½ÃÀ庸°í¼­
»óÇ°ÄÚµå
1351123

¼¼°èÀÇ Àü±âÀÚµ¿Â÷¿ë Åë½Å ÄÁÆ®·Ñ·¯ ½ÃÀå ¿¹Ãø(-2030³â) : ½Ã½ºÅÛº°, Â÷·® À¯Çüº°, Àü·ù À¯Çüº°, ÃæÀü À¯Çüº°, ¿ëµµº°, Áö¿ªº° ºÐ¼®

Electric Vehicle Communication Controller Market Forecasts to 2030 - Global Analysis By System (EV Communication Controller and Supply Equipment Communication Controller ), Vehicle Type, Current Type, Charging Type, Application and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 175+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óÇ°Àº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é Àü±âÀÚµ¿Â÷¿ë Åë½Å ÄÁÆ®·Ñ·¯ ¼¼°è ½ÃÀåÀº 2023³â 1¾ï 8,783¸¸ ´Þ·¯, 2030³â¿¡´Â 15¾ï 9,982¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç ¿¹Ãø ±â°£ µ¿¾È 35.8%ÀÇ CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

Àü±âÂ÷ Åë½Å ÄÁÆ®·Ñ·¯(EVCC)´Â Àü±âÀÚµ¿Â÷(EV) ÃæÀü ÀÎÇÁ¶ó¿¡¼­ Áß¿äÇÑ ±¸¼º¿ä¼Ò·Î, EVCC´Â Àü±âÀÚµ¿Â÷¿Í ÃæÀü Àåºñ °£ÀÇ Åë½Å ÀÎÅÍÆäÀ̽º ¿ªÇÒÀ» Çϸç, EVCC´Â ÃæÀü °úÁ¤¿¡¼­ ¼ÒºñµÇ´Â ¿¡³ÊÁö¸¦ ÃßÀûÇÏ°í, EVCC´Â ÃæÀü °úÁ¤À» ¾ÈÀüÇÏ°Ô ¼öÇàÇϱâ À§ÇÑ ¾ÈÀü ±â´ÉÀ» ³»ÀåÇÏ°í ÀÖ½À´Ï´Ù.´Â ÃæÀü °úÁ¤À» ¾ÈÀüÇÏ°Ô ¼öÇàÇϱâ À§ÇÑ ¾ÈÀü ±â´ÉÀÌ ³»ÀåµÇ¾î ÀÖÀ¸¸ç, EVCC´Â ½ÃÀÛ ¹× Á¤Áö ½Ã°£, ¿¡³ÊÁö ¼Òºñ·®, ÃæÀü ¸Å°³º¯¼ö¿Í °°Àº ÃæÀü ¼¼¼Ç µ¥ÀÌÅ͸¦ ±â·ÏÇÒ ¼ö ÀÖ½À´Ï´Ù.

¹Ì±¹ ±³ÅëºÎ¿¡ µû¸£¸é, ÃæÀü¼Ò´Â Àüü ÄÚ¸®´õ¿¡ 50¸¶ÀÏ(¾à 8.6km)¸¶´Ù ¼³Ä¡µÉ ¿¹Á¤ÀÔ´Ï´Ù. ÀÌ ÇÁ·ÎÁ§Æ®´Â ÃÊ´çÀû ÀÎÇÁ¶ó ¹ý¿¡ ÀÇÇØ ÀÚ±ÝÀÌ Áö¿øµÇ¸ç, 50¸¸ °³ÀÇ °ø°ø Àü±âÂ÷ ÃæÀü±â Àü±¹ ³×Æ®¿öÅ©¸¦ À§ÇØ ¿¬¹æ Á¤ºÎ·ÎºÎÅÍ 75¾ï ´Þ·¯ÀÇ ´ëÃâÀ» ¹Þ¾Ò½À´Ï´Ù.

È¿À²ÀûÀÎ ÃæÀü½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡

EVÀÇ ÀαⰡ ³ô¾ÆÁü¿¡ µû¶ó, ´Ã¾î³ª´Â Àü±âÀÚµ¿Â÷¿Í Àü±â Æ®·°À» Áö¿øÇÒ ¼ö ÀÖ´Â ¾ÈÁ¤ÀûÀÌ°í È¿À²ÀûÀÎ ÃæÀü ÀÎÇÁ¶ó¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÏ°í ÀÖ½À´Ï´Ù. Á¤ºÎ, Á¶Á÷ ¹× °³ÀÎÀº ź¼Ò ¹èÃâ·®À» ÁÙÀÌ°í ±âÈÄ º¯È­¿¡ ´ëÀÀÇϱâ À§ÇØ Á¡Á¡ ´õ ¸¹Àº ³ë·ÂÀ» ±â¿ïÀÌ°í ÀÖ½À´Ï´Ù. È¿À²ÀûÀÎ ÃæÀü ½Ã½ºÅÛÀº ´ë±â¿À¿°°ú ¿Â½Ç°¡½º ¹èÃâÀ» À¯¹ßÇÏ´Â È­¼®¿¬·á¿¡¼­ ¹þ¾î³¯ ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù. ¶ÇÇÑ °£ÇæÀûÀÎ ¿¡³ÊÁö ¹ßÀüÀÇ °ü¸®¸¦ °³¼±ÇÏ°í Àç»ý ºÒ°¡´ÉÇÑ ¿¡³ÊÁö ¿ø¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀÌ´Â µ¥µµ µµ¿òÀÌ µË´Ï´Ù. ¶ÇÇÑ °í¼Ó ÃæÀü ³×Æ®¿öÅ©, ºñ¿ë Àý°¨, ±â¼ú ¹ßÀü, Àü·Â¸Á º¹¿ø·Â °­È­ µîÀÌ ½ÃÀå ¼ºÀåÀ» ÃËÁøÇÏ°í ÀÖ½À´Ï´Ù.

¾ö°ÝÇÑ ±ÔÁ¦ ¹× ±âÁØ

Àü±âÂ÷ Åë½Å ÄÁÆ®·Ñ·¯(EVCC)´Â Àü±âÀÚµ¿Â÷ ÃæÀü ÀÎÇÁ¶óÀÇ ¾ÈÀü¼º, »óÈ£¿î¿ë¼º, ±â´É¼ºÀ» º¸ÀåÇϱâ À§ÇØ ´Ù¾çÇÑ ¾ö°ÝÇÑ ±ÔÁ¦¿Í Ç¥ÁØÀ» ÁؼöÇØ¾ß Çϸç, EVCCÀÇ µðÁöÅÐ ±â¼ú ÅëÇÕÀÌ Áõ°¡ÇÔ¿¡ µû¶ó »çÀ̹ö º¸¾È Ç¥ÁØÀÌ Á¡Á¡ ´õ Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù. EVCC´Â Àü±âÂ÷ ÃæÀü ÀÎÇÁ¶ó¸¦ °ü¸®ÇÏ´Â Áö¿ª, Áö¿ª ¹× ±¹°¡ ±ÔÁ¤À» ÁؼöÇØ¾ß Çϸç, EVCC Á¦Á¶¾÷ü¿Í °³¹ßÀÚ´Â ¾ö°ÝÇÑ Å×½ºÆ® ¹× ÀÎÁõ °úÁ¤À» °ÅÃÄ¾ß ÇÏ°í, ÀÌ´Â ½ÃÀå ¼ö¿ä¸¦ ÀúÇØÇÏ´Â ¿äÀÎÀ¸·Î ÀÛ¿ëÇÏ°í ÀÖ½À´Ï´Ù.

EV ÀÎÇÁ¶ó ±¸Ãà¿¡ ´ëÇÑ °ü½É Áõ°¡

¼¼°è °¢±¹ Á¤ºÎ´Â Àü±âÂ÷ º¸±ÞÀ» ÃËÁøÇϱâ À§ÇØ ´Ù¾çÇÑ Á¤Ã¥°ú Àμ¾Æ¼ºê¸¦ ½ÃÇàÇÏ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ³ë·Â¿¡´Â Àü±âÂ÷ ÃæÀü ÀÎÇÁ¶ó ±¸Ãà¿¡ ´ëÇÑ ÀÚ±Ý Áö¿ø, ¼¼Á¦ ÇýÅÃ, ¸®º£ÀÌÆ®, ¹èÃâ·® °¨Ãà ¸ñÇ¥ µîÀÌ Æ÷ÇԵǴ °æ¿ì°¡ ¸¹½À´Ï´Ù. Áõ°¡ÇÏ´Â EV¸¦ Áö¿øÇϱâ À§Çؼ­´Â źźÇÑ ÃæÀü ÀÎÇÁ¶ó°¡ ÇÊ¿äÇϸç, EV ÀÎÇÁ¶ó ±¸ÃàÀÇ ÃßÁøÀº ÃæÀü ±â¼ú, ±×¸®µå °ü¸®, ¿¡³ÊÁö ÀúÀå µîÀÇ ºÐ¾ß¿¡¼­ ±â¼ú Çõ½ÅÀ» ÃËÁøÇÏ°í ´Ù¸¥ ºÐ¾ß¿¡µµ ÇýÅÃÀ» ÁÖ´Â ±â¼ú ¹ßÀüÀ» ÃËÁøÇÕ´Ï´Ù. ÀÌó·³ EV ÀÎÇÁ¶óÀÇ ±â¼ú Çõ½Å°ú °³¹ßÀº ½ÃÀå ¼ºÀåÀÇ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù.

Àü±âÀÚµ¿Â÷´Â °í°¡

Àü±âÂ÷¸¦ ¼ÒÀ¯ÇÏ´Â µ¥ µå´Â Ãʱ⠺ñ¿ëÀº ±âÁ¸ ÀÚµ¿Â÷º¸´Ù ³ô½À´Ï´Ù. ³ôÀº Ãʱ⠺ñ¿ëÀ¸·Î ÀÎÇØ ¸¹Àº ±¸¸Å Èñ¸ÁÀÚ°¡ Á¢±Ù ÇÒ ¼ö ¾ø¾î EVÀÇ ¼ö¿ä¸¦ Á¦ÇÑÇÏ°í ÀÖ½À´Ï´Ù. ÀÌ °¡°Ý Â÷ÀÌÀÇ ÁÖ¿ä ¿øÀÎÀº EV°¡ äÅÃÇÑ °í°¡ÀÇ ¹èÅ͸® ±â¼ú¿¡ ÀÖÀ¸¸ç, EV ÃæÀü¼Ò ¼³Ä¡¿¡´Â Ưº°ÇÑ ±â¼úÀû ¾ÈÀü¼ºÀÌ ¿ä±¸µË´Ï´Ù. Àü±âÀÚµ¿Â÷´Â ¾ö°ÝÇÑ ¾ÈÀü ±âÁØÀ» ÃæÁ·ÇÏ°í ±âÁ¸ ÀÚµ¿Â÷¿Í µ¿µîÇÑ ¼öÁØÀÇ ¾ÈÀü¼ºÀ» º¸ÀåÇϱâ À§ÇØ ´ë±Ô¸ð Å×½ºÆ®¸¦ °ÅÃÄ¾ß ÇÕ´Ï´Ù. ÀÌ´Â Ãß°¡ÀûÀÎ ¿£Áö´Ï¾î¸µ ºñ¿ë°ú Å×½ºÆ® ºñ¿ëÀÌ ¹ß»ýÇÕ´Ï´Ù. ÀÌ ¸ðµç ºñ¿ëÀÌ Â÷·® °¡°ÝÀ» ºñ½Î°Ô ¸¸µé¾î ½ÃÀå ¼ºÀåÀ» ÀúÇØÇÏ´Â ¿äÀÎÀ¸·Î ÀÛ¿ëÇÏ°í ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ:

COVID-19ÀÇ ´ëÀ¯ÇàÀº Àü±âÂ÷ Åë½Å ÄÁÆ®·Ñ·¯(EVCC)¿Í °°Àº ºÎÇ°À» Æ÷ÇÔÇÑ Àü±âÀÚµ¿Â÷(EV) »ê¾÷¿¡ Á÷°£Á¢ÀûÀÎ ¿µÇâÀ» ¹ÌÃƽÀ´Ï´Ù. Àü¿°º´Àº Àü ¼¼°è °ø±Þ¸ÁÀ» È¥¶õ¿¡ ºü¶ß·Á ÀüÀÚ ºÎÇ°ÀÇ »ý»ê°ú Á¶´Þ¿¡ ¿µÇâÀ» ¹ÌÃƽÀ´Ï´Ù. Á¦Á¶ ½Ã¼³Àº Æó¼â, »ý»ê ´É·Â °¨¼Ò, »ý»ê ¿ì¼± ¼øÀ§ º¯°æ, Æó¼â, »çȸÀû °Ý¸® Á¶Ä¡, ³ëµ¿·ÂÀÇ È¥¶õ¿¡ Á÷¸éÇß½À´Ï´Ù. Àü¿°º´Àº ȸº¹·Â°ú ÀûÀÀ·Â ÀÖ´Â ±â¼úÀÇ Çʿ伺À» °­Á¶Çß½À´Ï´Ù. ÀÌ´Â EVCCÀÇ ±â¼ú Çõ½Å°ú °³¹ßÀ» ÃËÁøÇÏ¿© ÃæÀü ÀÎÇÁ¶ó¸¦ ´õ¿í °ß°íÇÏ°Ô ¸¸µé°í È¥¶õÀ» °ßµô ¼ö ÀÖµµ·Ï ÇÒ ¼ö ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¹«¼± ÃæÀü ºÐ¾ß°¡ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»ó

¹«¼± ÃæÀü ºÐ¾ß´Â ¹«±ÞÀ¯ Àü±âÂ÷ ¹× ¶óÀ̵å¼Î¾î Àü±âÂ÷ÀÇ Ã¤Åà Áõ°¡·Î ÀÎÇØ ¼ºÀå¼¼¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Áß±¹, ¹Ì±¹ µî¿¡¼­´Â ÁÖ·Î ¹«¼± ÃæÀü ±â¼úÀ» »ç¿ëÇÏ´Â ¹«±ÞÀ¯ Àü±âÂ÷¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ´Ù¾çÇÑ ÀÚµ¿Â÷ Á¦Á¶¾÷ü¿Í OEMÀº ¹«¼± ÃæÀü ¼Ö·ç¼Ç¿ë EVCC¸¦ °³¹ßÇϱâ À§ÇÑ R&D È°µ¿À» ÁøÇàÇÏ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¹°¸®Àû ¼Ò¸ð °¨¼Ò, ÆíÀǼº ¹× »ç¿ë ÆíÀǼº, ÀÚµ¿È­µÈ ÃæÀü ÇÁ·Î¼¼½º, ÃæÀü ÀÎÇÁ¶ó ºñ¿ë Àý°¨ µîÀÇ ¿äÀÎÀÌ ÀÌ ºÎ¹®ÀÇ ¼ö¿ä¸¦ ÃËÁøÇÏ°í ÀÖ½À´Ï´Ù.

»ó¿ëÂ÷ ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»ó

»ó¿ëÂ÷ ºÎ¹®Àº E-Commerce, ¹°·ù, ´ëÁß±³Åë µîÀÇ Æ®·°, ¹ê, ¹ö½º µî »ó¾÷¿ë Àü±âÂ÷¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå ºü¸¥ CAGR ¼ºÀåÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. °¢±¹ Á¤ºÎ´Â ¿¬·á ±â¹Ý ¹ö½º Â÷·®À» Àü±â¹ö½º·Î ´ëüÇÏ´Â µ¥ ÁÖ·ÂÇÏ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Áö¸à½º AG, ABB, ½´³ªÀÌ´õ ÀÏ·ºÆ®¸¯°ú °°Àº ±â¾÷µéÀº »ó¾÷¿ë Â÷·®¿ë °Å²Ù·Î µÈ ÆÒÅͱ׷¡ÇÁ °³¹ß¿¡ ÁÖ·ÂÇÏ°í ÀÖÀ¸¸ç, ÀÌ´Â ½ÃÀå ¼ö¿ä¸¦ ´õ¿í ÃËÁøÇÏ°í ÀÖ½À´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

ºÏ¹Ì Áö¿ªÀº Àü±âÂ÷ ÃæÀü¼Ò ºÐ¾ßÀÇ ÁÖ¿ä Àü·«Àû À̴ϼÅƼºê¿Í ÀÚ±Ý Á¶´ÞÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ƯÈ÷ ¹Ì±¹°ú ij³ª´Ù¿¡¼­ Àü±âÂ÷ ÃæÀü ÀÎÇÁ¶ó¿¡ ´ëÇÑ Á¤ºÎ À̴ϼÅƼºê°¡ Áõ°¡Çϸ鼭 Àü±âÂ÷ º¸±ÞÀÌ ºü¸£°Ô È®»êµÇ°í ÀÖ½À´Ï´Ù. ºÏ¹Ì´Â °íÇ°ÁúÀÇ °í¼º´É ÀÚµ¿Â÷¸¦ Á¦°øÇÏ´Â °ÍÀ¸·Î À¯¸íÇÑ ¸¹Àº À¯¸í OEMÀÇ Áö¿ª °ÅÁ¡ÀÔ´Ï´Ù. Å×½½¶ó(Tesla), GM°ú °°Àº ºÏ¹Ì OEMµéÀº ´õ ºü¸£°í, ´õ ±ú²ýÇÏ°í, °í¼º´ÉÀÇ Àü±âÂ÷¸¦ °³¹ßÇÏ´Â µ¥ ÁÖ·ÂÇÏ°í ÀÖ½À´Ï´Ù. Àü±âÀÚµ¿Â÷ ÀÎÇÁ¶ó Á¦°ø¾÷üµéÀÌ Á¦°øÇÏ´Â ´Ù¾çÇÑ ¼­ºñ½º´Â ¹Ì±¹ ³» Àü±âÂ÷ º¸±Þ·üÀ» ³ôÀÌ°í ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª:

¿¹Ãø ±â°£ µ¿¾È À¯·´ÀÇ CAGRÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ Áö¿ªÀº Á¤ºÎ ±ÔÁ¦°¡ ¾ö°ÝÇÑ Áö¿ªÀÔ´Ï´Ù. ÀÌ Áö¿ªÀÇ ½ÅÈï °æÁ¦±¹ Á¤ºÎ´Â Àü±âÀÚµ¿Â÷ ½ÃÀåÀÇ ¼ºÀå ÀáÀç·ÂÀ» ÀνÄÇÏ°í ÀÖÀ¸¸ç, ÀÌ¿¡ µû¶ó ±¹³» ½ÃÀå¿¡¼­ Àü±âÀÚµ¿Â÷¸¦ Á¦Á¶ÇÏ´Â ÁÖ¿ä OEMÀ» À¯Ä¡Çϱâ À§ÇØ ´Ù¾çÇÑ À̴ϼÅƼºê¸¦ ÃëÇÏ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¹«¼± Àü±âÂ÷ ÃæÀü ¼Ö·ç¼ÇÀ» °³¹ßÇÏ´Â ÁÖ¿ä ½ºÅ¸Æ®¾÷ÀÇ ÃâÇö°ú ÀÌµé ±â¾÷ °£ÀÇ ÁÖ¿ä Àü·«Àû Á¦ÈÞ, ¿¬±¸°³¹ß(R&D) È°µ¿ÀÇ È°¼ºÈ­µµ ÀÌ Áö¿ªÀÇ ½ÃÀå ¼öÀͼºÀ» ³ôÀÌ°í ÀÖ½À´Ï´Ù.

¹«·á ¸ÂÃãÇü ¼­ºñ½º:

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÇü ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù:

  • ȸ»ç ÇÁ·ÎÇÊ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀûÀÎ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤ ¹× ¿¹Ãø, CAGR(Âü°í: Ÿ´ç¼º °ËÅä¿¡ µû¸¥)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù¹ý
  • Á¶»ç ¼Ò½º
    • 1Â÷ Á¶»ç ¼Ò½º
    • 2Â÷ Á¶»ç ¼Ò½º
    • °¡Á¤

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ¿ëµµ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • ½ÅÁ¾ Äڷγª¹ÙÀÌ·¯½º °¨¿°Áõ(COVID-19)ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ±¸¸ÅÀÚÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü¿©¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷ °£ÀÇ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ Àü±âÀÚµ¿Â÷¿ë Åë½Å ÄÁÆ®·Ñ·¯ ½ÃÀå : ½Ã½ºÅÛº°

  • EV Åë½Å ÄÁÆ®·Ñ·¯(EVCC)
  • °ø±Þ Àåºñ Åë½Å ÄÁÆ®·Ñ·¯(SECC)

Á¦6Àå ¼¼°èÀÇ Àü±âÀÚµ¿Â÷¿ë Åë½Å ÄÁÆ®·Ñ·¯ ½ÃÀå : Â÷Á¾º°

  • ÇÏÀ̺긮µå
  • Ç÷¯±×ÀÎ
  • ¹èÅ͸®½Ä

Á¦7Àå ¼¼°èÀÇ Àü±âÀÚµ¿Â÷¿ë Åë½Å ÄÁÆ®·Ñ·¯ ½ÃÀå : Àü·ù À¯Çüº°

  • ±³·ù(AC)
  • Á÷·ù(DC)

Á¦8Àå ¼¼°èÀÇ Àü±âÀÚµ¿Â÷¿ë Åë½Å ÄÁÆ®·Ñ·¯ ½ÃÀå : ÃæÀü À¯Çüº°

  • À¯¼± ÃæÀü
  • ¹«¼± ÃæÀü

Á¦9Àå ¼¼°èÀÇ Àü±âÀÚµ¿Â÷¿ë Åë½Å ÄÁÆ®·Ñ·¯ ½ÃÀå : ¿ëµµº°

  • »ó¿ëÂ÷
  • ½Â¿ëÂ÷

Á¦10Àå ¼¼°èÀÇ Àü±âÀÚµ¿Â÷¿ë Åë½Å ÄÁÆ®·Ñ·¯ ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîƼ³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦11Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕÀÛÅõÀÚ
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦13Àå ±â¾÷ °³¿ä

  • Mitsubishi Electric
  • LG Innotek
  • Siemens
  • BYD Auto
  • Schneider Electric
  • ABB Limited
  • Ficosa
  • Robert Bosch
  • Vector
  • Tesla
  • Efacec
  • Engie
  • Hyundai
  • Vertexcom
  • Versinetic Limited
ksm 23.10.19

According to Stratistics MRC, the Global Electric Vehicle Communication Controller Market is accounted for $187.83 million in 2023 and is expected to reach $1599.82 million by 2030 growing at a CAGR of 35.8% during the forecast period. An Electric Vehicle Communication Controller (EVCC) is a crucial component in electric vehicle (EV) charging infrastructure. It serves as a communication interface between the electric vehicle and the charging equipment. The EVCC keeps track of the energy consumed during the charging process. It incorporates safety features to ensure that the charging process is carried out securely. The EVCC can log charging session data, including start and stop times, energy consumption, and charging parameters.

According to the U.S. Department of Transportation, charging stations will be located every 50 miles throughout the corridor. The project is funded by the Bipartisan Infrastructure Act, which has given USD 7.5 billion in federal financing for a nationwide network of 500,000 public EV chargers.

Market Dynamics:

Driver:

Rising demand for efficient charging systems

As the popularity of EVs continues to grow, there is a greater need for reliable and efficient charging infrastructure to support the expanding fleet of electric cars and trucks. Governments, organizations, and individuals are increasingly focused on reducing carbon emissions and combating climate change. Efficient charging systems help transition away from fossil fuels, which contribute to air pollution and greenhouse gas emissions. They allow for better management of intermittent energy generation and help reduce the reliance on non-renewable energy sources. Further, fast charging networks, cost savings, technological advancements and enhancing grid resilience factors are propelling the market growth.

Restraint:

Stringent regulations and standards

Electric Vehicle Communication Controllers (EVCCs) are subject to various stringent regulations and standards to ensure their safety, interoperability, and functionality within electric vehicle charging infrastructure. With the increasing integration of digital technology in EVCCs, cybersecurity standards are becoming increasingly important. EVCCs must comply with local, regional, and national regulations governing electric vehicle charging infrastructure. Manufacturers and developers of EVCCs must undergo rigorous testing and certification processes mandatorily which hinders the market demand.

Opportunity:

Increasing focus on developing EV infrastructure

Governments around the world are implementing policies and incentives to promote EV adoption. These initiatives often include funding for EV charging infrastructure development, tax incentives, rebates, and emissions reduction targets. A robust charging infrastructure is necessary to support the growing number of EVs on the road. The push for EV infrastructure drives innovation in areas such as charging technology, grid management, and energy storage, spurring technological advancements that can benefit other sectors as well. Thus, the growing innovations and developments of EV infrastructure is fuelling the market growth.

Threat:

Electric vehicles are expensive

The initial cost of owning an electric vehicle is higher than that of a conventional vehicle. The high initial cost makes it unaffordable for many prospective purchasers, limiting EV demand. This price disparity is mostly due to the costly battery technology utilized by EVs. The installation of EV charging stations necessitates particular technological safety. Electric vehicles must meet rigorous safety standards and undergo extensive testing to ensure they are as safe as traditional vehicles. This involves additional engineering and testing costs. All these costs together make the vehicle expensive and restraints the market growth.

COVID-19 Impact:

The COVID-19 pandemic has had both direct and indirect impacts on the electric vehicle (EV) industry, including components like Electric Vehicle Communication Controllers (EVCCs). The pandemic disrupted global supply chains, affecting the production and availability of electronic components. Manufacturing facilities faced closures, reduced capacity, or shifts in production priorities due to lockdowns, social distancing measures, and workforce disruptions. The pandemic underscored the need for resilient and adaptable technologies. This could drive innovation and development in EVCCs to make charging infrastructure more robust and capable of withstanding disruptions.

The wireless charging segment is expected to be the largest during the forecast period

The wireless charging segment is estimated to have a lucrative growth, due to rise in the adoption of driverless and ridesharing EVs. In countries such as China and the U.S., there has been a rising demand for driverless EVs that mostly use wireless charging technology. Furthermore, various automotive manufacturers and OEMs are engaging in R&D activities to develop EVCC for wireless charging solutions. Additionally, its reduced physical wear and tear, convenience and ease of use, automated charging process and reduction in charging infrastructure costs factors are fuelling the segment demand.

The commercial vehicle segment is expected to have the highest CAGR during the forecast period

The commercial vehicle segment is anticipated to witness the fastest CAGR growth during the forecast period, due to rising demand for commercial EVs such as trucks, vans, and buses from e-commerce, logistics, and public transport agencies. Governments of various countries are focusing on the replacement of fuel-based bus fleets with electric buses. Furthermore, companies such as Siemens AG; ABB, Ltd.; and Schneider Electric are focusing on the development of inverted pantographs for commercial vehicles, which is further propelling market demand.

Region with largest share:

North America is projected to hold the largest market share during the forecast period owing to growing number of key strategic initiatives and funding in the field of electric vehicle charging stations. As well as there are growing government initiatives for EV charging infrastructure and rapid adoption of electric vehicles, especially in the US and Canada. North America is a regional hub for many renowned OEMs known for delivering quality and high-performance vehicles. OEMs in North America such as Tesla and GM focus on the development of faster, cleaner, and high-performance electric vehicles. Various services offered by electric vehicle infrastructure providers have increased the adoption rate of electric vehicles in the US.

Region with highest CAGR:

Europe is projected to have the highest CAGR over the forecast period. This region has strict government regulations. The governments of developing economies in this region have recognized the growth potential of the electric vehicle market and, hence, have taken different initiatives to attract major OEMs to manufacture electric vehicles in domestic markets. Also, there is emergence of major startup companies developing wireless electric vehicle charging solutions, and major key strategic partnerships between them as well as rising Research and Development (R&D) activities which are driving revenue growth of the market in this region.

Key players in the market:

Some of the key players profiled in the Electric Vehicle Communication Controller Market include: Mitsubishi Electric, LG Innotek, Siemens, BYD Auto, Schneider Electric, ABB Limited, Ficosa, Robert Bosch, Vector, Tesla, Efacec, Engie, Hyundai, Vertexcom and Versinetic Limited.

Key Developments:

In April 2023, Schneider Electric, a global leader in the digital transformation of energy management and automation, has announced the launch of the EVlink Home charger. The charger incorporates new features aimed at making at-home charging easier to install and more cost-effective to use.

In April 2023, Mitsubishi Electric Corporation has developed a technology to detect serious physical conditions experienced by people driving automobiles, such as loss of consciousness, by estimating pulse rate, changes in blood pressure and other biometric data collected with a contactless Driver Monitoring System (DMS) camera, which the company has already launched to detect driver distractions and drowsiness.

Systems Covered:

  • EV Communication Controller (EVCC)
  • Supply Equipment Communication Controller (SECC)

Vehicle Types Covered:

  • Hybrid
  • Plug-In
  • Battery Operated

Current Types Covered:

  • Alternating Current (AC)
  • Direct Current (DC)

Charging Types Covered:

  • Wired Charging
  • Wireless Charging

Applications Covered:

  • Commercial Vehicle
  • Passenger Vehicle

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2021, 2022, 2023, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Electric Vehicle Communication Controller Market, By System

  • 5.1 Introduction
  • 5.2 EV Communication Controller (EVCC)
  • 5.3 Supply Equipment Communication Controller (SECC)

6 Global Electric Vehicle Communication Controller Market, By Vehicle Type

  • 6.1 Introduction
  • 6.2 Hybrid
  • 6.3 Plug-In
  • 6.4 Battery Operated

7 Global Electric Vehicle Communication Controller Market, By Current Type

  • 7.1 Introduction
  • 7.2 Alternating Current (AC)
  • 7.3 Direct Current (DC)

8 Global Electric Vehicle Communication Controller Market, By Charging Type

  • 8.1 Introduction
  • 8.2 Wired Charging
  • 8.3 Wireless Charging

9 Global Electric Vehicle Communication Controller Market, By Application

  • 9.1 Introduction
  • 9.2 Commercial Vehicle
  • 9.3 Passenger Vehicle

10 Global Electric Vehicle Communication Controller Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

13 Company Profiling

  • 13.1 Mitsubishi Electric
  • 13.2 LG Innotek
  • 13.3 Siemens
  • 13.4 BYD Auto
  • 13.5 Schneider Electric
  • 13.6 ABB Limited
  • 13.7 Ficosa
  • 13.8 Robert Bosch
  • 13.9 Vector
  • 13.10 Tesla
  • 13.11 Efacec
  • 13.12 Engie
  • 13.13 Hyundai
  • 13.14 Vertexcom
  • 13.15 Versinetic Limited
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óÇ°À» ¼±Åà Áß
»óÇ° ºñ±³Çϱâ
Àüü»èÁ¦