![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1351125
¼¼°èÀÇ Ç÷º½Ãºí ÇÏÀ̺긮µå ÀÏ·ºÆ®·Î´Ð½º(FHE) ½ÃÀå ¿¹Ãø(-2030³â) : ºÎ¹®º°, Áö¿ªº° ºÐ¼®Flexible Hybrid Electronics Market Forecasts to 2030 - Global Analysis By Type, Structure, Application, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é, Ç÷º½Ãºí ÇÏÀ̺긮µå ÀÏ·ºÆ®·Î´Ð½º(FHE) ¼¼°è ½ÃÀåÀº 2023³â 1¾ï 7,854¸¸ ´Þ·¯·Î ¿¹Ãø ±â°£ µ¿¾È 18.2%ÀÇ CAGR·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 5¾ï 7,554¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
FHE(Flexible Hybrid Electronics)´Â Àμâ ÀüÀÚÁ¦Ç°ÀÇ À¯¿¬¼º°ú ±âÁ¸ ½Ç¸®ÄÜ ±â¹Ý ÁýÀûȸ·ÎÀÇ Ã³¸® ´É·ÂÀ» °áÇÕÇÑ ÃÖ÷´Ü ±â¼ú·Î, ±âÁ¸ ¹ÝµµÃ¼¿Í Àμâ ÀüÀÚ Àç·á¸¦ ¸ðµÎ »ç¿ëÇÏ¿© Àúºñ¿ë, ¼ÒÇü, °í¼º´É µð¹ÙÀ̽º¸¦ Á¦ÀÛÇÒ ¼ö ÀÖ´Â Áö¼Ó°¡´ÉÇÑ Á¦Á¶ ½Ã½ºÅÛÀ» Á¦°øÇÕ´Ï´Ù. °í¼º´É µð¹ÙÀ̽º¸¦ ¸¸µé¾î Áö¼Ó°¡´ÉÇÑ Á¦Á¶ ½Ã½ºÅÛÀ» ±¸ÇöÇÕ´Ï´Ù. Ç÷º¼ºí ÇÏÀ̺긮µå ÀüÀÚ°øÇÐÀº ÇコÄɾî, ¿þ¾î·¯ºí, Ç×°ø¿ìÁÖ µî ´Ù¾çÇÑ ÀÀ¿ë ºÐ¾ß¿¡ Àû¿ëµÉ ¼ö ÀÖ´Â Çõ½ÅÀûÀ̰í ÀûÀÀ¼ºÀÌ ³ôÀº ÀüÀÚ ½Ã½ºÅÛÀ» ¸¸µå´Â µ¥ ÀÖ¾î Å« ÀáÀç·ÂÀ» °¡Áö°í ÀÖ½À´Ï´Ù.
ÇコÄÉ¾î »ê¾÷Àº °¨Áö, ó¸® ¹× ´Ù¸¥ ³×Æ®¿öÅ© ¹× ÀåÄ¡¿Í Åë½ÅÇÒ ¼ö ÀÖ´Â Ç÷º½Ãºí ÇÏÀ̺긮µå ÀÏ·ºÆ®·Î´Ð½ºÀ» Æ÷ÇÔÇÑ Ç÷º½Ãºí ÀüÀÚ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Ç÷º¼ºí ÇÏÀ̺긮µå ÀÏ·ºÆ®·Î´Ð½ºÀº °í¼º´É ½Ã½ºÅÛÀÔ´Ï´Ù. ȯÀÚ°¡ ¸ö¿¡ Âø¿ëÇϰųª ¿ÊÀ̳ª ±âŸ ¼ÒÀç¿¡ ³»ÀåÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿þ¾î·¯ºí ÀüÀÚ±â±â´Â ȯÀÚÀÇ ½Åü¿Í ¿øÈ°ÇÏ°Ô »óÈ£ ÀÛ¿ëÇϱ⠶§¹®¿¡ ÃÖ±Ù ¸î ³â µ¿¾È Àα⸦ ¾ò°í ÀÖ½À´Ï´Ù. ÀÌó·³ ÇコÄÉ¾î »ê¾÷¿¡¼ Ç÷º¼ºí ÇÏÀ̺긮µå ÀÏ·ºÆ®·Î´Ð½ºÀÇ È°¿ëÀÌ È®´ëµÇ¸é¼ ½ÃÀå ¼ºÀåÀ» °ßÀÎÇϰí ÀÖ½À´Ï´Ù.
¿¬¼º ±âÆÇ°ú Àμâ Àç·á´Â ±âÁ¸ÀÇ °æÁú ÀüÀÚÁ¦Ç°¸¸Å ³»±¸¼ºÀÌ ³ôÁö ¾Ê±â ¶§¹®¿¡ ƯÈ÷ ¿¾ÇÇÑ È¯°æ¿¡¼´Â ½Å·Ú¼ºÀÌ ¹®Á¦°¡ µÉ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, FHE ½Ã½ºÅÛ ¼³°è´Â ±âÁ¸ ÀüÀÚ Á¦Ç°º¸´Ù ´õ º¹ÀâÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿£Áö´Ï¾î´Â ÀåÄ¡ÀÇ ±â´É»Ó¸¸ ¾Æ´Ï¶ó ±â°èÀû Ư¼º ¹× ȯ°æ°úÀÇ »óÈ£ ÀÛ¿ëÀ» °í·ÁÇØ¾ß Çϸç, FHE ÀåÄ¡ÀÇ Ç°Áú°ú ±â´ÉÀ» º¸ÀåÇÏ´Â °ÍÀº À¯¿¬ÇÑ Æ¯¼ºÀ¸·Î ÀÎÇØ ´õ ¾î·Á¿î °úÁ¦°¡ µÉ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ä¼ÒµéÀÌ ½ÃÀå ¼ºÀåÀ» ¾ïÁ¦Çϰí ÀÖ½À´Ï´Ù.
¹ÝµµÃ¼ »ê¾÷ÀÇ ¹ßÀüÀº FHE °³¹ß ÇÁ·Î¼¼½º¿¡µµ ÁøÀüÀ» °¡Á®¿Ô½À´Ï´Ù. ÀÌ ½ÃÀå¿¡¼´Â FHE ÀåÄ¡¿Í ÅëÇÕµÈ MEMSµµ ¸ñ°ÝµÇ°í ÀÖÀ¸¸ç, À̴ ƯÁ¤ ¿ëµµ¿¡ »ç¿ëÇÒ ¼ö ÀÖ´Â µ¥ÀÌÅÍ ¼öÁý ¼¾¼ ³ëµå¸¦ ½Å¼ÓÇÏ°Ô ¼³°èÇÏ°í ¹èÆ÷ÇÏ´Â µ¥ ÀÌ»óÀûÀÔ´Ï´Ù. ¶ÇÇÑ, µ¥ÀÌÅÍ ºÐ¼®°ú ÀΰøÁö´ÉÀÇ ¹ßÀüÀº ¿¹Ãø ±â°£ µ¿¾È Ç÷º½Ãºí ÇÏÀ̺긮µå ÀÏ·ºÆ®·Î´Ð½º(FHE) ½ÃÀå¿¡¼ ½ÃÀå ±âȸ¸¦ âÃâÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
À¯¿¬ÇÑ ÀüÀÚ ÀåºñÀÇ ¼Õ»ó¿¡´Â ÀüÀÚ ÀåºñÀÇ ¼ö¸®°¡ Æ÷ÇԵ˴ϴÙ. ÀüÀÚ ÀåÄ¡ ¼ö¸®¿¡´Â ¼÷·Ã µÈ ±â¼úÀÚ°¡ ÇÊ¿äÇÕ´Ï´Ù. À¯¿¬ÇÑ ÇÏÀ̺긮µå ÀüÀÚ ÀåÄ¡ÀÇ ¼ö¸®´Â ½Ã½ºÅÛ¿¡ ÅëÇÕµÈ ¾ã°í ÀÛÀº ºÎǰÀ¸·Î ÀÎÇØ ¹Î°¨µµ°¡ ³ô¾Æ ÀüÀÚ ÀåÄ¡°¡ ½±°Ô ¼Õ»óµÉ ¼ö Àֱ⠶§¹®¿¡ ¾î·Á¿î ÀÛ¾÷ÀÌ µÉ ¼ö ÀÖÀ¸¸ç, ÀüÀÚ ÀåÄ¡ ¿¹Ãø ±â°£ µ¿¾È ÀüÀÚ ÀåÄ¡, Ç÷º½Ãºí ÇÏÀ̺긮µå ÀüÀÚ±â±â ½ÃÀåÀÇ ¼ºÀåÀ» ÀúÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.
COVID-19ÀÇ ¹ß»ý°ú È®»êÀ¸·Î ÀÎÇØ Ç÷º¼ºí ÀüÀÚ ¹× ȸ·Î °¡Ä¡»ç½½ÀÇ ±â¾÷µéÀº ½É°¢ÇÑ ¿µÇâÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, COVID-19 È®»êÀ» ¸·±â À§ÇØ °¢±¹ Á¤ºÎ°¡ ½ÃÇàÇÑ ºÀ¼â Á¶Ä¡·Î ÀÎÇØ Àü ¼¼°èÀûÀ¸·Î ÀÌ·¯ÇÑ ÀüÀÚ±â±â¿¡ ´ëÇÑ ¼ö¿ä°¡ ±Þ°ÝÈ÷ °¨¼ÒÇÏ¿© Ç÷º½Ãºí ÀüÀÚ ¹× ȸ·Î ½ÃÀå¿¡ ¾Ç¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, COVID-19 »çÅ·ΠÀÎÇØ ¼Ò¸Å¾÷üµéÀº Àç°í °ü¸®ÀÇ Á߿伺À» ÀνÄÇÏ°Ô µÇ¾ú½À´Ï´Ù.
´ÙÃþ Ç÷º½º ȸ·Î ºÎ¹®Àº ´Ù¾çÇÑ ÀÀ¿ë ºÐ¾ß·Î ÀÎÇØ À¯¸®ÇÑ ¼ºÀå¼¼¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ´ÙÃþ Ç÷º½Ãºí ȸ·Î´Â °ø°£, ¹«°Ô, À¯¿¬¼ºÀÌ Áß¿äÇÑ ±¤¹üÀ§ÇÑ ÀüÀÚ ¾ÖÇø®ÄÉÀ̼ǿ¡ ¹ü¿ëÀûÀ̰í ÄÄÆÑÆ®ÇÑ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. º¹ÀâÇÑ ÇüÅ¿¡ ´ëÇÑ ÀûÀÀ¼º°ú ÄÄÆÑÆ®ÇÑ Æ¯¼ºÀ¸·Î ÀÎÇØ ´Ù¾çÇÑ »ê¾÷°ú ½ÅÈï ±â¼ú¿¡ ¸Å·ÂÀûÀÎ ¼±ÅÃÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. °ø°£ È¿À²¼º, °æ·®È, °í½Å·Ú¼º, °í¹Ðµµ »óÈ£ ¿¬°á·Î ÀÎÇØ ÀÌ ºÐ¾ßÀÇ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
ÇコÄÉ¾î ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå ºü¸¥ CAGR ¼ºÀåÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÇコÄɾî´Â À¯¿¬ÇÑ ÇÏÀ̺긮µå ÀüÀÚ ºÐ¾ß¿¡¼ °¡Àå °·ÂÇÑ ºÐ¾ß·Î, ¼º´ÉÀÌ °¡Àå Áß¿äÇÏ°í ½Å·Ú¼ºÀÌ °¡Àå Áß¿äÇÑ ºÐ¾ßÀÔ´Ï´Ù. ÇコÄÉ¾î ¸ð´ÏÅ͸µÀº Ä¡·á È¿°úÀÇ ½Ç½Ã°£ ¸ð´ÏÅ͸µ, Áúº´ÀÇ Á¶±â Áø´Ü ¹× Ä¡·á, »ç¶÷µéÀÇ °Ç° »óÅÂÀÇ ÀϹÝÀûÀÎ ¸ð´ÏÅ͸µ µî ¸ðµç »ç¶÷ÀÇ º¹Áö¸¦ À§ÇØ »ç¿ëµË´Ï´Ù. ÀåÄ¡ÀÇ À¯¿¬¼º°ú ½ÅÃ༺ÀÌ ÀÌ ºÎ¹®ÀÇ ¼ºÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù.
ºÏ¹Ì Áö¿ªÀº Ç÷º¼ºí ÇÏÀ̺긮µå ÀüÀÚ ±â¼úÀ» »ç¿ëÇÏ´Â ±â¾÷°úÀÇ Á¦ÈÞ ¹× ÀÏ¹Ý ´ëÁß¿¡ ´ëÇÑ Àü¹ÝÀûÀÎ ¹ß¸íǰ È«º¸¿Í ÇÔ²² ÀÌ Áö¿ª Á¤ºÎÀÇ ÅõÀÚ Áõ°¡·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÁÖ¿ä ±â¼ú ±â¾÷ÀÇ Á¸Àç¿Í Áö¼ÓÀûÀ¸·Î ¹ßÀüÇÏ´Â ±â¼ú ȯ°æµµ ÀÌ Áö¿ª Ç÷º½Ãºí ÇÏÀ̺긮µå ÀÏ·ºÆ®·Î´Ð½º ½ÃÀå ¼ºÀåÀÇ ÁÖ¿ä ¿øÀÎÀ¸·Î ²ÅÈü´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¾Æ½Ã¾Æ´Â Ç÷º¼ºí ÇÏÀ̺긮µå ÀÏ·ºÆ®·Î´Ð½º °³¹ß, ƯÈ÷ ÷´Ü ¹ÝµµÃ¼ Á¦Ç° Á¦Á¶¿¡ ÀÖ¾î Áß¿äÇϰí ÇʼöÀûÀÎ Áö¿ªÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. Áß±¹, ÀϺ», ´ë¸¸ µî ´ëºÎºÐÀÇ ¾Æ½Ã¾Æ ±¹°¡µéÀº ½ÃÀå¿¡¼ ²ÙÁØÈ÷ ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾çÀº IoT, ȯ°æ °¨Áö, ¿þ¾î·¯ºí ¾ÖÇø®ÄÉÀ̼Ç, Ç÷º½Ãºí µð½ºÇ÷¹ÀÌ µî ±Þ¼ºÀåÇÏ´Â ½ÃÀåÀ» À§ÇÑ µð¹ÙÀ̽ºÀÇ ¼³°è¿Í Á¦Á¶¿¡ ÀÖ¾î °¡Àå Áøº¸µÇ°í ¼÷·ÃµÈ ±â¼úÀû Á¢±Ù ¹æ½ÄÀ» °¡Áö°í ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Flexible Hybrid Electronics (FHE) Market is accounted for $178.54 million in 2023 and is expected to reach $575.54 million by 2030 growing at a CAGR of 18.2% during the forecast period. Flexible Hybrid Electronics (FHE) is a cutting-edge technology that combines the flexibility of printed electronics with the processing power of conventional silicon-based integrated circuits. It uses materials from both the traditional semi-conductors as well as printed electronics in order to make high-performance devices which are low on cost, available in a miniature size and have a sustainable manufacturing system. Flexible Hybrid Electronics holds great promise for creating innovative, conformable electronic systems that can be integrated into a wide range of applications, from healthcare and wearables to aerospace and beyond.
In the healthcare industry, there has been an increasing demand for flexible electronic systems, including flexible hybrid electronics that can sense, process, and communicate with other networks and devices. Flexible hybrid electronics are high-performance systems. They can be worn by the patients on the body, integrated into clothing, or other materials. These wearable electronic devices have gained traction in recent years because of their seamless interaction with the patient's body. Thus, the growing use of flexible hybrid electronics in the healthcare industry is propelling the growth of the market.
Flexible substrates and printed materials may not be as durable as traditional rigid electronics, making reliability a concern, especially in harsh environments. Also, designing FHE systems can be more complex than traditional electronics. Engineers need to consider not only the functionality of the device but also the mechanical properties and how it will interact with its environment. Ensuring the quality and functionality of FHE devices can be more challenging due to their flexible nature. These elements are restraining the market growth.
The advancements in the semiconductor industry are also bringing advancement in the development process of FHE. The market is also witnessing MEMS integrated with FHE devices, which will be ideal for the rapid design and deployment of data-gathering sensor nodes that can be utilized for specific applications. Furthermore, growing advancement in data analytics and artificial intelligence is anticipated to create market opportunities for the flexible hybrid electronics (FHE) market during the forecast period.
Damage of the flexible electronic devices involves repairing of the electronic devices. Instance repairing of the electronic devices requires skill workers. Repairing of the flexible hybrid electronic device can be challenging task due to increased sensitivity due to thin and tiny components integrated in to the system can led to easy damage of the electronic devices, which may hamper the market growth of the flexible hybrid electronics market during the forecast of electronics devices.
Players involved in the flexible electronics & circuit value chain have been severely impacted by the onset and spread of COVID-19. Additionally, due to lockdowns implemented by many governments to stop the spread of the COVID-19, demand for these electronics has dramatically fallen globally, which has had an adverse effect on the market for flexible electronics & circuits. The COVID-19 situation has also made retailers realize the importance of keeping track of their inventory.
The multilayer flex circuit segment is estimated to have a lucrative growth, due to its numerous applications. Multilayer flexible circuits offer a versatile and compact solution for a wide range of electronic applications where space, weight, and flexibility are critical considerations. Their adaptability to complex shapes and compactness make them a compelling choice for various industries and emerging technologies. Its space efficiency, weight reduction, high reliability and high density interconnections are boosting the segment's demand.
The healthcare segment is anticipated to witness the fastest CAGR growth during the forecast period. Healthcare is the strongest flexible hybrid electronics segment, where performance is of the highest value, and reliability is of utmost importance. Healthcare monitoring is catering to every person's welfare, which includes real-time monitoring of the effects of treatment, early diagnosis of diseases, therapy, and the general monitoring of people's health conditions. The device's flexibility and stretchability are driving the segment growth.
North America is projected to hold the largest market share during the forecast period owing to increasing investment by the government in the region coupled with partnerships with flexible hybrid electronic technology using companies and overall promotion of the invention to the public. Presence of major tech-based companies and an ever-developing technological environment is also a prominent reason for the growth of flexible hybrid electronics market in the region.
Asia Pacific is projected to have the highest CAGR over the forecast period. Asia is emerging as a vital and essential region for the development of flexible hybrid electronics, particularly in the manufacturing of advanced semiconductor products. Most countries in Asia such as China, Japan and Taiwan have a steady growth in the market. The Asia-pacific region has the most advanced and proficient technical approach to designing and manufacturing devices for fast-growing markets, including IoT, environmental sensing, wearable applications, flexible displays, and others.
Some of the key players profiled in the Flexible Hybrid Electronics (FHE) Market include: General Electric Company, Lockheed Martin Corporation, Flex Limited, Enfucell, E Ink Holdings Inc., DuPont de Nemours Inc., Cymbet Corporation, Blue Spark Technologies, American Semiconductor Inc., Brewer Science Inc., Integrity Industrial Inkjet Integration, SI2 Technologies Inc., Epicore Biosystems, Xerox Corporation and AU Optronics Corporation.
In May 2023, FlexTech, a SEMI Technology Community focused on driving flexible hybrid electronics (FHE) innovations, today issued a Request for Proposals (RFP) for advances in materials, FHE design tools, additive-enabled processing, hybrid electronics packaging, FHE manufacturing, AI/ML applications, soft robotics, and power solutions. Selected projects will receive cash awards ranging from $250,000 to $1 million. The program is funded by the Army Research Laboratory (ARL).
In February 2022, GE Renewable Energy announced the opening of a new Renewable Hybrids factory in Vallam, near Chennai, India. The site will manufacture the FLEXINVERTER and FLEXRESERVOIR products, and help integrate them with the FLEXIQ offering, from GE's newly-launched FLEX portfolio, designed to solve customer needs through multiple applications to enable dispatchable, green MWhs.