![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1359022
¼¼°èÀÇ ¼ö¼Ò ÅÊÅ© Àç·á ½ÃÀå ¿¹Ãø(-2030³â) : Àç·á À¯Çü, ÅÊÅ© À¯Çü, ±Ô¸ð, ÃÖÁ¾»ç¿ëÀÚ ¹× Áö¿ªº° ºÐ¼®Hydrogen Tank Material Market Forecasts to 2030 - Global Analysis By Material Type, Tank Type, Size, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¼¼°è ¼ö¼Ò ÅÊÅ© Àç·á ½ÃÀåÀº 2023³â 9¾ï 5,300¸¸ ´Þ·¯, 2030³â¿¡´Â 35¾ï 5,670¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç ¿¹Ãø ±â°£ µ¿¾È 20.7%ÀÇ CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¼ö¼Ò´Â ¹«ÇÑÇÑ °ø±ÞÀÌ °¡´ÉÇÏ°í ¿Â½Ç°¡½º¸¦ ¹èÃâÇÏÁö ¾ÊÀ¸¸ç ¿¡³ÊÁö È¿À²ÀÌ ³ô±â ¶§¹®¿¡ ¹Ì·¡ ¿¡³ÊÁö ºÐ¾ß¿¡¼ ÃÖ°íÀÇ ¼±ÅÃÀ¸·Î Àνĵǰí ÀÖ½À´Ï´Ù. Àç·á °úÇаú ±â¼úÀÇ ¹ßÀüÀ¸·Î ´õ °¡º±°í, ´õ È¿À²ÀûÀ̸ç, ´õ Å« ¼ö¼Ò ÀúÀå ¿ë·®À» °¡Áø ÅÊÅ©ÀÇ Á¦Á¶°¡ °¡´ÉÇØÁ³½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼¿¡ ÈûÀÔ¾î »ê¾÷°èÀÇ ÅõÀÚ¿Í ÆÄÆ®³Ê½ÊÀ» ÅëÇØ »õ·Î¿î ÅÊÅ© ¼ÒÀç°¡ »ó¿ëÈµÇ¸é¼ ¼ö¼Ò °æÁ¦´Â °è¼Ó ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¼ö¼Ò¸¦ ¿¡³ÊÁö¿øÀ¸·Î ³Î¸® º¸±ÞÇϱâ À§Çؼ´Â ÀÎÇÁ¶ó ±¸ÃàÀÌ ÇʼöÀûÀÔ´Ï´Ù.
Fuel Cells and Hydrogen Joint UndertakingÀ» À§ÇØ ÀÛ¼ºµÈ Hydrogen Roadmap Europe¿¡ µû¸£¸é, 2030³â±îÁö ¼ö¼ÒÀü±âÂ÷´Â À¯·´¿¡¼ ½Â¿ëÂ÷ 22´ë Áß 1´ë, ¼ÒÇü »ó¿ëÂ÷ 12´ë Áß 1´ë, Æ®·° ¹× ¹ö½º 45,000´ë, ¿Â÷ 570´ë, ¼ö¼ÒÃæÀü¼Ò 3,700°³¼Ò¸¦ Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¼ö¼ÒÀÇ ¿¡³ÊÁö¿øÀ¸·Î¼ÀÇ ÀûÀÀ¼ºÀº °£ÇæÀûÀÎ Àç»ý¿¡³ÊÁö¸¦ º¸¿ÏÇϰí Ç×°ø ¹× Áß°ø¾÷°ú °°Àº Żź¼Ò »ê¾÷À» À§ÇÑ µµÀü °úÁ¦¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¶ÇÇÑ, ¿¬·áÀüÁö ¹× ÀüÇØÁ¶¿Í °°Àº ¼ö¼Ò ±â¼ú °³¹ßÀÌ ¿¬±¸°³¹ßÀÇ Áß½ÉÀÌ µÇ°í ÀÖÀ¸¸ç, ½Å·ÚÇÒ ¼ö ÀÖ´Â ¼ö¼Ò ÀúÀå ¿É¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
ź¼Ò¼¶À¯°Èº¹ÇÕÀç¿Í °°Àº ÷´Ü ¼ÒÀç¿Í °ü·ÃµÈ »ó´ëÀûÀ¸·Î ³ôÀº Á¦Á¶ºñ¿ëÀº ¼ö¼ÒÅÊÅ© ¼ÒÀç ½ÃÀåÀÇ ÁÖ¿ä À庮 Áß ÇϳªÀÔ´Ï´Ù. ¶ÇÇÑ, ¼ö¼Ò ÅÊÅ© Á¦Á¶¾÷ü´Â ÀÌ·¯ÇÑ Àç·á¸¦ Á¦Á¶ÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤¹ÐÇÏ°í Æ¯¼öÇÑ Àåºñ·Î ÀÎÇØ Ãß°¡ ºñ¿ëÀÌ ¹ß»ýÇÕ´Ï´Ù. ¼ö¼Ò ±â¼úÀÇ ºñ¿ë °æÀï·ÂÀ» ³ôÀ̱â À§Çؼ´Â ÀÌ·¯ÇÑ ºñ¿ëÀ» ÁÙ¿©¾ß ÇÕ´Ï´Ù.
¼ö¼Ò ÅÊÅ© Àç·á ½ÃÀåÀº Àç·á °úÇÐÀÇ ¹ßÀüÀ¸·Î ÀÎÇØ Å« ±âȸ¸¦ ¸ÂÀÌÇϰí ÀÖ½À´Ï´Ù. ´õ °Çϰí, ´õ °¡º±°í, ´õ ¿À·¡ Áö¼ÓµÇ´Â ¼ö¼Ò ÀúÀå ¼Ö·ç¼ÇÀ» ¾à¼ÓÇÏ´Â Çõ½ÅÀûÀÎ Àç·á°¡ ¿¬±¸Àڵ鿡 ÀÇÇØ ²÷ÀÓ¾øÀÌ °³¹ßµÇ°í ÀÖ½À´Ï´Ù. ±×·¯³ª ƯÈ÷ ¿î¼Û »ê¾÷¿¡¼ ¼ö¼Ò ÅÊÅ©ÀÇ °æ·®È ¹× ¾ÈÀü¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ´Â ÀáÀç·ÂÀÌ ±× äÅÿ¡ ¿µÇâÀ» ¹ÌÄ¡´Â ¿äÀÎ Áß ÇϳªÀÔ´Ï´Ù. ź¼Ò¼¶À¯ °È º¹ÇÕÀç·á´Â ÀÌ·¯ÇÑ Àç·áÀÇ ÇÑ ¿¹ÀÔ´Ï´Ù.
¼ö¼Ò ÅÊÅ©ÀÇ ³»±¸¼º°ú È¿À²¼ºÀº Àç·á¿¡ µû¶ó ¼ö¼Ò°¡ ħÅõÇÏ¿© Ã뼺 ¹× ¿È¸¦ À¯¹ßÇÒ ¼ö ÀÖ½À´Ï´Ù. ±×·¯³ª ±¸Á¶Àû ¹«°á¼º°ú ¾ÈÀü¼ºÀ» À¯ÁöÇÏ¸é¼ ¼ö¼Ò¿¡ Àå½Ã°£ ³ëÃâµÇ´Â °ÍÀ» °ßµô ¼ö ÀÖ´Â Àç·á¸¦ ¹ß°ßÇÏ°í ¼³°èÇϱâ À§ÇØ ÀÌ ºÐ¾ß¿¡ ´ëÇÑ ¿¬±¸ °³¹ßÀÌ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù.
¼ö¼Ò ÅÊÅ© Àç·á ½ÃÀåÀº COVID-19ÀÇ ´ëÀ¯ÇàÀ¸·Î Å« ¿µÇâÀ» ¹Þ¾Ò½À´Ï´Ù. ù ¹øÂ° Àü¿°º´Àº Á¦Á¶ Áö¿¬, °ø±Þ¸Á È¥¶õ, ÇÁ·ÎÁ§Æ® ÀϽà Áß´ÜÀ» ÃÊ·¡ÇßÁö¸¸ µ¿½Ã¿¡ ź·ÂÀûÀ̰í Áö¼Ó°¡´ÉÇÑ ¿¡³ÊÁö ¼Ö·ç¼ÇÀÇ Á߿伺¿¡ ´ëÇÑ °ü½ÉÀ» ºÒ·¯ÀÏÀ¸Ä×½À´Ï´Ù. ¼ö¼Ò »ê¾÷Àº °æÁ¦ ȸº¹°ú ³ì»ö ÀüȯÀÇ ÀáÀçÀû ¿øµ¿·ÂÀ¸·Î ±¹°¡¿Í ºÎ¹®ÀÌ À§±â ÀÌÈÄ ¿¡³ÊÁö Àü·«À» Æò°¡ÇÏ¸é¼ »õ·Î¿î ÁÖ¸ñÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °¢±¹ Á¤ºÎÀÇ °æ±âºÎ¾çÃ¥°ú º¹±¸ °èȹ¿¡ µû¶ó ¼ö¼Ò °ü·Ã ÇÁ·ÎÁ§Æ®¿¡ ´ëÇÑ ÀÚ±ÝÀÌ ÇÒ´çµÇ¸é¼, ƯÈ÷ Àç»ý¿¡³ÊÁö ÅëÇÕ, ¿î¼Û, »ê¾÷ Żź¼ÒÈ µîÀÇ ºÐ¾ß¿¡¼ ½ÃÀå È®´ëÀÇ ±âȸ°¡ µÇ°í ÀÖ½À´Ï´Ù.
¼ö¼Ò ÅÊÅ© ¼ÒÀç¿¡¼ ź¼Ò¼¶À¯ ºÎ¹®Àº ½ÃÀå¿¡¼ °¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ź¼Ò¼¶À¯ °È º¹ÇÕÀç·á´Â °í°µµ, °æ·®, ¼ö¼Ò Ã뼺¿¡ ´ëÇÑ ¿ì¼öÇÑ ³»¼ºÀ» °áÇÕÇÏ¿© °µµ°¡ ³ô°í °¡º¿î ¼ö¼Ò ÀúÀå ÅÊÅ©¸¦ Á¦Á¶Çϱâ À§ÇÑ Àç·á·Î ¼±Åõǰí ÀÖ½À´Ï´Ù. ź¼Ò¼¶À¯ °È ¼ö¼Ò ÅÊÅ©´Â ¼ö¼ÒÀÇ ¾ÈÀüÇÑ ÀúÀå°ú ¿î¼ÛÀ» °¡´ÉÇÏ°Ô Çϸç, ƯÈ÷ ¿î¼Û »ê¾÷¿¡¼ ¼ö¼Ò ±â¼ú µµÀÔÀ» ÃËÁøÇÏ´Â µ¥ Å« ±â¿©¸¦ ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ´Â ¼ö¼Ò °æÁ¦ÀÇ È®´ë¿¡ ±â¿©ÇÕ´Ï´Ù.
¼ö¼Ò ÅÊÅ© ¼ÒÀç ½ÃÀåÀº ÀÚµ¿Â÷ ºÐ¾ß¿¡¼ °¡Àå ³ôÀº CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ´Â ÁַΠģȯ°æÀûÀÌ°í ¹«°øÇØ ±³Åë¼ö´ÜÀÎ ¼ö¼Ò¿¬·áÀüÁöÂ÷(FCV)¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí Àֱ⠶§¹®ÀÔ´Ï´Ù. ¼ö¼Ò ÅÊÅ©´Â ¹èÅ͸® Àü±âÂ÷º¸´Ù ´õ ±ä ÁÖÇà°Å¸®¿Í ºü¸¥ ¿¬·á º¸±Þ ½Ã°£À» Á¦°øÇϱ⠶§¹®¿¡ ¿¬·áÀüÁö ÀÚµ¿Â÷(FCV)¿¡¼ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ¶ÇÇÑ, °¢±¹ Á¤ºÎ°¡ ¿Â½Ç°¡½º °¨Ãà°ú ¼ö¼Ò ÀÎÇÁ¶ó º¸±Þ¿¡ ÁÖ·ÂÇϰí ÀÖ°í, ÀÚµ¿Â÷ ¾÷°è°¡ ¼ö¼Ò ±â¼ú¿¡ ´ëÇÑ ³ë·ÂÀ» °ÈÇÔ¿¡ µû¶ó FCV ½ÃÀåÀÇ ¼ºÀå ¼ö¿ä¸¦ ÃæÁ·½Ã۱â À§ÇØ Åº¼Ò¼¶À¯ °È º¹ÇÕÀç¿Í °°Àº ÷´Ü ¼ö¼Ò ÅÊÅ© ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä°¡ Å©°Ô Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¾Æ½Ã¾ÆÅÂÆò¾çÀÌ ¼ö¼Ò ÅÊÅ© Àç·áÀÇ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. ƯÈ÷ ÀϺ»°ú Çѱ¹°ú °°Àº ±¹°¡¿¡¼ ¼ö¼Ò µµÀÔÀ» ÃËÁøÇϱâ À§ÇÑ Á¤ºÎÀÇ °·ÂÇÑ ÀÌ´Ï¼ÅÆ¼ºê¸¦ Æ÷ÇÔÇÑ ¸î °¡Áö ¿äÀÎÀÌ ÀÌ·¯ÇÑ ¿ìÀ§¸¦ Á¡ÇÏ´Â µ¥ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ÀÌµé ±¹°¡´Â ¼ö¼Ò¿¬·áÀüÁöÂ÷(FCV) ±â¼úÀ» ÃËÁøÇϱâ À§ÇØ ¼ö¼Ò ÀÎÇÁ¶ó¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖÀ¸¸ç, ÀÚµ¿Â÷ Á¦Á¶»ç¿ÍÀÇ ÆÄÆ®³Ê½ÊÀ» ±¸ÃàÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¿î¼Û ¹× »ê¾÷ ºÐ¾ß¿¡¼ ¼ö¼Ò¸¦ Ȱ¿ëÇÏ·Á´Â Áß±¹ÀÇ ¾ß½ÉÂù °èȹµµ ÀÌ Áö¿ªÀÇ ½ÃÀå Á¡À¯À²¿¡ Å« ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.
¼ö¼Ò ÅÊÅ© Àç·áÀÇ CAGRÀÌ °¡Àå ³ôÀº Áö¿ªÀº ºÏ¹Ì Áö¿ªÀÔ´Ï´Ù. ¼ö¼Ò ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡, ¼ö¼Ò ±â¹Ý ¿î¼Û¿¡ ´ëÇÑ °·ÂÇÑ ÁöÁö, Żź¼ÒÈ ³ë·Â¿¡ ´ëÇÑ °ü½É Áõ°¡ µî ¿©·¯ ¿äÀÎÀÌ ÀÌ·¯ÇÑ ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, »ê¾÷ ÀÀ¿ë ¹× Àç»ý¿¡³ÊÁö ÅëÇÕ µî ´Ù¾çÇÑ »ê¾÷¿¡¼ ¼ö¼Ò¸¦ Ȱ¿ëÇÏ´Â µ¥ ¿¼ºÀûÀÎ ºÏ¹Ì´Â ¼ö¼Ò ÅÊÅ© Àç·á ½ÃÀåÀÇ ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖÀ¸¸ç, ¼ö¼Ò ±â¼ú äÅÿ¡ ÀÖ¾î ¿ªµ¿ÀûÀÌ°í ºü¸£°Ô ¹ßÀüÇÏ´Â Áö¿ªÀÌ µÇ°í ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Hydrogen Tank Material Market is accounted for $953.0 million in 2023 and is expected to reach $3556.7 million by 2030 growing at a CAGR of 20.7% during the forecast period. Due to the limitless supply, absence of greenhouse gas emissions, and high energy efficiency, hydrogen has been identified as the best option for the future energy sector. The creation of lighter, more efficient tanks with greater hydrogen storage capacity is made possible by advances in materials science and technology. As a result of industry investments and partnerships spurred by this trend, new tank materials are now being commercialized, and the hydrogen economy is growing. Moreover, infrastructure development is crucial in helping to support the widespread adoption of hydrogen as an energy source.
According to the Hydrogen Roadmap Europe prepared for the Fuel Cells and Hydrogen Joint Undertaking, by 2030, FCEVs could account for 1 in 22 passenger vehicles, 1 in 12 light commercial vehicles, 45,000 trucks and buses, 570 trains, and 3,700 hydrogen fuelling stations in Europe.
Hydrogen's adaptability as an energy source which enables it to supplement intermittent renewable energy sources and decarbonizes challenging-to-abate industries like aviation and heavy industry, is a factor in its rising popularity. Moreover, the development of hydrogen technologies, such as fuel cells and electrolyzers, is the main focus of research and development, which in turn fuels the demand for reliable hydrogen storage options.
The relatively high manufacturing costs associated with cutting-edge materials like carbon fiber-reinforced composites are one of the main barriers in the hydrogen tank material market. Additionally, manufacturers of hydrogen tanks incur additional costs as a result of the precise and specialized equipment needed for the production of these materials. Making hydrogen technology more cost-competitive requires a reduction in these expenses.
The market for hydrogen tank materials is presented with a sizable opportunity due to ongoing advances in material science. Innovative materials that promise to be stronger, lighter and more long-lasting hydrogen storage solutions are being developed by researchers nonstop. However, one of the factors influencing their adoption, particularly in the transportation industry, is their potential to reduce the weight and enhance the safety of hydrogen tanks. Examples of these materials include carbon fiber-reinforced composites.
The durability and efficiency of hydrogen tanks can be impacted by the ability of hydrogen to permeate some materials, which can result in embrittlement and degradation. However, in order to find and engineer materials that can withstand prolonged exposure to hydrogen while maintaining structural integrity and safety, research and development efforts in this area are ongoing.
The market for hydrogen tank materials was significantly impacted by the COVID-19 pandemic. While the initial outbreak caused delays in manufacturing, supply chain disruptions, and temporary project suspensions, it also brought attention to the significance of resilient and sustainable energy solutions. The hydrogen industry has attracted new attention as nations and sectors evaluate their energy strategies in the wake of the crisis as a potential engine for economic recovery and the green transition. Moreover, funding for hydrogen-related projects was allocated by regional government's stimulus and recovery plans, providing chances for the market to expand, particularly in areas like renewable energy integration, transportation, and industrial decarbonisation.
In terms of hydrogen tank materials, the carbon fiber segment is anticipated to have the largest share in the market. Since they combine high strength, low weight, and excellent resistance to hydrogen embrittlement, carbon fiber-reinforced composites are the material of choice for producing strong, lightweight hydrogen storage tanks. However, they make it possible to store and deliver hydrogen safely, carbon fiber-reinforced hydrogen tanks also significantly contribute to encouraging the adoption of hydrogen technology, particularly in the transportation industry. This helps the hydrogen economy expand.
The hydrogen tank material market has been projected to grow at the highest CAGR in the automotive sector. This is primarily caused by the growing demand for hydrogen fuel cell vehicles (FCVs) as an eco-friendly and emission-free mode of transportation. In order to provide longer ranges and quicker refueling times than battery electric vehicles, hydrogen tanks play a crucial role in fuel cell vehicles (FCVs). Moreover, governments all over the world are placing a strong emphasis on reducing greenhouse gas emissions and promoting hydrogen infrastructure, and the automotive industry's growing commitment to hydrogen technology is likely to fuel a significant increase in demand for advanced hydrogen tank materials, like carbon fiber-reinforced composites, in order to meet the needs of a growing FCV market.
Asia-Pacific holds the largest market share for hydrogen tank materials. Several factors, including strong government initiatives promoting hydrogen adoption, particularly in nations like Japan and South Korea, are responsible for this dominance. To advance hydrogen fuel cell vehicle (FCV) technology, these countries have made significant investments in hydrogen infrastructure and are cultivating partnerships with automakers. Additionally, China's ambitious plans for using hydrogen in transportation and industrial applications also play a significant role in the market share of the region.
North America has the market's highest CAGR for hydrogen tank materials. A number of factors, such as increased investments in hydrogen infrastructure, strong support for hydrogen-based transportation options, and a growing focus on decarbonization initiatives, all contribute to this growth. Furthermore, North America's dedication to using hydrogen in a variety of industries, including industrial applications and the integration of renewable energy, further drives its growth in the hydrogen tank material market, making it a dynamic and quickly developing region for the adoption of hydrogen technology.
Some of the key players in Hydrogen Tank Material Market include: Hexagon Composites ASA, Composites Advanced Technologies, LLC, Metal Mate Co., Ltd., Praxair Technology, Inc., Everest Kanto Cylinder Ltd., Avanco Group, Pragma Industries, Linde plc, Mitsubishi Chemical Corporation, Luxfer Group, Beijing Tianhai Industry Co. Ltd., Faber Industrie S.P.A., Toyota Motor Corporation, UMOE Advanced Composites, BNH Gas Tanks Llp, Plastic Omnium, Quantum Fuel Systems LLC , Worthington Industries, Inc., Doosan Mobility Innovation and HBank Technologies Inc.
In August 2023, Apollo have acquired a majority interest in Composite Advanced Technologies, Inc, a leading provider of compressed natural gas ("CNG"), renewable natural gas ("RNG") and hydrogen transportation and storage solutions in the United States.
In August 2023, MarketAxess Holdings has entered into an agreement to acquire Pragma, a quantitative trading technology provider specialising in algorithmic and analytical services in equities, FX and fixed income. The acquisition is expected to close in Q4 2023.
In July 2023, Hexagon Purus, a world leading manufacturer of zero emission mobility and infrastructure solutions, has secured a five-year framework agreement for the delivery of hydrogen distribution systems to a leading global energy company. Hexagon Purus' hydrogen distribution systems including its type 4 hydrogen cylinders will be used to deliver hydrogen to a network of hydrogen refueling stations in Europe.