½ÃÀ庸°í¼­
»óǰÄÚµå
1359038

½º¸¶Æ® â°í ½ÃÀå ¿¹Ãø(-2030³â) : ÄÄÆ÷³ÍÆ®º°, µµÀÔ ¸ðµåº°, Á¶Á÷ ±Ô¸ðº°, ±â¼úº°, ¿ëµµº°, ¾÷°èº°, Áö¿ªº° ¼¼°è ºÐ¼®

Smart Warehousing Market Forecasts to 2030 - Global Analysis By Component, Deployment Mode, Deployment Type, Organization Size, Technology, Application, Vertical and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ½º¸¶Æ® â°í ½ÃÀåÀº 2023³â¿¡ 208¾ï ´Þ·¯¸¦ Â÷ÁöÇÏ¸ç ¿¹Ãø ±â°£ Áß CAGRÀº 11.5%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 448¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸ÁÀÔ´Ï´Ù.

»ý»êǰÀ̳ª ¿øÀÚÀ縦 º¸°üÇÏ´Â µ¥ »ç¿ëµÇ´Â ´ë±Ô¸ð ´ÜÁö¸¦ ½º¸¶Æ®Ã¢°í¶ó°í ÇÕ´Ï´Ù. ½º¸¶Æ® â°í´Â Áö±Ý±îÁö »ç¶÷ÀÌ ±â°è¿Í ÄÄÇ»Å͸¦ »ç¿ëÇÏ¿© ¼öÇàÇß´ø ÀϹÝÀûÀΠâ°í ÀÛ¾÷À» ¼öÇàÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ÀÛ¾÷¿¡´Â ÁÖ¹® ÀÎ½Ä ¹× Á¢¼ö, ¹°Ç° °è¼ö, º¸°ü, À§Ä¡ ±â¾ï, ÀûÀýÇÑ Àå¼Ò·Î ÁÖ¹® Àü¼Û µîÀÌ Æ÷ÇԵ˴ϴÙ. °¡Àå È¿°úÀûÀÎ ½º¸¶Æ® â°í´Â °ø±Þ¾÷ü¿¡¼­ °í°´±îÁö »óǰÀÇ À̵¿ °úÁ¤°ú À̵¿À» °ÅÀÇ ¸ðµÎ ÀÚµ¿È­ÇÏ°í ½Ç¼ö¸¦ °ÅÀÇ ÀÏÀ¸Å°Áö ¾Ê½À´Ï´Ù.

Night FrankÀÇ 2020³â ÃßÁ¤¿¡ µû¸£¸é ¿µ±¹¿¡¼­¸¸ 2024³â±îÁö 9,200¸¸ Æò¹æÇÇÆ®ÀÇ Ã¢°í °ø°£ÀÌ ÇÊ¿äÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Áï, ¾ÕÀ¸·Î´Â ÇöÀç Á¦ÇÑµÈ °ø°£À» ºñ¿ë È¿À²ÀûÀ¸·Î Ȱ¿ëÇÏ´Â °ÍÀÌ Áß¿äÇØÁú °ÍÀÔ´Ï´Ù. ±× °á°ú â°í ÀÚµ¿È­°¡ ź»ýÇß½À´Ï´Ù.

¾÷¹«¸¦ ½Å¼ÓÇϰí È¿À²ÀûÀ¸·Î °ü¸®ÇÒ ¼ö ÀÖ´Â ¸Åü·Î¼­ ½º¸¶Æ®Æù¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡

¸ð¹ÙÀÏ ±â¹Ý ¿ëµµ°ú ±â¼úÀ» Ȱ¿ëÇÏ¿© Àüü â°í °ü¸® ÇÁ·Î¼¼½º¸¦ °£¼ÒÈ­Çϸé ÃÖÁ¾ ¸ÅÃâÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ½º¸¶Æ®Æù°ú ÅÂºí¸´°ú °°Àº ¸ð¹ÙÀÏ ±â±âÀÇ ±¤¹üÀ§ÇÑ »ç¿ëÀ¸·Î ¹°·ù ÆÄÆ®³Ê¿Í â°í Á÷¿øµéÀº ÀÌÁ¦ ´Ù¾çÇÑ Åø¿Í ÀÚ·á¿¡ Á¢±ÙÇÒ ¼ö ÀÖ½À´Ï´Ù. â°í °ü¸®ÀÚ°¡ Àüü â°í °ü¸® ÇÁ·Î¼¼½º¸¦ È¿°úÀûÀ¸·Î °ü¸®ÇÏ´Â µ¥ µµ¿òÀÌ µÇ´Â ±â´ÉÀ¸·Î´Â ¹ÙÄÚµå ½ºÄµ ¾ÛÀ» ÅëÇÑ Àç°í ½ºÄµ, Áöµµ»ó¿¡¼­ È­¹°ÀÇ Á¤È®ÇÑ À§Ä¡ Ç¥½Ã, »ó¼¼ÇÑ ¹è¼Û Á¤º¸ ¹× ÀÔ°í µ¥ÀÌÅÍ ¼öÁý, º¸´Ù ºü¸¥ º¸°í¼­ ÀÛ¼º µîÀÌ ÀÖ½À´Ï´Ù.

½º¸¶Æ® â°í´Â ¼Ò±Ô¸ð ±â¾÷¿¡µµ º¸±Þ·üÀÌ ³·½À´Ï´Ù.

´ëºÎºÐÀÇ ¼Ò±â¾÷Àº ´ë±â¾÷º¸´Ù Àç°í ǰ¸ñÀÌ Àû±â ¶§¹®¿¡ ÀÚü â°í¸¦ º¸À¯ÇÏÁö ¾Ê½À´Ï´Ù. ¸¹Àº Á¶Á÷Àº ¼ÒµæÀÌ ÀûÀº Áß¼Ò±â¾÷À» À§ÇØ ½º¸¶Æ® â°í ¼Ö·ç¼Ç¿¡ ÅõÀÚÇÒ ¿©·ÂÀÌ ¾ø½À´Ï´Ù. ÇöÀç ½Ã½ºÅÛ ±³Ã¼¿¡ ´ëÇÑ ÀúÇ×°ú ¼ºÀå Àü·«ÀÇ ÇÑ°è ¿Ü¿¡µµ Áß¼Ò±â¾÷ °æ¿µÀÚ´Â ½º¸¶Æ® â°í ¼Ö·ç¼ÇÀÇ ÀÌÁ¡À» ÀνÄÇÒ ¼ö ¾ø½À´Ï´Ù. ´Ù¾çÇÑ Áß¼Ò±â¾÷ÀÇ ½º¸¶Æ® â°í ¼Ö·ç¼Ç µµÀÔÀº ½Ã½ºÅÛ°ú °ü·ÃµÈ ¸¹Àº ÅõÀÚ¿Í ³ôÀº Ãʱ⠰¡°ÝÀ¸·Î ÀÎÇØ ´õ¿í ¾î·Á¿òÀ» °Þ°í ÀÖ½À´Ï´Ù.

â°í °ø°£ Ȱ¿ë·ü Çâ»ó

Áö´ÉÇü â°í¸¦ ÅëÇØ â°í °ø°£ÀÇ È°¿ëµµ¸¦ ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. ÀÚµ¿ ÇÇÅ· ¹× À̵¿½Ä ºÐ·ù ½Ã½ºÅÛÀº ³ôÀº ·¢°ú Á¼Àº Åë·Î¸¦ Çã¿ëÇÏ°í ±³Åë·®°ú Åë·Î È¥ÀâÀ» ÁÙ¿© ±âÁ¸ â°í¿Í µ¿ÀÏÇÑ °ø°£¿¡ ´õ ¸¹Àº ǰ¸ñÀ» º¸°üÇÒ ¼ö ÀÖ½À´Ï´Ù. â°í °ø°£À» º¸´Ù È¿°úÀûÀ¸·Î Ȱ¿ëÇÏ¸é ÆÇ¸Å Ç°¸ñ´ç °£Á¢ºñ¸¦ Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¸°Ô Àý°¨µÈ ºñ¿ëÀº °¡°Ý ÀÎÇÏ¿Í ¿î¿µÀÚÀÇ ¸ÅÃâ·ü Çâ»óÀ̶ó´Â ÇüÅ·Π°í°´¿¡°Ô µ¹¾Æ°¥ ¼ö ÀÖ½À´Ï´Ù.

½º¸¶Æ® â°í°¡ ÃÊ·¡ÇÏ´Â ºñȣȯ¼º

½Ã½ºÅÛÀÇ ¾ÈÀüÀ» º¸ÀåÇϱâ À§Çؼ­´Â ½º¸¶Æ® â°í¸¦ ±¸ÃàÇØ¾ß ÇÕ´Ï´Ù. ±â¼úÀÇ ¹ßÀüÀº ÇÇÇÒ ¼ö ¾øÁö¸¸ ¸ðµç »ç¶÷ÀÌ ¹Þ¾ÆµéÀÏ ¼ö ÀÖ´Â °ÍÀº ¾Æ´Õ´Ï´Ù. ½Ã½ºÅÛÀÌ ¼öÁýÇÑ µ¥ÀÌÅÍÀÇ ÇÁ¶óÀ̹ö½Ã¿Í ±â¹Ð¼º¿¡ ´ëÇÑ ½É°¢ÇÑ ¹®Á¦°¡ ÀÖ½À´Ï´Ù. â°í¿¡ ÀÖ´Â °Í °£ÀÇ È£È¯¼ºÀÌ ¾ø±â ¶§¹®¿¡ ¹ß»ýÇÏ´Â À§ÇèÇÑ ÇÇÇØµµ º¸¾È À§ÇèÀ¸·Î °í·ÁÇØ¾ß ÇÕ´Ï´Ù. ±â¼úÀº Àΰ£ÀÇ ¾ÈÀüµµ °í·ÁÇØ¾ß ÇÕ´Ï´Ù. µ¥ÀÌÅÍ Ã³¸®, º¸°ü, ½Å±â¼ú ´ëÀÀ, º¸¾È, ´Ù¾çÇÑ °ø±Þ¸Á ÆÄÆ®³ÊÀÇ ½Ã½ºÅÛ ÅëÇÕ Ãø¸é¿¡¼­ ¿À´Ã³¯ÀÇ ½Ã½ºÅÛÀÌ ¾ó¸¶³ª À¯¿¬ÇÑÁö Æò°¡ÇÏ±â ¾î·Æ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ :

COVID-19´Â ½º¸¶Æ® â°í ½ÃÀå¿¡ Áß°£ Á¤µµÀÇ ¿µÇâÀ» ¹ÌÃÆÀ¸¸ç, COVID-19´Â ¼ö¿ä ¹× °ø±Þ ¸ðµÎ¿¡ Å« ¿µÇâÀ» ¹ÌÃÄ ¼¼°è °ø±Þ ½Ã½ºÅÛÀ» È¥¶õ¿¡ ºü¶ß·È½À´Ï´Ù. ¿©·¯ ±¹°¡ÀÇ Á¤ºÎ°¡ ºÀ¼â·ÉÀ» ³»¸®°í Á¦Á¶¾÷, ¼Ò¸Å¾÷, ½Äǰ ¹× À½·á¾÷, ¿î¼Û¾÷, ¹°·ù¾÷ÀÌ ¹®À» ´Ý¾Ò°í, »ç¶÷µéÀÌ Áý¿¡¼­ Æí¾ÈÇÏ°Ô »óǰÀ» ¼±ÅÃÇÒ ¼ö ÀÖ´Â E-Commerce Ç÷§Æû¿¡¼­ ¿Â¶óÀÎ ¼îÇο¡ ´ëÇÑ ¼ö¿ä°¡ Å©°Ô Áõ°¡ÇÏ¿´½À´Ï´Ù. Å©°Ô Áõ°¡Çß½À´Ï´Ù. ±×·¯³ª COVID-19´Â â°í Á¶Á÷¿¡ ¿î¼Û Áö¿¬À» °¡Á®¿Í °ø±Þ¸Á ³×Æ®¿öÅ©¿¡ ¾Ç¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ±× °á°ú, COVID-19 ÀÌÈÄ ¸ðµç ÃÖÁ¾»ç¿ëÀÚµéÀÇ ½º¸¶Æ® â°í¿¡ ´ëÇÑ ¿ä±¸°¡ ³ô¾ÆÁø °ÍÀ¸·Î ÆÇ´ÜµÇ¸ç, ÀÌ·¯ÇÑ ¼ö¿ä´Â ¿¹Ãø ±â°£ Áß ½ÃÀåÀ» ÁÖµµÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¿¹Ãø ±â°£ Áß ¼­ºñ½º ºÎ¹®ÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµÊ

¿¹Ãø ±â°£ Áß ¼­ºñ½º ºÐ¾ß°¡ °¡Àå Å« ¼ºÀå¼¼¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ½º¸¶Æ®Æù ´Ü¸»±âÀÇ º¸±ÞÀ¸·Î ÀÚµ¿ ÇÇÅ· Åø¿Í Àç°í °ü¸® ½Ã½ºÅÛÀ» ½±°Ô »ç¿ëÇÒ ¼ö ÀÖ°Ô µÇ¾î Àç°í ÇÁ·Î¼¼½º¸¦ °ü¸®Çϰí ÀΰǺñ¸¦ Àý°¨ÇÒ ¼ö ÀÖ°ÔµÈ °ÍÀÌ ¼ºÀå ¿äÀÎÀÔ´Ï´Ù. ¾÷üµéÀº â°í ÀÛ¾÷ ÃÖÀûÈ­¸¦ À§ÇÑ IoT, ¼¾¼­, AI ±â¼ú¿¡ ´ëÇÑ »ç¿ëÀÚ ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇØ ½º¸¶Æ® â°í Àåºñ¸¦ °³¹ßÇß½À´Ï´Ù.

¿¹Ãø ±â°£ Áß ¿î¼Û ¹× ¹°·ù ºÎ¹®ÀÇ CAGRÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹»óµÊ

¿î¼Û ¹× ¹°·ù ºÐ¾ß´Â ¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. »ó´ç¼öÀÇ ½º¸¶Æ® â°í°¡ °ø±Þ¾÷ü¿¡¼­ °í°´¿¡°Ô Á¦Ç°À» ¹è¼ÛÇÏ´Â °ÅÀÇ ¸ðµç ÇÁ·Î¼¼½º¸¦ ÀÚµ¿È­Çϰí ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó ¼¼°è â°í¿¡¼­ ÀÚµ¿È­ Ȱ¿ëÀÌ ºü¸£°Ô È®´ëµÇ¾î ½º¸¶Æ® â°íÀÇ ÆÇ¸Å ½ÃÀå ÀáÀç·ÂÀÌ ³ô¾ÆÁú °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ´Ù ä³Î À¯Åë ³×Æ®¿öÅ©ÀÇ ¹ßÀü, ¼¼°èÈ­, °ø±Þ¸Á ³×Æ®¿öÅ©ÀÇ ¿ªµ¿ÀûÀΠƯ¼ºÀº ¸ðµÎ ½º¸¶Æ® â°í »ê¾÷ÀÇ ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ÃÖ´ë Á¡À¯À²À» °¡Áø Áö¿ª :

ºÏ¹Ì°¡ ÃßÁ¤ ¹× ¿¹Ãø ±â°£ Áß °¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ÀÌ´Â ºÏ¹ÌÀÇ ±â¼ú ¹ßÀüÀÌ ÀÌ·¯ÇÑ ¼ºÀåÀÇ ¿øÀÎÀ¸·Î ÀÛ¿ëÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±â¼ú Çõ½ÅÀÇ Áß½ÉÁöÀÌÀÚ ±â¼ú µµÀÔ Ãʱ⠴ܰèÀÎ ºÏ¹Ì´Â ½º¸¶Æ® â°í °ø±Þ¾÷ü°¡ ÀÌ ¾÷°è¿¡¼­ ¼ºÀåÇÒ ¼ö ÀÖ´Â ÁÁÀº Àü¸ÁÀ» Á¦°øÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. »ý»ê¼º, È¿À²¼º ¹× Á¤È®¼ºÀ» ³ôÀ̱â À§ÇØ Ã¢°í ÀÛ¾÷À» ÀÚµ¿È­ÇÏ·Á´Â ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ½º¸¶Æ® â°í Çϵå¿þ¾î, ¼Ö·ç¼Ç ¹× ¼­ºñ½º°¡ ¶óƾ¾Æ¸Þ¸®Ä«¿¡¼­ ´õ ³Î¸® »ç¿ëµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÅëÇÕµÈ ½º¸¶Æ® â°í ¼Ö·ç¼ÇÀº Á÷¿øµéÀÇ ¿ª·®À» °­È­Çϰí À¯¿¬¼ºÀ» Á¦°øÇÕ´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

¾Æ½Ã¾ÆÅÂÆò¾çÀº ¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Áß±¹, Àεµ, ½Ì°¡Æ÷¸£, Çѱ¹ ¹× ±âŸ ±¹°¡µéÀº È¿À²¼º°ú °í°´ °æÇèÀ» °³¼±Çϱâ À§ÇØ ´Ù¾çÇÑ »ê¾÷¿¡¼­ ±â¼ú ±â¹Ý ½º¸¶Æ® â°í¸¦ äÅÃÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¾Æ½Ã¾ÆÅÂÆò¾ç¿¡¼­´Â ½º¸¶Æ® â°í Çϵå¿þ¾î, ¼Ö·ç¼Ç ¹× ¼­ºñ½º äÅÃÀÌ Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¹«·á Ä¿½ºÅ͸¶ÀÌÁî Á¦°ø :

ÀÌ ¸®Æ÷Æ®¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á Ä¿½ºÅ͸¶ÀÌÁî ¿É¼Ç Áß Çϳª¸¦ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. :

  • ±â¾÷ °³¿ä
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀû ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3»ç)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(ÃÖ´ë 3»ç)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡ÀÇ ½ÃÀå Ã߻ꡤ¿¹Ãø¡¤CAGR(ÁÖ : Ÿ´ç¼º üũ¿¡ µû¸§)
  • °æÀï º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû ÀÔÁö, Àü·«Àû Á¦ÈÞ¿¡ ±â¹ÝÇÑ ÁÖ¿ä ±â¾÷ÀÇ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç ¾îÇÁ·ÎÄ¡
  • Á¶»ç ¼Ò½º
    • 1Â÷ Á¶»ç ¼Ò½º
    • 2Â÷ Á¶»ç ¼Ò½º
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ÃËÁø¿äÀÎ
  • ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ¿ëµµ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • ½ÅÁ¾ Äڷγª¹ÙÀÌ·¯½º °¨¿°Áõ(COVID-19)ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ±¸¸ÅÀÚÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô ÁøÃâ¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ½º¸¶Æ® â°í ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • Çϵå¿þ¾î
  • ¼­ºñ½º
    • ¸Å´ÏÁöµå ¼­ºñ½º
    • Àü¹® ¼­ºñ½º
      • Æ®·¹ÀÌ´×°ú ÄÁ¼³ÆÃ
      • Áö¿ø°ú Á¤ºñ
      • ½Ã½ºÅÛÀÇ ÅëÇÕ°ú ½ÇÀå
  • ¼Ö·ç¼Ç
    • â°í °ü¸® ½Ã½ºÅÛ
      • ½ºÅĵå¾ó·Ð
      • ÅëÇÕ
    • â°í °ü¸® ½Ã½ºÅÛ
    • ERP ¼ÒÇÁÆ®¿þ¾î
    • SCM ¼ÒÇÁÆ®¿þ¾î
    • ¼ÒÇÁÆ®¿þ¾î Àκ¥Å丮
  • ±âŸ ÄÄÆ÷³ÍÆ®

Á¦6Àå ¼¼°èÀÇ ½º¸¶Æ® â°í ½ÃÀå : µµÀÔ ¸ðµåº°

  • ¿ÂÇÁ·¹¹Ì½º
  • Ŭ¶ó¿ìµå

Á¦7Àå ¼¼°èÀÇ ½º¸¶Æ® â°í ½ÃÀå : Á¶Á÷ ±Ô¸ðº°

  • Áß¼Ò±â¾÷
  • ´ë±â¾÷

Á¦8Àå ¼¼°èÀÇ ½º¸¶Æ® â°í ½ÃÀå : ±â¼úº°

  • ºÐ¼®
  • ¹«Àοî¹ÝÂ÷
  • â°í³» ºí·ÏüÀÎ
  • â°í AI
  • RFID
  • AR
  • Wi-Fi
  • ¾ÈÀü
  • À½¼ºÀνÄ
  • ±âŸ ±â¼ú

Á¦9Àå ¼¼°èÀÇ ½º¸¶Æ® â°í ½ÃÀå : ¿ëµµº°

  • ¿î¼Û °ü¸®
  • ÁÖ¹® °ü¸®
  • ÃâÇÏ °ü¸®
  • µµÅ© µµ¾î °ü¸®
  • ŽºÅ© °ü¸®
  • »ç¹°ÀÎÅÍ³Ý °ü¸®
  • ±âŸ ¿ëµµ

Á¦10Àå ¼¼°èÀÇ ½º¸¶Æ® â°í ½ÃÀå : ¾÷°èº°

  • ¹°·ù
  • Á¦Á¶¾÷
  • ¿¡³ÊÁö¿Í À¯Æ¿¸®Æ¼
  • ½Äǰ ¹× À½·á
  • ³ó¾÷
  • Á¤ºÎ
  • ±¤¾÷
  • ±âŸ ¾÷Á¾

Á¦11Àå ¼¼°èÀÇ ½º¸¶Æ® â°í ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦12Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕº´»ç¾÷
  • ÀμöÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦13Àå ±â¾÷ °³¿ä

  • Oracle
  • Manhattan Associates
  • SAP
  • IBM
  • Vinculum
  • Softeon
  • Unicommerce
  • Locus Robotics
  • Orderhive
  • Epicor Software Corporation
  • EasyEcom
  • ShipHero
  • IBM Corporation
  • Infor, Inc.
  • Korber AG
  • Tecsys, Inc.
  • PSI Logistics
KSA 23.10.19

According to Stratistics MRC, the Global Smart Warehousing Market is accounted for $20.8 billion in 2023 and is expected to reach $44.8 billion by 2030 growing at a CAGR of 11.5% during the forecast period. A large complex, used for storing produced items and raw materials, is called a smart warehouse. It performs regular warehouse tasks, that humans formerly carried out using machines and computers. These tasks include recognising and accepting orders, counting things, storing them, later remembering their locations, and sending orders to the appropriate location. The most effective smart warehouses automate practically the whole process and travel of goods from supplier to customer with little errors.

According to Knight Frank's 2020 estimate, the United Kingdom alone would need 92 million square feet of warehouse space by 2024. This means that, in the future, it will be critical to make cost-effective use of the currently restricted places. As a result, warehouse automation was born.

Market Dynamics:

Driver:

Increasing demand for smart phones as a medium of managing operations quickly & efficiently

The Bottom Line can be enhanced by utilising mobile-based applications and technologies to streamline the entire Warehousing process. Due to the extensive usage of mobile devices like smart phones and tablets, logistics partners and warehouse employees now have access to a wide range of tools and materials. The features that would help warehouse managers manage the entire warehouse process effectively include scanning inventory with barcode-scanning apps, viewing the precise location of a shipment on a map, retrieving in-depth shipping information & receiving data, as well as generating reports more quickly.

Restraint:

Smart warehousing offers a lower prevalence across small companies

Many small companies lack their own warehouses because they stock fewer items than do large businesses, which makes sense given their lower stock levels. Many organisations cannot afford to invest in smart warehousing solutions, due to small enterprises with lesser incomes. In addition to their resistance to replace their current systems and their limited growth strategies, small business owners are unable to recognise the benefits of smart warehouse solutions. The Implementation of smart warehousing solutions across various small and medium-sized organisations is further hampered with the significant investments and high initial prices associated with the systems.

Opportunity:

Increased utilisation of warehouse space

The utilisation of warehouse space can be increased with intelligent warehouses. Automated picking and mobile sorting systems can enable taller racks and narrower aisles, allowing for more items to be stored in the same amount of space as traditional warehouses, because traffic and aisle congestion are reduced. Utilising warehouse space more effectively lowers overhead expenses per sold item. The resulting savings can be transferred to customers in the form of lower prices or increased operator profit margins.

Threat:

Incompatibilities caused by smart warehouse

Assuring the security of the system involves building a smart warehouse. Technological progress is inevitable, but it is not universally accepted. There are serious issues regarding the privacy and confidentiality of the data the system has collected. Any dangerous harm caused due to Incompatibility between things in the Warehouse should also be taken into account as a security risk, because the system should be able to guard against such dangers. The technology must also take human safety into account. In terms of data processing, storage, adjusting to new technologies, security, and integrating systems from various supply chain partners, it is difficult to assess, how flexible today's systems are.

COVID-19 Impact:

The COVID-19 had moderate impact on the market for smart warehousing. The COVID-19 greatly affected both supply and demand and disrupted global supply systems. Governments in several Nations have imposed a lockdown, which resulted in the closure of the manufacturing, retail, food and beverage, transportation and logistics industries. The demand for online shopping has greatly expanded after COVID-19 as a result of people's ability to choose a product on an e-commerce platform while relaxing in the comfort of their own residences. However, COVID-19 caused transportation delays for warehouse organisations, which had a negative impact on their supply chain network. As a result, it is determined that the need for smart warehousing has increased across all end users post COVID-19, and this demand is anticipated to drive the market throughout the projection period.

The services segment is expected to be the largest during the forecast period

The services segment is expected to be the largest during the forecast period. The growth can be attributed to the widespread usage of smart phone devices, that makes simple to use automated picking tools and inventory control systems to manage the inventory process and lower labour expenses. Vendors have created smart warehousing devices in response to a growth in user demand for IoT, sensors, and AI technologies to optimise warehouse operations.

The transportation and logistics segment is expected to have the highest CAGR during the forecast period

The transportation and logistics segment is expected to have the highest CAGR during the forecast period. A significant number of smart warehouses are automating almost all processes involved in getting products from suppliers to customers. As a result, it is anticipated that the rapid growth in the use of automation in warehouses around the world would raise the market's potential for sales of smart warehousing. The development of multi-channel distribution networks, globalisation, and the dynamic nature of supply chain networks are all predicted to fuel industry growth in smart warehousing.

Region with largest share:

North America region is estimated to have the largest share during the forecast period, owing to the advancement of technology in North America is responsible for this growth. As an innovation hub and an early adopter of technology, North America is predicted to offer excellent prospects for smart warehousing vendors to grow in this industry. Due to the increasing demand for automating warehouse activities to increase productivity, efficiency, and accuracy, smart warehousing hardware, solutions, and services are predicted to become more widely used in Latin America. The integrated smart warehouse solutions increase employee capacity and offer flexibility.

Region with highest CAGR:

Asia-Pacific region is estimated to have the highest CAGR during the forecast period. China, India, Singapore, South Korea, and other countries are adopting technology-based smart warehousing in a wide range of industries to improve efficiency and customer experience. Additionally, the Asia-Pacific region is predicted to witness an increase in the adoption of smart warehousing hardware, solutions, and services.

Key players in the market:

Some of the key players in Smart Warehousing market include: Oracle, Manhattan Associates, SAP, IBM, Vinculum, Softeon, Unicommerce, Locus Robotics, Orderhive, Epicor Software Corporation, EasyEcom, ShipHero, IBM Corporation, Infor, Inc., Korber AG, Tecsys, Inc. and PSI Logistics.

Key Developments:

In Feb-2022, Oracle unveiled its Oracle Fusion Cloud Supply Chain & Manufacturing (SCM). It joins shippers" supply networks with a unified suite of cloud business applications. The updates are for subsets in Oracle Fusion Cloud Global SCM-Oracle Transportation Management (OTM) & Oracle Trade Management (GTM)- & are motivated onto helping shippers raise efficiency and value all over their global supply chains, and also reduce cost & risk, better experience of the customer, & also become more adaptable to business interruptions.

In Jan-2022, Epicor took over JMO Business Systems, a leading provider of the warehouse management system (WMS), enterprise mobility solutions & related services for automotive aftermarket and original equipment (OE) parts distributors.

Components Covered:

  • Hardware
  • Services
  • Solutions
  • Other Components

Deployment Modes Covered:

  • On-premises
  • Cloud

Organization Sizes Covered:

  • Small and Medium-sized enterprises
  • Large Enterprise

Technologies Covered:

  • Analytics
  • Automated Guided Vehicles
  • Block chain in Warehouse
  • AI in Warehouse
  • RFID
  • AR
  • Wi-Fi
  • Security
  • Voice Recognition
  • Other Technologies

Applications Covered:

  • Transport Management
  • Order Management
  • Shipping Management
  • Dock Door Management
  • Task Management
  • lnternet of Things Management
  • Other Applications

End Users Covered:

  • Transportation and Logistics
  • Manufacturing
  • Energy and Utilities
  • Food and Beverages
  • Agriculture
  • Government
  • Mining
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2021, 2022, 2023, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Smart Warehousing Market, By Component

  • 5.1 Introduction
  • 5.2 Hardware
  • 5.3 Services
    • 5.3.1 Managed Services
    • 5.3.2 Professional Services
      • 5.3.2.1 Training and Consulting
      • 5.3.2.2 Support and Maintenance
      • 5.3.2.3 System Integration and Implementation
  • 5.4 Solutions
    • 5.4.1 Warehouse Management System
      • 5.4.1.1 Standalone
      • 5.4.1.2 Integrated
    • 5.4.2 Warehouse Control System
    • 5.4.3 ERP Software
    • 5.4.4 SCM Software
    • 5.4.5 Inventory Software
  • 5.5 Other Components

6 Global Smart Warehousing Market, By Deployment Mode

  • 6.1 Introduction
  • 6.2 On-premises
  • 6.3 Cloud

7 Global Smart Warehousing Market, By Organization Size

  • 7.1 Introduction
  • 7.2 Small and Medium-Sized Enterprises
  • 7.3 Large Enterprises

8 Global Smart Warehousing Market, By Technology

  • 8.1 Introduction
  • 8.2 Analytics
  • 8.3 Automated Guided Vehicles
  • 8.4 Blockchain in Warehouse
  • 8.5 AI in Warehouse
  • 8.6 RFID
  • 8.7 AR
  • 8.8 Wi-Fi
  • 8.9 Security
  • 8.10 Voice Recognition
  • 8.11 Other Technologies

9 Global Smart Warehousing Market, By Application

  • 9.1 Introduction
  • 9.2 Transport Management
  • 9.3 Order Management
  • 9.4 Shipping Management
  • 9.5 Dock Door Management
  • 9.6 Task Management
  • 9.7 Internet of Things Management
  • 9.8 Other Applications

10 Global Smart Warehousing Market, By Vertical

  • 10.1 Introduction
  • 10.2 Logistics
  • 10.3 Manufacturing
  • 10.4 Energy and Utilities
  • 10.5 Food and Beverages
  • 10.6 Agriculture
  • 10.7 Government
  • 10.8 Mining
  • 10.9 Other Verticals

11 Global Smart Warehousing Market, By Geography

  • 11.1 Introduction
  • 11.2 North America
    • 11.2.1 US
    • 11.2.2 Canada
    • 11.2.3 Mexico
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 Italy
    • 11.3.4 France
    • 11.3.5 Spain
    • 11.3.6 Rest of Europe
  • 11.4 Asia Pacific
    • 11.4.1 Japan
    • 11.4.2 China
    • 11.4.3 India
    • 11.4.4 Australia
    • 11.4.5 New Zealand
    • 11.4.6 South Korea
    • 11.4.7 Rest of Asia Pacific
  • 11.5 South America
    • 11.5.1 Argentina
    • 11.5.2 Brazil
    • 11.5.3 Chile
    • 11.5.4 Rest of South America
  • 11.6 Middle East & Africa
    • 11.6.1 Saudi Arabia
    • 11.6.2 UAE
    • 11.6.3 Qatar
    • 11.6.4 South Africa
    • 11.6.5 Rest of Middle East & Africa

12 Key Developments

  • 12.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 12.2 Acquisitions & Mergers
  • 12.3 New Product Launch
  • 12.4 Expansions
  • 12.5 Other Key Strategies

13 Company Profiling

  • 13.1 Oracle
  • 13.2 Manhattan Associates
  • 13.3 SAP
  • 13.4 IBM
  • 13.5 Vinculum
  • 13.6 Softeon
  • 13.7 Unicommerce
  • 13.8 Locus Robotics
  • 13.9 Orderhive
  • 13.10 Epicor Software Corporation
  • 13.11 EasyEcom
  • 13.12 ShipHero
  • 13.13 IBM Corporation
  • 13.14 Infor, Inc.
  • 13.15 Korber AG
  • 13.16 Tecsys, Inc.
  • 13.17 PSI Logistics
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦