ½ÀÔ´Ï´Ù. ÀÔ»ó ¹é»ö ºÐ¸»·Î ³ó¾÷¿ë ¸Öΰú ½Å»ý¾Æ ±âÀú±Í¿¡ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. Àü·«Àû È®ÀåÀÇ ÁÖ¿ä ¹è°æ¿¡´Â ÃÖÁ¾ ¿ëµµ ¹× ½ÅÈï ¿ëµµÀÇ ¼ö¿ä Áõ°¡°¡ ÀÖ½À´Ï´Ù.
¹ÙÀÌ¿À ±â¹Ý ¾ÆÅ©¸± Á¦Á¶¿¡ »ç¿ëµÇ´Â À§ÇèÇÑ µ¶¼º ¹× ÈÇÐÁ¦Ç°¿¡ ´ëÇÑ ¿ì·Á°¡ ½ÃÀå ¼öÀÍ ¼ºÀåÀ» ÀúÇØÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ ÈÇÐÁ¦Ç°Àº Àç»ý °¡´ÉÇÑ ÀÚ¿øÀ¸·Î ¸¸µé¾îÁ³Áö¸¸, Á¦Á¶ °úÁ¤¿¡¼ µ¶¼º ÈÇÕ¹°°ú µ¶±Ø¹°ÀÌ »ç¿ëµË´Ï´Ù. ¶ÇÇÑ, ÈÇÐÁ¦Ç°¿¡ Á÷Á¢ Á¢ÃËÇÒ ¶§ º¸È£ Àåºñ¸¦ »ç¿ëÇÏ¸é ´«, ÄÚ, Æó¿¡ ¿°Áõ°ú È»óÀ» À¯¹ßÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ´Â ½ÃÀå ¼öÀÍ Áõ°¡¸¦ µÐȽÃų ¼ö ÀÖ´Â ¸î °¡Áö ¿äÀÎÀÔ´Ï´Ù.
»ýü ÀûÇÕ¼ºÀ» º¸ÀåÇÏ°í ºñƯÀÌÀû Èí¼ö¸¦ Á¦ÇÑÇÏ´Â °íºÐÀÚ ÄÚÆÃ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ÀÌ ÈÇÐÁ¦Ç°ÀÇ »ç¿ë ºóµµ°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¹ÙÀÌ¿À ±â¹Ý ¾ÆÅ©¸± ÄÚÆÃÀº °í¹ÐµµÀÇ Ä«¸£º¹½Ç±â¸¦ ÇÔÀ¯Çϰí Àֱ⠶§¹®¿¡ ¹ÙÀÌ¿À ¸ÞµðÄà ÀÀ¿ë ºÐ¾ß¿¡¼ ÀÚÁÖ »ç¿ëµË´Ï´Ù. ¼¼Æ÷ ¹è¾ç ±âÁúµµ ¹ÙÀÌ¿À ¸ÞµðÄà »ê¾÷¿¡¼ ÀÌ·¯ÇÑ ÈÇÕ¹°ÀÇ ÀÀ¿ë ºÐ¾ß Áß ÇϳªÀÔ´Ï´Ù. µû¶ó¼ ÈÇÐ »ê¾÷ ¹× ¹ÙÀÌ¿À ¸ÞµðÄà »ê¾÷¿¡¼ ¹ÙÀÌ¿À ¾ÆÅ©¸±»êÀÇ »ç¿ëÀÌ Áõ°¡ÇÏ¿© Àü ¼¼°è ¼öÀÍ ¼ºÀåÀ» ÃËÁøÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
ºñ±³Àû »õ·Î¿î ±â¼úÀÎ ¹ÙÀÌ¿À ¾ÆÅ©¸±»ê »ý»ê¿¡´Â ¸¹Àº ¿¬±¸°³¹ßÀÌ ÇÊ¿äÇÕ´Ï´Ù. ÀÌ ¿¬±¸ °³¹ß ºñ¿ëÀº ¹ÙÀÌ¿À ¾ÆÅ©¸±»êÀÇ »ý»ê °¡°ÝÀ» »ó½Â½Ãų ¼ö ÀÖ½À´Ï´Ù. ¹ÙÀÌ¿À ¾ÆÅ©¸±»ê »ý»êÀ» À§ÇÑ ¿ø·á´Â ±âÁ¸ÀÇ ¾ÆÅ©¸±»ê »ý»ê¿¡ ÇÊ¿äÇÑ ¼®À¯ÈÇÐÁ¦Ç°º¸´Ù ´õ ºñ½Ò ¼ö ÀÖ½À´Ï´Ù. ¹ÙÀÌ¿À ¾ÆÅ©¸±»ê »ý»êÀÇ ¼öÀ²ÀÌ ¿©ÀüÈ÷ »ó´ëÀûÀ¸·Î ³·±â ¶§¹®¿¡ ±âÁ¸ ¾ÆÅ©¸±»ê°ú µ¿ÀÏÇÑ ¾çÀÇ ¹ÙÀÌ¿À ¾ÆÅ©¸±»êÀ» »ý»êÇϱâ À§Çؼ´Â ´õ ¸¹Àº ¿ø·á°¡ ÇÊ¿äÇÕ´Ï´Ù.
COVID-19ÀÇ ´ëÀ¯ÇàÀº °Ç¼³¾÷°è¿¡ ¹°·ù ¹®Á¦¿Í ¿øÀÚÀç ÆÄ»ý»óǰÀÇ Á¾·ù ºÎÁ·À» ¾ß±âÇϰí ÀÖ½À´Ï´Ù. ±ÝÀ¶ ½ÃÀåÀÇ ±Þ¶ôÀ¸·Î ÀÎÇØ Àü ¼¼°è °Ç¼³ ÅõÀÚ°¡ °¨¼Ò ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±× °á°ú ¾ÆÅ©¸±»ê¿¡ ´ëÇÑ ¼ö¿ä°¡ °¨¼ÒÇϰí ÀÖ½À´Ï´Ù. ¹ÙÀÌ·¯½ºÀÇ ¿µÇâÀ» ¸·±â À§ÇØ ½ÃÇàµÇ´Â Á¤ºÎ ±ÔÁ¦´Â ¿øÀÚÀç, Àη ¹× ÀÚ¿ø ºÎÁ·, °ø±Þ¸Á Áß´ÜÀ¸·Î À̾îÁ® °è¾à»óÀÇ Àǹ«¸¦ ÀÌÇàÇÏ´Â µ¥ ¾î·Á¿òÀ» °ÞÀ» ¼ö ÀÖ½À´Ï´Ù.
¿¤¶ó½ºÅä¸Ó ºÎ¹®Àº ¾ÆÅ©¸± ÆäÀÎÆ® ¹× ÄÚÆÃ¿¡¼ ¿¤¶ó½ºÅä¸ÓÀÇ »ç¿ë Áõ°¡·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¿¤¶ó½ºÅä¸Ó´Â ¾ÆÅ©¸±»ê¿¡ ÀÚÁÖ »ç¿ëµÇ¾î ź¼ºÀ» ºÎ¿©Çϰí Áú°¨À» Çâ»ó½Ãŵ´Ï´Ù. ¶ÇÇÑ, ³ôÀº ¿ ¾ÈÁ¤¼º°ú ³»À¯¼ºÀ¸·Î ÀÎÇØ ¸¹Àº »ê¾÷ ºÐ¾ß¿¡¼ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ´Â ÀÌ ºÎ¹®ÀÇ ¼ºÀåÀ» ÃËÁøÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
À§»ý¿ëǰ ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. »ý¸®´ë, »ý¸®ÄÅ, ŽÆù, Áú °ü¸® Á¦Ç° µî ¿©¼º À§»ý¿ëǰ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ ¹ÙÀÌ¿À¾ÆÅ©¸±ÀÇ »ç¿ë ºóµµ°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¹ÙÀÌ¿À ¾ÆÅ©¸±»êÀº Èí¼ö¼ºÀÌ ¶Ù¾î³ª°í ½À±â·Î ÀÎÇÑ ÇǺΠ°¡·Á¿òÁõÀ» ¿ÏÈÇÏ´Â È¿°ú°¡ ÀÖ¾î À¯¾Æ¿ë ±âÀú±Í¿Í ¼ºÀÎ¿ë ±âÀú±Í¿¡µµ ÀÚÁÖ »ç¿ëµË´Ï´Ù. ÀÌ·¯ÇÑ ¿ä¼Ò´Â ÀÌ ºÎ¹®ÀÇ ¼öÀÍ ¹ßÀüÀ» ÃËÁøÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
ºÏ¹Ì Áö¿ªÀº ¼¼Á¦ ¹× ¾×ü ¼¼Á¤Á¦¿¡¼ ¹ÙÀÌ¿À ¾ÆÅ©¸±»ê¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ Àç»ý °¡´É Á¦Ç° ¹× ¹ÙÀÌ¿À ±â¹Ý Á¦Ç° »ç¿ëÀÇ È¯°æÀû ÀÌÁ¡¿¡ ´ëÇÑ Áö½ÄÀÌ Áõ°¡Çϰí ȯ°æ¿¡ Áö¼Ó°¡´ÉÇÑ ¹æ½ÄÀ¸·Î ÀÌ·¯ÇÑ Á¦Ç°À» »ç¿ëÇØ¾ß ÇÑ´Ù´Â ÀνÄÀÌ ³ô¾ÆÁö´Â °Íµµ ½ÃÀå ¼öÀÍ ¼ºÀå¿¡ ±â¿©ÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ¿äÀÎ Áß ÇϳªÀÔ´Ï´Ù.
¾Æ½Ã¾ÆÅÂÆò¾çÀº ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» À¯ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¹ÙÀÌ¿À ¾ÆÅ©¸±»êÀÇ ¼ö¿ä´Â »ê¾÷ Ȱµ¿ÀÇ È®Àå°ú ÇÔ²² È®´ëµÇ°í ÀÖ½À´Ï´Ù. ÆäÀÎÆ® ¹× ÄÚÆÃ, °è¸éȰ¼ºÁ¦, Á¢ÂøÁ¦ ¹× ½Ç¶õÆ® ¹× ±âŸ ÀÀ¿ë ºÐ¾ß¿¡¼ ¹ÙÀÌ¿À ¾ÆÅ©¸±»ê¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â ±¹°¡ °æÁ¦ Ȱµ¿ÀÇ º¯ÈÀÇ °á°úÀÔ´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â ½Å±Ô ½Ã¼³ÀÇ °Ç¼³°ú ±âÁ¸ °øÀåÀÇ ¿ë·® È®ÀåÀ¸·Î ÀÎÇØ ÇâÈÄ¿¡µµ °è¼ÓµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
According to Stratistics MRC, the Global Bio-Acrylic Acid Market is accounted for $7.1 billion in 2023 and is expected to reach $12.8 billion by 2030 growing at a CAGR of 8.7% during the forecast period. Bio-acrylic acid is widely used in external wall paints due to its many features such as UV, absorbent, filler, organic solvent, and adhesives, which has increased its adoption for making paints and coatings. The manufacturing of acrylic esters and resins, which are largely utilized in coatings and adhesives, is the main usage of acrylic acid. Additionally, it is utilized in water treatment chemicals, detergent intermediates, oil treatment chemicals, and polyacrylic acid polymers that absorb water.
According to the Ministry of Economy, Trade, and Industry (Japan), the production volume of synthetic resin paints in Japan amounted to approximately 1.01 million metric tons in 2021, making up an enormous production volume of paints. Overall, paints' production volume increased to nearly 1.53 million metric tons in 2021, compared to 1.50 million metric tons in 2020.
The demand from both established and new end-use applications is driving a rapid expansion of the market for acrylates and superabsorbent polymers. Superabsorbent polymers are plastics that can hold up the weight of urine and other salty bodily fluids even under pressure. They are utilized in agricultural mulching and newborn diapers as a grainy, white powder. The main reasons behind strategic expansions include rising demand from end-use applications and emerging applications.
It is anticipated that worries about dangerous toxins and chemicals utilized in the manufacture of bio-based acrylic will impede market revenue growth. Although this chemical is made from renewable resources, some toxic compounds and poisons are still employed in its manufacturing. In addition, it causes irritation of the eyes, nose, lungs, and burns when protective equipment is used while coming into direct contact with chemicals. These are a few things that could slow the increase in market revenue.
This chemical is being used more frequently as a result of rising demand for polymer coatings that ensure biocompatibility and limit non-specific absorption. Because they contain high and dense carboxylic groups, bio-based acrylic coatings are frequently used in biomedical applications. Cell cultured substrates are another use for such compounds in the biomedical industry. This is projected to increase the use of bio-acrylic acid in the chemical and biomedical industries and boost global revenue growth.
As a relatively new technique, bio-acrylic acid production needs a lot of research and development. The cost of this research and development may increase the price of producing bio-acrylic acid. Feedstocks for bio-acrylic acid production may be more expensive than the petrochemicals needed to make conventional acrylic acid. Due to the still-relatively low yield of bio-acrylic acid manufacturing, more raw materials are needed to create the same amount of bio-acrylic acid as conventional acrylic acid.
The COVID-19 pandemic has caused logistical challenges and a lack of raw derivative type for the construction industry. Global construction investments are predicted to have decreased as a result of the sharp decline in financial markets. As a result, there is less demand for acrylic acid. Governmental restrictions put in place to battle the virus's effects may lead to a shortage of raw materials, people, and resources, as well as interrupted supply chains, which will make it harder to fulfill contractual obligations.
The elastomers segment is expected to be the largest during the forecast period, owing to the rising usage of elastomers in acrylic paints and coatings. These are frequently employed in acrylic acid to give stretchability and enhance the texture of items, which is driving up demand for it. They are also employed in numerous industrial applications due to their strong thermal stability and oil resistance. These are a few things that are predicted to fuel the segment's expansion.
The sanitary products segment is expected to have the highest CAGR during the forecast period. Bio-acrylic is being used more frequently as a result of rising demand for feminine hygiene products such sanitary pads, menstrual cups, tampons, and vaginal wellness items. Due to their very absorbent qualities and ability to heal itchy skin brought on by moisture, these acids are also frequently employed in infant and adult diapers. It is anticipated that these elements would fuel segment revenue development.
North America is projected to hold the largest market share during the forecast period, owing to the rising demand for bio-acrylic acid in detergents powders and liquid cleaning agents. Additional factors that are anticipated to contribute to market revenue growth include growing knowledge of the environmental advantages of using renewable and bio-based products as well as rising awareness of the need to use such products in a way that is sustainable for the environment.
Asia Pacific is projected to hold the highest CAGR over the forecast period. The need for bio-acrylic acid has expanded as a result of expanding industrial operations. Growing demand for bio-acrylic acid in paints and coatings, surfactants, adhesives and sealants, and other uses is a result of changes in the nation's economic activity. With the construction of new facilities and the expansion of capacity at existing plants, this trend is anticipated to last into the future.
Some of the key players in Bio-Acrylic Acid market include: China Petroleum & Chemical Corporation, The Lubrizol Corporation, Arkema S.A., Mitsubishi Chemical Holdings Corporation, The Dow Chemical Company, PTTGC Innovation America Corporation, Evonik Industries AG, Formosa Plastics Corporation, SIBUR International GmbH, Saudi Acrylic Monomer Company Limited, Archer-Daniels-Midland Company, Polysciences, Inc., Cargill, Incorporated, Nippon Shokubai co., Ltd, Sasol Limited and The Lubrizol Corporation.
In April 2023, Sasol Chemicals, a business unit of Sasol Ltd. and Mission Possible Partnership (MPP) announced a collaboration to evaluate potential projects for Sasol's sustainability hub at its Lake Charles, La. location.
In May 2023, Dow and New Energy Blue announced a long-term supply agreement in North America in which New Energy Blue will create bio-based ethylene from renewable agricultural residues. Dow expects to purchase this bio-based ethylene, reducing carbon emissions from plastic production, and using it in recyclable applications across transportation, footwear, and packaging.
In January 2023, Holiferm Limited and Sasol Chemicals announced collaboration to produce and market rhamnolipids and mannosylerythritol lipids (MELs). This collaboration expands the partnership announced in March 2022 between the two companies to develop and commercialise another biosurfactant product, sophorolipids.