![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1358975
¼¼°èÀÇ ÀÇ·á Áø´Ü¿ë ÀΰøÁö´É(AI) ½ÃÀå ¿¹Ãø(-2030³â) : ±¸¼º¿ä¼Òº°, Àü¹® ºÐ¾ßº°, ¸ð´Þ¸®Æ¼º°, AI ±â¼úº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®Artificial Intelligence in Medical Diagnostics Market Forecasts to 2030 - Global Analysis By Component, Specialty, Modality, AI Technology, Application, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é, ÀÇ·á Áø´Ü¿ë ÀΰøÁö´É(AI) ¼¼°è ½ÃÀåÀº 2023³â 13¾ï ´Þ·¯·Î ¿¹Ãø ±â°£ µ¿¾È 34.2%ÀÇ CAGR·Î ¼ºÀåÇØ 2030³â 105¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
ÀÇ·á Áø´Ü¿¡ ÀÖ¾î ÀΰøÁö´É(AI)Àº ÀÇ·áÁøÀÌ È¯ÀÚ¿¡°Ô Á¤È®ÇÏ°í ½Ã±âÀûÀýÇÑ Ä¡·á ¹æÄ§À» °áÁ¤ÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÔÀ¸·Î½á ÀÇ·á Á¢±Ù¼º°ú ÀÇ·áºñ¿ëÀ» °³¼±ÇÒ ¼ö ÀÖ´Â ÀáÀç·ÂÀ» °¡Áö°í ÀÖ½À´Ï´Ù. º´À» Á¤È®ÇÏ°Ô Áø´ÜÇϱâ À§Çؼ´Â ¼ö³â°£ÀÇ ÀÇÇÐ ±³À°°ú ¸¹Àº ½Ã°£ÀÌ ÇÊ¿äÇÕ´Ï´Ù. ÀÇ·á Áø´Ü¿¡ AI¸¦ Àû¿ëÇϸé Á¤È®ÇÑ Áø´ÜÀ» Á¦°øÇϰí, ÀÓ»ó ÆÇ´ÜÀ» Áö¿øÇϸç, ÀÇ·á Àü¹®°¡ÀÇ ÆÇ´ÜÀ» °³¼±ÇÒ ¼ö ÀÖ´Â ´É·ÂÀ» ÀÔÁõÇß½À´Ï´Ù.
ÀüÀڰǰ±â·Ï(EHR), ÀǷ῵»ó µ¥ÀÌÅÍ, À¯Àüü µ¥ÀÌÅÍ µî ¹æ´ëÇÑ ¾çÀÇ µ¥ÀÌÅ͸¦ ½±°Ô ¾òÀ» ¼ö ÀÖ°Ô µÇ¸é¼ AI ¸ðµ¨ °³¹ß ¹× °ËÁõÀÌ °¡´ÉÇØÁ³½À´Ï´Ù. ¶ÇÇÑ, ÇコÄÉ¾î µ¥ÀÌÅÍÀÇ µðÁöÅÐÈ¿Í »óÈ£ ¿î¿ë °¡´ÉÇÑ ½Ã½ºÅÛÀÇ µµÀÔÀ¸·Î ÀÌ·¯ÇÑ µ¥ÀÌÅÍÀÇ ¼öÁý°ú Ȱ¿ëÀÌ ¿ëÀÌÇØÁö¸é¼ AI ¾Ë°í¸®ÁòÀÌ ´Ù¾çÇÑ È¯ÀÚ±ºÀ» ´ë»óÀ¸·Î ÇнÀÇϰí Áø´ÜÀÇ Á¤È®µµ¸¦ ³ôÀÏ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.
ÇコÄÉ¾î ±â¾÷ÀÌ Á÷¸éÇÑ ÁÖ¿ä Àå¾Ö¹°Àº ÀÚ±Ý Á¶´ÞÀ̸ç, ƯÈ÷ °³¹ßµµ»ó±¹¿¡¼´Â ÀÇ·á±â±âº¸´Ù IT ÀÚ±ÝÀ» ¿ì¼±¼øÀ§¿¡ µÎ´Â °ÍÀÌ ¾î·Æ½À´Ï´Ù. ƯÈ÷ ÀǷẸÇèÀÌ Àß µÇ¾î ÀÖÁö ¾ÊÀº ±¹°¡¿¡¼´Â ¿µ»óÁø´Ü ÀåºñÀÇ ³ôÀº ºñ¿ë°ú AI ¼ÒÇÁÆ®¿þ¾îÀÇ µµÀÔ ¹× ¶óÀ̼±½º ºñ¿ëÀÌ ½ÃÀå ¼ºÀåÀ» Á¦ÇÑÇÏ´Â ÁÖ¿ä ¹®Á¦ÀÔ´Ï´Ù. ¿¹¸¦ µé¾î, ³ôÀº ¼³Ä¡ ¹× À¯Áöº¸¼ö ºñ¿ëÀ¸·Î ÀÎÇØ ´ëºÎºÐÀÇ °³¹ßµµ»ó±¹ ÀÇ·á½Ã¼³Àº AI ¼Ö·ç¼ÇÀ» µµÀÔÇÒ ¿©·ÂÀÌ ¾ø½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀÎÀ¸·Î ÀÎÇØ Çõ½ÅÀûÀÎ ½Ã½ºÅÛÀ̳ª ÃÖ÷´Ü ½Ã½ºÅÛÀÇ µµÀÔÀÌ ÀúÇØµÇ°í ÀÖ½À´Ï´Ù.
ºòµ¥ÀÌÅÍ(°Å´ëÇÏ°í º¹ÀâÇÑ µ¥ÀÌÅÍ)´Â »ê¾÷°èÀÇ µðÁöÅÐÈ¿Í Á¤º¸ ½Ã½ºÅÛ µµÀÔÀ¸·Î ÀÎÇØ ÀÇ·á ¼ºñ½º Á¦°ø °úÁ¤ÀÇ ¿©·¯ ´Ü°è¿¡¼ »ý¼ºµÇ°í ÀÖ½À´Ï´Ù. ÀÇ·á Áø´Ü ºÐ¾ßÀÇ ºòµ¥ÀÌÅÍ¿¡´Â ƯÈ÷ Ŭ¸¯ ½ºÆ®¸², À¥ ¹× ¼Ò¼È ¹Ìµð¾î¿¡¼ »ý¼ºµÇ´Â Á¤º¸, ¼¾¼¿Í °°Àº ÀÇ·á±â±â ÆÇµ¶°ª, ½ÉÀüµµ, ¿¢½º·¹ÀÌ ¹× ±âŸ û±¸ ±â·Ï, »ýü µ¥ÀÌÅÍ µîÀÌ Æ÷ÇԵ˴ϴÙ. ¶ÇÇÑ, ÃÖ±Ù ¸î ³â µ¿¾È EHR, µðÁöÅÐÈµÈ °Ë»ç ½½¶óÀ̵å, °íÇØ»óµµ ¹æ»ç¼± ¿µ»óÀÌ ÀÇ·áÁø¿¡°Ô ¼ö¿ëµÇ¸é¼ ºòµ¥ÀÌÅÍ ¹× ºÐ¼® ¼Ö·ç¼ÇÀº ºñ¾àÀûÀ¸·Î ¹ßÀüÇÏ°í ³Î¸® Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù.
ƯÈ÷ AI ¾Ë°í¸®Áò¿¡ »ç¿ëµÇ´Â µö·¯´× ¸ðµ¨Àº º¹ÀâÇϰí ÀÌÇØÇϱ⠾î·Á¿ï ¼ö ÀÖ½À´Ï´Ù. ÀÇ·áÁøÀº AI°¡ ¾î¶»°Ô °á·ÐÀ» ³»¸®´ÂÁö ¸ðÈ£Çϱ⠶§¹®¿¡ AI°¡ »ý¼ºÇÑ Áø´ÜÀÇ ³í¸®¸¦ ½Å·ÚÇϰí ÀÌÇØÇϱ⠾î·Á¿ï ¼ö ÀÖ½À´Ï´Ù. ±×·¯³ª AI ¸ðµ¨ÀÌ ÀÇ·á Àü¹®°¡µé¿¡°Ô ¼ö¿ëµÇ°í ÀÎÁ¤¹Þ±â À§Çؼ´Â Á¢±Ù °¡´ÉÇϰí ÃøÁ¤ °¡´ÉÇØ¾ß ÇÕ´Ï´Ù.
COVID-19ÀÇ À¯ÇàÀº Àü ¼¼°è ÀÇ·á »ê¾÷¿¡ ºÎÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÃÆ°í, COVID-19ÀÇ °¨¿°·üÀÌ ±Þ°ÝÈ÷ Áõ°¡ÇÏ¿© Àü ¼¼°è ÀÇ·á ½Ã½ºÅÛ¿¡ Å« ºÎ´ãÀ» ÁÖ¾úÀ¸¸ç, COVID-19 ȯÀÚ´Â ÀϹÝÀûÀ¸·Î Æó¿¡ ¹®Á¦°¡ ¹ß»ýÇÕ´Ï´Ù. µû¶ó¼ ½ÉÈäºÎ ¿µ»óÁø´ÜÀº COVID-19 ȯÀÚÀÇ ÁßÁõµµ¸¦ ÆÇ´ÜÇϴ ǥÁØ Áø´Ü ÀýÂ÷·Î, 2020³â¿¡´Â COVID-19 Áø´Ü¿¡ AI¸¦ Ȱ¿ëÇÏ´Â ¿¬±¸°¡ ±Þ¼ÓÈ÷ Áõ°¡ÇÏ¿´½À´Ï´Ù.
Á¤È®ÇÑ Áø´ÜÀ» Àû½Ã¿¡ Á¦°øÇϱâ À§ÇØ Áø´Ü ºÐ¾ß¿¡¼ AI ±â¹Ý ¼ÒÇÁÆ®¿þ¾î¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, »õ·Î¿î AI ¾Ë°í¸®ÁòÀÇ ±Þ¼ÓÇÑ °³¹ß ¹× »õ·Î¿î ¼ÒÇÁÆ®¿þ¾îÀÇ ½ÂÀÎ, ¹æ»ç¼±°ú, ¼øÈ¯±â°ú, ½Å°æ°ú, ºÎÀΰú, ¾È°ú µî ´Ù¾çÇÑ ºÐ¾ß¿¡¼ AI ±â¹Ý ¼ÒÇÁÆ®¿þ¾îÀÇ Àû¿ëÀÌ Áõ°¡ÇÔ¿¡ µû¶ó, ¼ÒÇÁÆ®¿þ¾î ºÎ¹®ÀÌ ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« Á¡À¯À²À» Â÷ÁöÇß½À´Ï´Ù. ¶ÇÇÑ, Á÷¿ø ºÎÁ·°ú À̹ÌÁö ½ºÄµÀÇ Áõ°¡¿¡ ´ëÀÀÇØ¾ß ÇÏ´Â °úÁ¦¿¡µµ ºÒ±¸Çϰí, ¼ÒÇÁÆ®¿þ¾î ¼Ö·ç¼ÇÀº ÀÇ·á ¼ºñ½º Á¦°ø¾÷ü¿¡°Ô °æÀï¾÷ü¿¡ ´ëÇÑ °æÀï·ÂÀ» Á¦°øÇϰí ÀÖ½À´Ï´Ù.
º´¿ø¿¡¼ Áø´Ü ÀÚµ¿È ¹× ¾÷¹«·® °¨¼Ò¸¦ À§ÇÑ AI ±â¹Ý ¼Ö·ç¼Ç µµÀÔÀÇ ÀÌÁ¡, Áø´Ü ÀýÂ÷¸¦ ¹Þ´Â ȯÀÚ ¼ö Áõ°¡, Áúº´ Á¶±â ¹ß°ß¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, Àü¹®ÀÇ ºÎÁ· µîÀÇ ¿äÀÎÀ¸·Î ÀÎÇØ º´¿ø ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È ¼öÀͼº ÀÖ´Â ¼ºÀåÀ» ÀÌ·ê °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ, º¹À⼺°ú ¿À·ù¸¦ ÁÙÀÌ°í ºñ¿ë°ú ½Ã°£À» Àý¾àÇϸç Àü¹®°¡¿Í ¼÷·Ã°øÀÌ ºü¸£°í ½±°Ô ¼öÇàÇÒ ¼ö ÀÖµµ·Ï Áø´Ü¿¡ »ç¿ëµÇ´Â AI ±â¹Ý ÀÇ·á ±â¼ú¿¡ ´ëÇÑ º´¿øÀÇ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¸¹Àº º´¿øµéÀÌ µðÁöÅÐ ±â¾÷µé°ú Çù·ÂÇÏ¿© ȯÀÚ¿¡°Ô Ŭ¶ó¿ìµå ±â¹Ý AI ¼ºñ½º ¹× ¼Ö·ç¼ÇÀ» Á¦°øÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼Ö·ç¼ÇÀ» ÀÏ»ó ¾÷¹«¿¡ Ȱ¿ëÇÔÀ¸·Î½á º´¿øÀº »ý»ê¼º°ú È¿À²¼ºÀ» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù.
´Ù¾çÇÑ ¸¸¼º Áúȯ ¹× °¨¿°¼º ÁúȯÀÇ ¹ßº´·ü Áõ°¡, Áß±¹°ú Àεµ¸¦ Áß½ÉÀ¸·Î ÇÑ AI ±â¹Ý ½ºÅ¸Æ®¾÷ÀÇ Áõ°¡, Áö¿ª ÀÇ·á ÀÎÇÁ¶óÀÇ °ÝÂ÷¸¦ ÇØ¼ÒÇÒ ¼ö ÀÖ´Â AIÀÇ ¾öû³ ÀáÀç·ÂÀ¸·Î ÀÎÇØ ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ, ÁÖ½Ä ÅõÀÚ ¹× ½ºÅ¸Æ®¾÷ ÀÎÅ¥º£ÀÌÆÃÀÇ °¡´É¼ºÀº ÀÌ Áö¿ª ½ÃÀå ¹ßÀü¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ °í·ÉÈÀ² Áõ°¡¿Í ±Þ¼º ¹× ¸¸¼º ÁúȯÀÇ À¯º´·ü Áõ°¡´Â ¸ðµÎ ÀÌ Áö¿ªÀÇ ½ÃÀå È®´ë¸¦ ÃËÁøÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¾Æ½Ã¾ÆÅÂÆò¾çÀº Á¤È®ÇÏ°í ºü¸¥ Áø´Ü¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿Í Àü ¼¼°è °í·ÉÈ·Î ÀÎÇÑ ¸¸¼º ÁúȯÀÇ ºóµµ Áõ°¡ µîÀÇ ¿äÀÎÀ¸·Î ÀÎÇØ ¼öÀͼº ³ôÀº ¼ºÀåÀÌ ¿¹»óµË´Ï´Ù. ÀÌ ¹Û¿¡µµ ¹æ»ç¼±°ú Àǻ簡 ÀÇ·á ¿µ»óÀ» ÇØ¼®ÇÏ°í ½Å¼ÓÇϰí Á¤È®ÇÑ Áø´ÜÀ» ³»¸± ¼ö ÀÖµµ·Ï µ½°í, ÀÇ·á ¿µ»óÀÇ ³ëÀÌÁ ÁÙÀ̸ç, Àú¼±·® ¹æ»ç¼±À¸·Î °íǰÁú ¿µ»óÀ» »ý¼ºÇÏ´Â µî ´Ù¾çÇÑ ÀÌÁ¡ÀÌ ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Artificial Intelligence (AI) in Medical Diagnostics Market is accounted for $1.3 billion in 2023 and is expected to reach $10.5 billion by 2030 growing at a CAGR of 34.2% during the forecast period. By supporting healthcare professionals in making accurate and timely treatment decisions for their patients, artificial intelligence (AI) in medical diagnostics has the potential to improve access to and the cost of healthcare. It takes years of medical education and a lot of time to diagnose a condition accurately. The application of AI to medical diagnosis has demonstrated its ability to provide precise diagnoses, support clinical decisions, and improve healthcare professionals judgment.
According to the data by the World Bank, USD 1,111.082 was spent per capita on healthcare in 2018.
Electronic health records (EHRs), medical imaging data, and genomic data, which have become readily available in huge amounts, have made it possible to develop and validate AI models. Moreover, the collection and use of these data have been made easier by the digitization of healthcare data and the deployment of interoperable systems, enabling AI algorithms to learn from a variety of patient groups and increase diagnostic precision.
The main obstacle facing healthcare companies is funding, particularly in developing nations where it is difficult to prioritize IT funds over medical equipment. Particularly in nations where the reimbursement situation is unfavorable, the high cost of imaging equipment and the implementation and licensing expenses of AI software are the main issues limiting market growth. However, due to high installation and maintenance costs, for instance, the majority of healthcare facilities in developing nations cannot afford AI solutions. The adoption of innovative or cutting-edge systems is being hampered by this factor.
Big data (huge and complex data) is produced at various phases of the care delivery process as a result of the industry's growing digitization and adoption of information systems. Big data in the field of medical diagnostics includes, among other things, information generated from clickstream and web and social media interactions, readings from medical devices like sensors, ECGs, X-rays, and other billing records, as well as biometric data. Additionally, with the increasing acceptance of EHRs, digitized laboratory slides, and high-resolution radiological images among medical professionals over the past few years, big data and analytical solutions have become exponentially more advanced and widely used.
Deep learning models in particular, which are used in AI algorithms, can be complex and challenging to understand. Healthcare practitioners might discover it difficult to trust and comprehend the logic behind AI-generated diagnoses due to the ambiguity of how AI comes to its conclusions. However, AI models must be accessible and measurable in order to be accepted and recognized by healthcare professionals.
The COVID-19 pandemic epidemic had a negative impact on the worldwide healthcare industry. The COVID-19 infection rate increased dramatically, placing an enormous burden on the global health system. Patients with COVID-19 typically experience lung problems. Therefore, to determine the severity of the disease in COVID-19 instances, cardiothoracic imaging is a standard diagnostic procedure. In 2020, the number of studies utilizing AI to diagnose COVID-19 rapidly increased.
Due to the rising demand for AI-based software in diagnostics to provide an accurate diagnosis in a timely manner, the rapid development of new AI algorithms and new software approvals, and the applications of AI-based software in a variety of fields, including radiology, cardiology, neurology, gynecology, and ophthalmology, among others, the software segment held the largest share over the projection period. Additionally, despite the challenges of having a shortage of employees and the need to deal with rising imaging scan volumes, software solutions give healthcare providers a competitive edge over their rivals.
Due to factors like the benefits of implementing AI-based solutions to automate diagnosis and reduce workload in hospitals, the rise in the number of patients undergoing diagnostic procedures, the expanding demand for early disease detection, and the shortage of medical specialists, the hospital segment is predicted to experience profitable growth throughout the forecast period. Furthermore, there is a growing need for AI-based medical technologies in hospitals that are used for diagnosis in order to reduce complexity and errors, save money and time, and be performed quickly and easily by professionals and skilled workers. Many hospitals have partnerships with digital firms to offer cloud-based AI services and solutions to their patients. By using these solutions in their daily operations, the hospitals will increase their productivity and efficiency.
Owing to the rising incidence of various chronic and infectious diseases, the rising number of AI-based startups, particularly in China and India, and the enormous potential of AI in filling the gap in the region's healthcare infrastructure, Asia Pacific is predicted to hold the largest share over the extrapolated period. Moreover, the availability of equity investments and start-up incubation has an impact on the development of regional markets. The region's rising aging population and higher prevalence of acute and chronic illnesses are both expected to boost market expansion in the region.
Due to factors including the increasing demand for accurate and prompt diagnosis and the rising frequency of chronic diseases owing to the aging population worldwide, Asia-Pacific is expected to have profitable growth. Additionally, the benefits offered by AI-based solutions in the diagnosis of different neurological diseases, such as helping radiologists interpret medical images to make a rapid and precise diagnosis, reducing noise in medical images, and producing high-quality images from lower doses of radiation, are enhancing regional growth.
Some of the key players in Artificial Intelligence (AI) in Medical Diagnostics market include: Orthofix Medical Inc., NuVasive, Inc., Baxter International Inc, OrthoPediatrics Corp., Arthrex, Inc, AlloSource, Wright Medical Group N.V., Stryker Corporation, GreenBone Ortho, Zimmer Biomet Holdings, Inc, Smith & Nephew Plc, GRAFTYS, Medtronic Plc, Bioventus Inc, Musculoskeletal Transplant Foundation, SeaSpine, GreenBone Ortho.
In September 2023, IBM commits to train 2 million in artificial intelligence in three years, with a Focus on Underrepresented Communities. To achieve this goal at a global scale, IBM is expanding AI education collaborations with universities globally, collaborating with partners to deliver AI training to adult learners, and launching new generative AI coursework through IBM SkillsBuild. This will expand upon IBM's existing programs and career-building platforms to offer enhanced access to AI education and in-demand technical roles.
In September 2023, IBM is offering a robust FSMA 204 traceability and compliance management solution capable of supporting the needs of the industry's largest enterprises and suppliers of all sizes. The solution combines the scalability and interoperability of the IBM Sterling Supply Chain Intelligence Suite and the IBM Food Trust Network with iFoodDS' traceability applications and innovative food industry, regulatory, and technical expertise.