![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1371880
¼¼°è ½ÉÀåÇÐ ºÐ¾ß AI ½ÃÀå : ÄÄÆ÷³ÍÆ®º°, ¿ëµµº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®(-2030³â)Artificial Intelligence In Cardiology Market Forecasts to 2030 - Global Analysis By Component (Software, Hardware and Services), Application (Stroke, Cardiac Arrhythmias, Ischemic Heart Disease and Other Applications), End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é, ½ÉÀåÇп¡¼ ÀΰøÁö´É ¼¼°è ½ÃÀåÀº 2023³â¿¡ 7¾ï 4,408¸¸ ´Þ·¯¸¦ Â÷ÁöÇϰí, 2030³â¿¡´Â 7¾ï 4,661¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ¿¹Ãø ±â°£ Áß º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 36.1%·Î ¼ºÀåÇÒ Àü¸ÁÀÔ´Ï´Ù.
½ÉÀåÇп¡¼ ÀΰøÁö´É(AI) ½ÉÀå°ú °ü·ÃµÈ ÀÇ·á µ¥ÀÌÅ͸¦ ºÐ¼®Çϱâ À§ÇÑ ¸Ó½Å·¯´× ¾Ë°í¸®Áò°ú °è»ê ¸ðµ¨ÀÇ ÀÀ¿ëÀ» ÀǹÌÇÕ´Ï´Ù. ÀÌ ±â¼úÀº ½ÉÀå ÁúȯÀÇ Áø´Ü, ¸ð´ÏÅ͸µ ¹× Ä¡·á ¹æ¹ýÀÇ º¯È¿¡ Å« ÀáÀç·ÂÀ» º¸¿©ÁÝ´Ï´Ù. AI ¾Ë°í¸®ÁòÀº ½É ¿¡ÄÚ ´ÙÀ̾î±×·¥ÀÇ ÇØ¼®À» Áö¿øÇϰí ÀÚµ¿ ÃøÁ¤ ¹× ºñÁ¤»ó ½Äº°À» ¼öÇàÇÒ ¼ö ÀÖ½À´Ï´Ù. AI ¸ðµ¨Àº ¿¬·É, º´·Â, ¶óÀÌÇÁ½ºÅ¸ÀÏ µîÀÇ ¿äÀο¡ µû¶ó ȯÀÚÀÇ ½ÉÀå Áúȯ ¹ßº´ À§ÇèÀ» Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀΰøÁö´ÉÀÌ Å¾ÀçµÈ ½Ã½ºÅÛÀº ¿þ¾î·¯ºí µð¹ÙÀ̽º¸¦ ÅëÇØ ½ÉÀå Áúȯ ȯÀÚ¸¦ Áö¼ÓÀûÀ¸·Î ¸ð´ÏÅ͸µÇϰí, ½Å°æÀÌ ¾²ÀÌ´Â º¯È°¡ ÀÖ´Â °æ¿ì ÀÇ·á Á¦°ø¾÷ü¿¡°Ô ½Ç½Ã°£À¸·Î ¾Ë¸²À» Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù.
2022³â ¹Ì±¹ ±¹¸³»ý¹°°øÇÐÁ¤º¸¼¾ÅÍ(NCBI)°¡ ¹ßÇ¥ÇÑ ÃÖ±Ù ¿¬±¸¿¡ µû¸£¸é AI ¾Ë°í¸®ÁòÀº 95.4%ÀÇ Á¤È®µµ·Î ºÎÁ¤¸ÆÀ» ºÐ·ùÇß½À´Ï´Ù. ¶ÇÇÑ AI´Â ƯÀ̵µ 94.52%, ¾ç¼º ÀûÁß·ü 89.74%, À½¼º ÀûÁß·ü 98.55%, sensitivity 97.19%·Î Áúº´À» ºÐ·ùÇß½À´Ï´Ù. ÀÌ ¿¬±¸ÀÇ ¿¬±¸ÀÚµéÀº ÀΰøÁö´ÉÀÇ »ç¿ëÀ¸·Î À§¾ç¼ºÀÌ 98.0% °¨¼ÒÇÑ´Ù°í °á·Ð Áö¾ú½À´Ï´Ù.
½ÉÀå ÁúȯÀÇ À¯º´·üÀº ¼¼°èÀûÀ¸·Î »ó½ÂÇϰí ÀÖ½À´Ï´Ù. ±× °á°ú Áø´Ü ¹× Ä¡·á¸¦ Áö¿øÇÏ´Â AI¿Í °°Àº ÃÖ÷´Ü µµ±¸¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ÀΰøÁö´ÉÀ» ÀÌ¿ëÇÑ Áø´Ü ±â¼úÀº ½ÉÀå ºÎÁ¤¸ÆÀ» ´õ »¡¸® ¹ß°ßÇÏ°í ½Å¼ÓÇÑ Ä¡·á¸¦ °¡´ÉÇϰÔÇÏ¸ç ¾Æ¸¶µµ ¹Ì·¡ÀÇ Áúº´ ÁøÇàÀ» ¸·À» ¼ö ÀÖ½À´Ï´Ù. ½ÉÀå Áúȯ ȯÀÚ´Â AI¿¡ ÀÇÇØ °¡´ÉÇØÁö´Â º¸´Ù Á¤È®ÇÑ Áø´Ü ¹× Ä¡·á Àü·«À¸·ÎºÎÅÍ ÇýÅÃÀ» ´©¸± ¼ö ÀÖ½À´Ï´Ù. ½ÉÀå °ü·Ã ±â¼ú°ú Áøº¸¿¡ ´ëÇÑ ±ÔÁ¦ ´ç±¹ÀÇ °ü½ÉÀÌ ³ô¾ÆÁö´Â °ÍÀº ½ÉÀå ÁúȯÀÇ ºóµµ°¡ ³ô¾ÆÁö°í Àֱ⠶§¹®ÀÏÁöµµ ¸ð¸¨´Ï´Ù. À̰ÍÀº AI ¼Ö·ç¼ÇÀÇ Ã¢Ãâ°ú ÀÌ¿ëÀ» ÃËÁøÇϴ ȯ°æÀ» Á¶¼ºÇÒ ¼ö ÀÖ½À´Ï´Ù.
AI¸¦ ÀÌ¿ëÇÑ ÀÇ·á±â±â ¹× ÀÀ¿ëÀÇ ±ÔÁ¦ ´ç±¹¿¡ ÀÇÇÑ ½ÂÀÎ ÃëµæÀº ±æ°í º¹ÀâÇÑ ÇÁ·Î¼¼½º°¡ µÉ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº ±ÔÁ¦±â°ü¿¡ ´ëÇØ AI ¼Ö·ç¼ÇÀÇ ¾ÈÀü¼º, À¯È¿¼º, ÀÓ»óÀû Ÿ´ç¼ºÀ» Áõ¸íÇØ¾ß ÇÕ´Ï´Ù. AI ¾ÖÇø®ÄÉÀ̼ÇÀº ÀÇ·á ÇàÀ§ÀÇ À±¸®Àû ÁöħÀ» ÁؼöÇØ¾ß ÇÕ´Ï´Ù. ¶ÇÇÑ AI ¾Ë°í¸®ÁòÀÌ °øÁ¤Çϰí ÀÎÁ¾, ¼ºº° ¹× ±âŸ Àα¸Åë°èÇÐÀû ¿äÀÎÀ» ±â¹ÝÀ¸·Î ÇÏ´Â ÆíÇâÀÌ ¹ß»ýÇÏÁö ¾Êµµ·Ï ÇÏ´Â °ÍÀÌ ±ÔÁ¦ÀÇ ½É°¢ÇÑ ¿ì·Á »çÇ×À¸·Î ÀÛ¿ëÇÕ´Ï´Ù.
º´·Â, Áø´Ü °Ë»ç, Ä¡·á °èȹ, ó¹æÀü µî Á¤¸®µÇ°Å³ª ºñ±¸Á¶ÈµÈ ´Ù¾çÇÑ È¯ÀÚ µ¥ÀÌÅÍ´Â ÀüÀÚ ÀÇ·á ±â·Ï(EHR)À» ÅëÇØ ¾òÀ» ¼ö ÀÖ½À´Ï´Ù. AI ¾Ë°í¸®ÁòÀº EHRÀ» ÀÌ¿ëÇÏ¿© ¼öµ¿À¸·Î ºÐ¼®ÇÏ´Â °Íº¸´Ù ÈξÀ ¸¹Àº ȯÀÚ Áý´ÜÀÇ µ¥ÀÌÅ͸¦ ºÐ¼®ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±×·¯¹Ç·Î ½ÉÀå ¹®Á¦¿¡ ´ëÇØ º¸´Ù °·ÂÇϰí Åë°èÀûÀ¸·Î À¯ÀÇÇÑ ÅëÂû·ÂÀ» ¾òÀ» ¼ö ÀÖ¾î, º¸´Ù Á¤È®ÇÑ Áø´Ü°ú Ä¡·á¹ýÀÇ Á¦¾ÈÀÌ °¡´ÉÇØÁú ¼ö ÀÖ½À´Ï´Ù. AI´Â ¶ÇÇÑ EHRÀÇ µ¥ÀÌÅÍ ÀÔ·Â ¿À·ù¸¦ ÁÙÀ̰í ȯÀÚ ±â·ÏÀÇ Á¤È®¼º°ú ¹«°á¼ºÀ» ³ôÀÌ´Â µ¥ µµ¿òÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. µû¶ó¼ ½ÉÀå ³»°ú¿¡¼ EHR°ú AIÀÇ ÅëÇÕÀº ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÕ´Ï´Ù.
AI ½Ã½ºÅÛÀ» È¿°úÀûÀ¸·Î ÀϹÝÈÇÒ ¼ö ¾ø´Â °æ¿ì ½ÉÀå ÁúȯÀÇ ½É°¢¼ºÀ» ÆÄ¾ÇÇÏÁö ¸øÇϰųª À§¾ç¼º ¹× À½¼º Ç÷¡±×¸¦ ¸¸µé ¼ö ÀÖ¾î À߸øµÈ ÀÇ·á ÆÇ´ÜÀ¸·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù. ±×°ÍÀº ȯÀÚ¿¡°Ô ºÒ¸®ÇÑ °á°ú¸¦ °¡Á®¿À°í ¹ýÀû ¹× À±¸®Àû ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. ÀÇ·á Àü¹®°¡´Â AI ½Ã½ºÅÛÀÌ ºÎÁ¤È®Çϰųª ½Å·ÚÇÒ ¼ö ¾ø´Â °á°ú¸¦ ÀϰüµÇ°Ô Á¦°øÇÏ´Â °æ¿ì AI ½Ã½ºÅÛ¿¡ ´ëÇÑ ½Å·Ú¸¦ ÀÒÀ» ¼ö ÀÖ½À´Ï´Ù. µû¶ó¼ ÀÓ»ó ÇöÀå¿¡¼ÀÇ Ã¤¿ë°ú ¼ö¿ëÀ» ¹æÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.
COVID-19ÀÇ ´ëÀ¯ÇàÀº °Ç° °ü¸®¿Í ½ÉÀåÇп¡¼ AIÀÇ µµÀÔ¿¡ Á÷Á¢Àû ¹× °£Á¢ÀûÀÎ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. Æó¼â ¹× »çȸÀû °Å¸®¸¦ µÎ´Â Á¶Ä¡·Î ¿ø°Ý ÀÇ·á ¹× ¿ø°Ý ¸ð´ÏÅ͸µ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇß½À´Ï´Ù. ½ÉÀå ÀÇÇÐ ºÐ¾ß¸¦ Æ÷ÇÔÇÑ AI žÀç µµ±¸´Â °¡»ó ÁøÂû°ú ȯÀÚÀÇ ½ÉÀå »óÅÂÀÇ ¿ø°Ý ¸ð´ÏÅ͸µÀ» ÃËÁøÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ¼öÇàÇß½À´Ï´Ù. AI ¾Ë°í¸®ÁòÀº COVID-19 »ç·ÊÀÇ Áø´Ü°ú Ä¡·á¸¦ µ½±â À§ÇØ ½Å¼ÓÇÏ°Ô µµÀԵǾú½À´Ï´Ù. ´ë¸é¿¡¼ÀÇ »óÈ£ÀÛ¿ëÀ» ÃÖ¼ÒÈÇÒ Çʿ伺À¸·Î ÀÎÇØ ¿ø°Ý ¿µ»ó Áø´Ü¿¡ ´ëÇÑ ÁÖ¸ñÀÌ ³ô¾ÆÁö°í AI°¡ ¿µ»ó ºÐ¼®°ú ½ÉÀå Áúȯ Áø´Ü Áö¿ø¿¡ Áß¿äÇÑ ¿ªÇÒÀ» ÇÏ°Ô µÇ¾ú½À´Ï´Ù.
AI¸¦ Ȱ¿ëÇÑ Áø´Ü ¼Ö·ç¼ÇÀÇ ¿ä±¸°¡ ³ô¾ÆÁü¿¡ µû¶ó ¼ÒÇÁÆ®¿þ¾î ºÐ¾ß´Â À¯¸®ÇÑ ¼ºÀåÀ» ÀÌ·ê °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù. µ¥ÀÌÅÍ ºÐ¼®À» ÅëÇØ AI ±â¹Ý ¼ÒÇÁÆ®¿þ¾î´Â ÀÇ·á ÀÇ»ç °áÁ¤À» °³¼±ÇÕ´Ï´Ù. AI ¾Ë°í¸®Áò¿¡ ÀÇÇØ Áö¿øµÇ´Â ECG´Â ȯÀÚÀÇ Áø´Ü¿¡ ¼Ò¿äµÇ´Â ½Ã°£À» ´ÜÃàÇϰí ÀÌ»óÀ» È®ÀÎÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ ¼ÒÇÁÆ®¿þ¾î´Â »ý»ê¼ºÀ» Çâ»ó½ÃŰ°í ´õ ³ªÀº ½ÉÀå ºÐ¼®À» Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀÎÀº ½ÉÀåÇп¡¼ AI ¼ÒÇÁÆ®¿þ¾î ¼ö¿ä¸¦ Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù.
½ÉÀå ºÎÁ¤¸Æ ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) ¼ºÀåÀÌ ¿¹»óµË´Ï´Ù. AI ¾Ë°í¸®ÁòÀº ½ÉÀüµµ(ECG)¸¦ ºÐ¼®ÇÏ¿© ½É¹æ ¼¼µ¿, ½É½Ç ºó¸Æ, ¼¸Æ µî ´Ù¾çÇÑ À¯ÇüÀÇ ºÎÁ¤¸ÆÀ» ½Äº°ÇÏ°í ºÐ·ùÇÒ ¼ö ÀÖ½À´Ï´Ù. AI ¾Ë°í¸®ÁòÀº ȦÅÍ ¸ð´ÏÅÍ¿¡ ÀÇÇØ ¼öÁýµÈ Àå±â ECG µ¥ÀÌÅ͸¦ ó¸®ÇÒ ¼ö ÀÖ½À´Ï´Ù. ºÎÁ¤¸Æ ¿¡ÇǼҵ带 ½Äº°ÇÏ°í ±â·ÏÇÏ¿© °Ç° °ü¸® Á¦°ø¾÷ü°¡ ³ªÁß¿¡ È®ÀÎÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¸ÂÃã Ä¡·á °èȹ, ¿ø°Ý ÀÇ·á, ECG ÇØ¼® Áö¿øÀº ÀÌ ºÎ¹®ÀÇ ¼ºÀåÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.
ºÏ¹Ì´Â È®¸³µÈ °Ç° °ü¸® ÀÎÇÁ¶ó, ±â¼úÀûÀ¸·Î ¼±ÁøÀûÀÎ Á¦Ç°ÀÇ ±Þ¼ÓÇÑ Ã¤¿ë, AI Á¦Ç°ÀÇ ±ÔÁ¦ ½ÂÀÎ Áõ°¡·Î ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ºÏ¹Ì, ƯÈ÷ ¹Ì±¹Àº ±â¼ú Çõ½Å°ú °³¹ßÀÇ Áß½ÉÁöÀÔ´Ï´Ù. ¶ÇÇÑ ÀÌ Áö¿ªÀº AI ¿ëµµÀ» Æ÷ÇÔÇÑ ÀÇ·á ±â¼ú¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ¿ø°Ý ÀÇ·á°¡ Á߽õǰí ȯÀÚ Áß½ÉÀÇ Äɾ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ´Â °Íµµ ½ÃÀå ¼ö¿ä¸¦ µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.
¾Æ½Ã¾ÆÅÂÆò¾çÀº ³ëÀÎ Àα¸ Áõ°¡, °Ç° °ü¸® ÀÎÇÁ¶ó ¹ßÀü, Áö¿ª °æÁ¦ »óȲ °³¼±À¸·Î ¿¹Ãø ±â°£ µ¿¾È º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)ÀÌ °¡Àå ³ô¾ÆÁú °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¶ÇÇÑÀÌ Áö¿ª¿¡¼´Â ½ÉÀå ÁúȯÀÇ À¯º´·üÀÌ ³ô½À´Ï´Ù. Áß±¹Àº CVD ȯÀÚ ±â·Ï¿¡¼ »ó´Ü¿¡ À§Ä¡Çϰí ÀÖ½À´Ï´Ù. ±×·¯¹Ç·Î ÀÌ Áö¿ªÀÇ ³ôÀº Áúº´ ºÎ´ã°ú °³¹ß µµ»ó ÀÇ·á ÀÎÇÁ¶ó´Â ½ÉÀå Áø´Ü°ú Ä¡·á¿¡ AI ä¿ëÀ» °³¼±ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
According to Stratistics MRC, the Global Artificial Intelligence in Cardiology Market is accounted for $744.08 million in 2023 and is expected to reach $746.61 million by 2030 growing at a CAGR of 36.1% during the forecast period. Artificial Intelligence (AI) in cardiology refers to the application of machine learning algorithms and computational models to analyze medical data related to the heart. This technology has shown tremendous promise in transforming the way cardiac conditions are diagnosed, monitored, and treated. AI algorithms can assist in the interpretation of echocardiograms, providing automated measurements and identifying abnormalities. AI models can assess a patient's risk of developing cardiovascular diseases based on factors like age, medical history, and lifestyle. AI-powered systems can continuously monitor patients with heart conditions through wearable devices, providing real-time alerts to healthcare providers for any concerning changes.
According to a recent study published by the National Center for Biotechnology Information (NCBI) in 2022, an AI algorithm classified arrhythmia with 95.4% accuracy. Furthermore, AI classified the disease with a specificity of 94.52%, positive predictive value of 89.74%, negative predictive value of 98.55%, and 97.19% sensitivity. The researchers of the study concluded that AI's use would reduce the overall false-positive results by 98.0%.
The prevalence of cardiovascular ailments is rising on a global scale. As a result, there is an increasing demand for cutting-edge tools like AI to aid in diagnosis and treatment. AI-powered diagnostic technologies can spot cardiac irregularities sooner, enabling prompt treatment and perhaps halting the disease's future progression. Cardiovascular disease patients may benefit from more precise diagnosis and treatment strategies made possible by AI. Increased regulatory attention to cardiology-related technologies and advances may result from the growing frequency of cardiovascular disorders. This may foster an environment that encourages the creation and use of AI solutions.
Obtaining regulatory approval for AI-based medical devices or applications can be a lengthy and complex process. Companies must demonstrate the safety, efficacy, and clinical validity of their AI solutions to regulatory bodies. AI applications must adhere to ethical guidelines in medical practice. Further, ensuring that AI algorithms are fair and do not introduce biases based on race, gender, or other demographic factors acts as a significant regulatory concern.
A variety of organised and unstructured patient data, including as medical histories, diagnostic tests, treatment plans, prescriptions, and more, is available through electronic health records (EHRs). AI algorithms can analyse data from a far wider patient population using EHRs than they could manually. This makes it possible to get stronger and statistically significant insights into heart problems, which may result in more precise diagnosis and therapy suggestions. AI may also aid in reducing data input mistakes in EHRs and enhancing the precision and thoroughness of patient records. Therefore, the integration of AI with EHRs in cardiology fuels the growth of the market.
If the AI system is not able to generalize effectively, it may fail to identify important cardiac conditions or may flag false positives/negatives, potentially leading to incorrect medical decisions. It leads to adverse patient outcomes and there could be legal and ethical implications. Healthcare professionals may lose confidence in the AI system if it consistently provides inaccurate or unreliable results. This can hinder its adoption and acceptance in clinical practice.
The COVID-19 pandemic has had both direct and indirect impacts on healthcare and the adoption of AI in cardiology. Due to lockdowns and social distancing measures, there was a surge in demand for telemedicine and remote monitoring solutions. AI-powered tools, including those in cardiology, played a significant role in facilitating virtual consultations and remote monitoring of patients' cardiac conditions. AI algorithms were swiftly deployed to assist in the diagnosis and triage of COVID-19 cases. The need for minimizing in-person interactions led to an increased focus on remote diagnostic imaging, where AI can play a crucial role in interpreting images and aiding in the diagnosis of cardiac conditions.
The software segment is estimated to have a lucrative growth, due to the growing need for AI-enabled diagnostic solutions. Through data analysis, AI-based software improves medical decision-making. The ECG, aided by AI algorithms, has shortened the time it takes to diagnose patients and is capable of identifying anomalies. Moreover, this software increases productivity and provides better heart analysis. These factors are improving the demand for AI software in cardiology.
The cardiac arrhythmias segment is anticipated to witness the highest CAGR growth during the forecast period. AI algorithms can analyze electrocardiograms (ECGs) to identify and classify various types of arrhythmias, including atrial fibrillation, ventricular tachycardia, and bradycardia. AI algorithms can process long-term ECG data collected by Holter monitors. They can identify and record episodes of arrhythmias for later review by healthcare providers. In addition, personalized treatment planning, telemedicine and ECG interpretation assistance are boosting the segment growth.
North America is projected to hold the largest market share during the forecast period owing to its well-established healthcare infrastructure, rapid adoption of technologically advanced products, and increased regulatory approvals of AI products. North America, particularly the United States, is a hub for technological innovation and development. Also, the region attracts significant investment in healthcare technology, including AI applications. Moreover, the growing emphasis on telemedicine and growing focus on patient-centric care is propelling the market demand.
Asia Pacific is projected to have the highest CAGR over the forecast period, owing to the growing geriatric population, developing healthcare infrastructure, and improvement in the region's economic conditions. Moreover, there is a high prevalence of cardiovascular diseases in the region. China is positioned in top for CVD patient's records. Therefore, the region's high disease burden and developing healthcare infrastructure are expected to improve the adoption of AI in cardiac diagnosis and treatment.
Some of the key players profiled in the Artificial Intelligence In Cardiology Market include: Arterys Inc., IDOVEN, Cardiologs, Ultrasight, Ultromics Limited, DiA Imaging Analysis, CardiAI, Viz AI, Cleerly, Inc, RSIP Vision, Vista AI, HeartVista Inc, Caption Health, HeartFlow, Bay Labs, Siemens Healthineers, NuvoAir and PathAI.
In August 2023, Siemens Healthineers unveils the Acuson Origin1, a dedicated cardiovascular ultrasound system with new, robust artificial intelligence (AI) features. Designed to improve patient outcomes and help physicians perform minimally invasive cardiac procedures more efficiently, the Acuson Origin addresses the entire continuum of cardiovascular patient care, including diagnostic, structural heart, electrophysiological, and pediatric procedures.
In February 2023, DiA Imaging Analysis received U.S. FDA clearance for its LVivo IQS software solution, which is used to provide high-quality echocardiography images of the heart to physicians.
In April 2022, Arterys has launched Strain + AI a new cardio AI feature. Strain + AI has beautiful, easy to interpret color and vector overlays, 17-segment models, and plot curves and automatically provides strain and strain rate decomposed into radial and circumferential components as well as myocardial velocity.