![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1371904
¼¼°è ¿ø°Ý ȯÀÚ ¸ð´ÏÅ͸µ ÀΰøÁö´É ½ÃÀå : Á¦Ç°, ¼Ö·ç¼Ç, ±â¼ú, Áö¿ªº° ºÐ¼®(-2030³â)Artificial Intelligence In Remote Patient Monitoring Market Forecasts to 2030 - Global Analysis By Product (Vital Monitors, Special Monitors and Other Products), Solution, Technology and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¿ø°Ý ȯÀÚ ¸ð´ÏÅ͸µÀÇ ¼¼°è ÀΰøÁö´É ½ÃÀåÀº 2023³â¿¡ 14¾ï ´Þ·¯¸¦ Â÷ÁöÇÏ°í ¿¹Ãø ±â°£ µ¿¾È º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 27.8%¸¦ ³ªÅ¸³¾ Àü¸ÁÀ̸ç 2030³â¿¡´Â 77¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
ÀΰøÁö´É(AI)À¸·Îµµ ¾Ë·ÁÁ® ÀÖ´Â ¿ø°Ý ȯÀÚ ¸ð´ÏÅ͸µ(RPM) AI¿Í °ü·Ã ±â¼úÀ» ÀÌ¿ëÇÏ¿© ȯÀÚÀÇ °Ç°À» ¿ø°Ý ¸ð´ÏÅ͸µÇÏ´Â °úÁ¤ÀÔ´Ï´Ù. ´Ù¾çÇÑ ¼¾¼, °¡Á¬ ¹× µðÁöÅÐ Ç÷§ÆûÀ» Ȱ¿ëÇÔÀ¸·Î½á, ÀÌ ±â¼úÀ» ÅëÇØ ÀÇ·á Àü¹®°¡´Â Á¤±âÀûÀÎ ´ë¸é Áø·á¸¦ ÇÊ¿ä·Î ÇÏÁö ¾Ê°í ȯÀÚÀÇ °Ç° »óŸ¦ ÃßÀûÇÒ ¼ö ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ ºÐ¼®À» ÀÚµ¿ÈÇÏ°í ¿¹Ãø ÅëÂû·ÂÀ» Á¦°øÇÏ°í º¸´Ù °³º°ÀûÀ̰í Àû±ØÀûÀÎ °Ç° °ü¸®¸¦ °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á AI´Â RPMÀ» Çâ»ó½Ãŵ´Ï´Ù. ½É°¢ÇÑ º¯È¿Í ÀÌ»óÀÌ ¹ß°ßµÇ¸é, AI¸¦ žÀçÇÑ RPM ½Ã½ºÅÛÀº °Ç° °ü¸® Á¦°ø¾÷ü¿¡°Ô °æ°í³ª ÅëÁö¸¦ º¸³¾ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¾Ë¸²À» ÅëÇØ Àû½Ã¿¡ °³ÀÔÇÒ ¼ö ÀÖ½À´Ï´Ù.
¹Ì±¹ Áúº´ ¿¹¹æ °ü¸® ¼¾ÅÍ(CDC)¿¡ µû¸£¸é ¹Ì±¹¿¡¼´Â 20¼¼ ÀÌ»óÀÇ ¼ºÀÎ 1,820¸¸ ¸í ÀÌ»óÀÌ °ü»óµ¿¸Æ ÁúȯÀ» ¾Î°í ÀÖ½À´Ï´Ù.
¿ø°Ý ȯÀÚ ¸ð´ÏÅ͸µ(RPM)ÀÇ ¸Æ¶ô¿¡¼ ÀΰøÁö´É(AI) º¹¿ë adherence¸¦ Å©°Ô Çâ»ó½Ãŵ´Ï´Ù. °Ç° °ü¸®ÀÇ ÁÖ¿ä ¹®Á¦´Â ÀǾàǰÀ» ÁؼöÇÏÁö ¾ÊÀ¸¸ç, ÀÌ´Â Ä¡·á È¿°ú¸¦ °¨¼Ò½Ã۰í ÁöÃâÀ» Áõ°¡½Ãŵ´Ï´Ù. AI°¡ ÀåÂøµÈ RPM ½Ã½ºÅÛÀ» »ç¿ëÇÏ¸é ¸ð¹ÙÀÏ ¾Û, ¹®ÀÚ ¸Þ½ÃÁö, À̸ÞÀÏ µî ´Ù¾çÇÑ ¹Ìµð¾î¸¦ ÅëÇØ ȯÀÚ¿¡°Ô °³ÀÎÈµÈ º¹¾à ¾Ë¸²À» º¸³¾ ¼ö ÀÖ½À´Ï´Ù. ȯÀڴ ȯÀÚÀÇ º¹¾à ÀÏÁ¤¿¡ ¸Â°Ô ¸ÂÃãÈµÈ Áö½Ã´ë·Î º¹¾àÀ» ½±°Ô ±â¾ïÇÒ ¼ö ÀÖ½À´Ï´Ù. °³ÀÎÈµÈ ¾à¹° °èȹÀ» ¼ö¸³Çϱâ À§ÇØ, ÀΰøÁö´ÉÀº ȯÀÚÀÇ ÀÇÇÐÀû ¹è°æ, ÇöÀç °Ç° »óÅÂ, ¾à¹° º¹¿ë ½À°üÀ» Á¶»çÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °èȹÀº º¹¿ë ºóµµ, ÀǾàǰ »óÈ£ÀÛ¿ë, ÀáÀçÀûÀÎ ºÎÀÛ¿ë µîÀÇ ¿ä¼Ò¸¦ °í·ÁÇÏ¿© ȯÀÚ°¡ °¡´ÉÇÑ ÃÖ¼±ÀÇ Ä¡·á ±Ç°í¸¦ ¹ÞÀ» ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. µû¶ó¼ À§ÀÇ ¸ðµç ¿äÀÎÀº ¿¹Ãø ±â°£ µ¿¾È ½ÃÀå ¼ºÀåÀ» µÞ¹ÞħÇÕ´Ï´Ù.
ȯÀÚÀÇ °Ç° Á¤º¸´Â ¸Å¿ì ¹Î°¨Çϸç, ÀÌ Á¤º¸ÀÇ °ø°³´Â ºÎÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. RPMÀÇ AI´Â ȯÀÚ µ¥ÀÌÅÍÀÇ ¼öÁý°ú Àü¼Û¿¡ ÀÇÁ¸Çϱ⠶§¹®¿¡ ħÀÔ°ú µ¥ÀÌÅÍ À¯ÃâÀÇ ¿µÇâÀ» ¹Þ±â ½±½À´Ï´Ù. ȯÀÚ Á¤º¸´Â Ãë¾àÇÑ ¾ÏÈ£È ±â¼ú°ú º¸¾È ¹®Á¦°¡ ÃæºÐÇÏÁö ¾Ê±â ¶§¹®¿¡ ¹«´Ü ¾×¼¼½º¸¦ ¹Þ±â ½±°í µ¥ÀÌÅͰ¡ ±ÇÇÑÀÌ ¾ø´Â »ç¶÷¿¡ ÀÇÇØ ¾×¼¼½ºµÉ ¼ö ÀÖÀ¸¹Ç·Î ȯÀÚÀÇ ÇÁ¶óÀ̹ö½Ã°¡ À§ÇèÇÕ´Ï´Ù. ±×·¯¹Ç·Î AI ½Ã½ºÅÛÀº ½ÅÁßÇÏ°Ô °èȹµÇ°í À¯ÁöµÇÁö ¾ÊÀ¸¸é ´Ù¾çÇÑ È¯ÀÚ ±×·ì¿¡°Ô ´Ù¾çÇÑ Á¤µµÀÇ Ä¡·á ¹× Áø´Ü Á¤È®µµ¸¦ Á¦°øÇÏ¿© ÀÇ·á ºÒÆòµîÀ» ¾ÇȽÃų ¼ö ÀÖ½À´Ï´Ù. µû¶ó¼ À§ÀÇ ¸ðµç ¿äÀÎÀº ½ÃÀå ¼ºÀåÀ» ¹æÇØÇÕ´Ï´Ù.
AI¸¦ ÅëÇÑ ¿ø°Ý ¸ð´ÏÅ͸µÀº °Ç° ÀúÇÏÀÇ Á¶±â °æ°í¸¦ ¹ß°ßÇÏ°í ½Å¼ÓÇÑ °³ÀÔÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. À̰ÍÀº ƯÈ÷ ¸¸¼º Áúȯ °ü¸® ¹× ¼ö¼ú ÈÄ °ü¸®¸¦ À§ÇÑ ÀÔ¿øÀÇ Çʿ伺À» °¨¼Ò½Ãŵ´Ï´Ù. ºñ»ó»çÅ ¹®Á¦·Î ÀÀ±Þ½Ç¿Ü Áø·á¸¦ ¹æÁöÇÔÀ¸·Î½á ¿ø°Ý ¸ð´ÏÅ͸µÀ» ÅëÇÑ Á¶±â Áø´Ü ¹× °³ÀÔÀº ÀÀ±Þ°Ç° ¼ºñ½º ¼ö¿ä¸¦ ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. Àå±âÀûÀÎ ºñ¿ë Àý°¨°ú ÀÇ·á ¼º°ú Çâ»óÀ¸·Î ¿ø°Ý ¸ð´ÏÅ͸µÀÇ ÀΰøÁö´ÉÀº ÀÇ·á Á¦°ø ÃÖÀûÈ ¹× ºñ¿ë Àý°¨À» ¸ñÇ¥·ÎÇÏ´Â ÀÇ·á Á¦°ø¾÷ü¿Í ÁöºÒÀÚ¿¡°Ô ¸Å·ÂÀûÀÎ ¼±ÅÃÀÔ´Ï´Ù.
ÀΰøÁö´É(AI) °Ç° °ü¸® ¾÷°è¿¡¼ ȯÀÚ °ü¸®¿¡ Çõ¸íÀ» ÀÏÀ¸ÄÑ ºñ¿ëÀ» Àý°¨ÇÏ°í °á°ú¸¦ Çâ»ó½Ãų °¡´É¼ºÀ» Áö´Ñ °·ÂÇÑ µµ±¸°¡ µÇ°í ÀÖ½À´Ï´Ù. °í¼Òµæ ±¹°¡¿¡¼´Â AI ±â¹ÝÀÇ RPM ¼Ö·ç¼ÇÀÌ ±Þ¼ÓÈ÷ º¸±ÞµÇ°í ÀÖÁö¸¸, ÁßÀú¼Òµæ±¹(LMICs)¿¡¼ÀÇ µµÀÔÀº ¾ÆÁ÷ ºñ±³Àû Àû½À´Ï´Ù. LMIC¿¡¼´Â °Ç° °ü¸® ¿¹»êÀÌ ±Þ¹ÚÇϱ⠶§¹®¿¡ °í°¡ÀÇ AI ±â¹Ý RPM ½Ã½ºÅÛ ±¸¸Å ¹× µµÀÔÀ» À§ÇÑ ÀÚ±Ý ¹èºÐÀº ¾î·Á¿ï ¼ö ÀÖ½À´Ï´Ù. ÃæºÐÇÑ º´¿ø, Ŭ¸®´Ð ¹× ÇÊ¿äÇÑ ÈÆ·ÃÀ» ¹ÞÀº ÀÇ·á Àü¹®°¡¸¦ È®º¸ÇÏ´Â °ÍÀº ÀϺΠÁßÀú¼Òµæ ±¹°¡¿¡¼´Â ¾î·Á¿ï ¼ö ÀÖÀ¸¸ç, ÀÌ´Â ½ÃÀå ¼ºÀåÀ» ¹æÇØÇÕ´Ï´Ù.
COVID-19ÀÇ À¯ÇàÀº ȯÀÚÀÇ ¿ø°Ý ¸ð´ÏÅ͸µ °¡Á¬ÀÇ »ç¿ëÀ» ÃßÁøÇß½À´Ï´Ù. À¯Ç༺ÀÌ ¹ß»ýÇÏ´Â µ¿¾È ÀϺ» Á¤ºÎ´Â ¿©ÇàÀ» Á¦ÇÑÇ߱⠶§¹®¿¡ ¿ø°Ý ȯÀÚ ¸ð´ÏÅ͸µ ¼ºñ½ºÀÇ µµÀÔÀÌ ±ä±ÞÈ÷ ÇÊ¿äÇÕ´Ï´Ù. ¶ÇÇÑ °Ç° °ü¸® ȸ»ç´Â ¿ø°Ý Áúº´ ¸ð´ÏÅ͸µÀ» À§ÇÑ ¹æ´ëÇÑ ¼öÀÇ ÀÇ·á °¡Á¬À» Á¦°øÇÔÀ¸·Î½á COVID-19 ½Ã³ª¸®¿À¿¡ ½Å¼ÓÇÏ°Ô ´ëÀÀÇß½À´Ï´Ù. ¿¹¸¦ µé¾î, ȯÀÚ¿ÍÀÇ »óÈ£ÀÛ¿ëÀ» ÁÙÀÌ°í ¿ø°ÝÀ¸·Î °Ç°À» °ü¸®Çϱâ À§ÇØ ¹Ì±¹ ½ÄǰÀǾ౹(¹Ì±¹ FDA) 2020³â 4¿ù¿¡ Dexcom°ú Abbott°¡ º´¿ø¿¡¼ Áö¼Ó Ç÷´ç ¸ð´ÏÅ͸µ ±â±â¸¦ Á¦°øÇÒ °ÍÀ» ½ÂÀÎÇß½À´Ï´Ù.
¹ÙÀÌÅ» ¸ð´ÏÅÍ ºÐ¾ß´Â AI¸¦ žÀçÇÑ ¹ÙÀÌÅ» »çÀÎ ¸ð´ÏÅÍ¿¡ ÀÇÇØ ȯÀÚÀÇ °Ç° »óÅÂÀÇ ¿ø°Ý Æò°¡°¡ °¡´ÉÇÏ°Ô µÇ¾î, ȯÀڷκÎÅÍ ´Ù¾çÇÑ »ý¸®ÇÐÀû ÁöÇ¥¸¦ Áö¼ÓÀûÀ¸·Î ¶Ç´Â »ê¹ßÀûÀ¸·Î ¼öÁý ¹× Æò°¡ÇÏ´Â °ÍÀ» ¸ñÀûÀ¸·Î Çϰí Àֱ⠶§¹®¿¡ À¯¸®ÇÑ ¼ºÀåÀÌ ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ¸ð´ÏÅʹ ȯÀÚÀÇ ´Ù¾çÇÑ »ý¸®Àû ÁöÇ¥¸¦ Áö¼ÓÀûÀ¸·Î ¶Ç´Â »ê¹ßÀûÀ¸·Î ¼öÁýÇÏ°í Æò°¡Çϸç, ÀûÀýÇÑ °æ¿ì °Ç° °ü¸® Àü¹®°¡°¡ Á¶±â¿¡ °³ÀÔÇÏ¿© Áß¿äÇÑ ÅëÂû·ÂÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù. ȯÀÚÀÇ ½É¹Ú¼ö¸¦ ÃßÀûÇϱâ À§ÇØ AI ½Ã½ºÅÛÀº ½ÉÀüµµ(ECG) µ¥ÀÌÅÍ¿Í ¸ÆÆÄ ÆÄÇüÀ» Á¶»çÇÒ ¼ö ÀÖ½À´Ï´Ù. ½ÉÀå ¸®µë¿¡ ºÎÁ¤¸ÆÀÌ ÀÖ´Â °æ¿ì¿¡´Â Ä¿ÇÁ¸¦ ÀÌ¿ëÇÑ ÀåÄ¡³ª ±¤Àü½Ä Ç÷¾Ð°è(PPG)¿Í °°Àº ºñħ½ÀÀûÀÎ ±â¼úÀ» »ç¿ëÇÏ¿© ¼öÃà±â Ç÷¾Ð°ú À̿ϱâ Ç÷¾ÐÀ» ¸ðµÎ ¸ð´ÏÅ͸µÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÔ´Ï´Ù. µû¶ó¼ ¹ÙÀÌÅ» ¸ð´ÏÅÍ ºÎ¼´Â ½ÃÀå ¼ºÀå ÃËÁø¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.
ÀΰøÁö´ÉÀÇ ÇÑ ºÐ¾ßÀÎ ¸Ó½Å·¯´×(ML) RPM ½Ã½ºÅÛÀÇ È¿À²¼º°ú È¿À²¼ºÀ» Å©°Ô Çâ»ó½ÃÄÑ ¸Ó½Å·¯´× ºÐ¾ß°¡ ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) ¼ºÀåÀ» ±â´ëÇÒ ¼ö ÀÖ½À´Ï´Ù. »ýü ½ÅÈ£, ¼¾¼ ÆÇµ¶°ª ¹× ÀüÀÚ ÀÇ·á ±â·ÏÀ» Æ÷ÇÔÇÑ ´ë·®ÀÇ È¯ÀÚ µ¥ÀÌÅÍ´Â ¸Ó½Å·¯´× ¾Ë°í¸®Áò¿¡ ÀÇÇØ Àü¹®ÀûÀ¸·Î 󸮵˴ϴÙ. ÀÌ ¾Ë°í¸®ÁòÀº Àΰ£ °£º´ÀÎÀÌ °£°úÇÏ´Â ÆÐÅϰú µ¿ÇâÀ» ¹ß°ß ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, MLÀº »ý¸í ¡ÈÄÀÇ ¾à°£ÀÇ º¯È¸¦ È®ÀÎÇÏ°í °Ç° »óÅÂÀÇ ¾ÇÈ¿Í ÀÀ±Þ »óȲÀÇ °¡´É¼ºÀ» ¾Ë¸± ¼ö ÀÖ½À´Ï´Ù. °ú°Å µ¥ÀÌÅ͸¦ ¹ÙÅÁÀ¸·Î ML ¸ðµ¨Àº ȯÀÚ °á°ú¸¦ ¿¹ÃøÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¸ðµ¨Àº ȯÀÚÀÇ ±â·Ï°ú º´·ÂÀ» Á¶»çÇÔÀ¸·Î½á Áúº´ÀÇ ÁøÇà, ÀçÀÔ¿ø, ºÎÀÛ¿ëÀÇ °¡´É¼ºÀ» ¿¹ÃøÇÒ ¼ö ÀÖ½À´Ï´Ù. À̸¦ ÅëÇØ ÀÇ·á Àü¹®°¡´Â °³º° °ü¸® Ç÷£À» Á¦°øÇϰí Àû±ØÀûÀ¸·Î °³ÀÔÇÒ ¼ö ÀÖ½À´Ï´Ù.
ÁÁÀº ¹ý Á¦µµ, ÃæºÐÇÑ ÀÇ·á ÀÎÇÁ¶óÀÇ Á¸Àç, AI ÀåºñÀÇ ½Å¼ÓÇÑ µµÀÔÀ¸·Î ¿¹Ãø ±â°£ µ¿¾È À¯·´ÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¶ÇÇÑ, ÀÌ Áö¿ª¿¡¼ ÀÌ·¯ÇÑ AI Áö¿ø ¸ð´ÏÅ͸µ ÀåºñÀÇ Àü°³´Â ȯÀڵ鿡°Ô ¿Ïº®ÇÑ ¿ø°Ý ȯÀÚ ¸ð´ÏÅ͸µÀ» Á¦°øÇϱâ À§ÇØ ±â¾÷ °£ÀÇ Àü·«Àû Á¦ÈÞ¿¡ ÀÇÇØ Áö¿øµÇ¸ç, ÀÌ¿¡ µû¶ó ¼ö¿ëÀÌ È®´ëµË´Ï´Ù. ¿¹¸¦ µé¾î MTech Mobility¿Í GenieMD´Â 2021³â 8¿ù ÆÄÆ®³Ê½Ê °è¾àÀ» ü°áÇÏ°í °í°´¿¡°Ô ±¤¹üÀ§ÇÑ ¿ø°Ý ȯÀÚ ¸ð´ÏÅ͸µ ¿É¼ÇÀ» Á¦°øÇÔÀ¸·Î½á ÀÌ Áö¿ª ½ÃÀå ¼ºÀåÀ» °ÈÇϰí ÀÖ½À´Ï´Ù.
ºÏ¹Ì´Â ¿¹Ãø ±â°£ µ¿¾È º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)ÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ³ëÈ, ¸¸¼ºÁúȯ Áõ°¡, ÇÕ¸®ÀûÀÎ °Ç° °ü¸® ¼Ö·ç¼Ç ¼ö¿ä µî ¸¹Àº º¯¼ö°¡ ºÏ¹ÌÀÇ Áö¼ÓÀûÀÎ È®´ë¿¡ ±â¿©Çϰí Àֱ⠶§¹®ÀÔ´Ï´Ù. COVID-19ÀÇ À¯ÇàÀº ¶ÇÇÑ È¯ÀÚÀÇ ¿ø°Ý ¸ð´ÏÅ͸µ ±â¼úÀÇ µµÀÔÀ» °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù. ºÏ¹Ì¿¡¼´Â ¸¹Àº ±â¾÷µéÀÌ ¿ø°Ý ȯÀÚ ¸ð´ÏÅ͸µÀ» À§ÇÑ AI ÁÖµµ ¿ëµµÀ» °³¹ßÇϱâ À§ÇØ Àû±ØÀûÀ¸·Î ³ë·ÂÇϰí ÀÖ½À´Ï´Ù. ±× Áß¿¡´Â À¯¸íÇÑ °Ç° °ü¸® IT ±â¾÷°ú AI¿¡ ÃÊÁ¡À» ¸ÂÃá ½ÅÈï °Ç° °ü¸® ±â¾÷µµ Æ÷ÇԵ˴ϴÙ. AI ÁÖµµ RPM ¼Ö·ç¼Ç°ú ºÏ¹ÌÀÇ ¿ø°Ý ÀÇ·á ¼ºñ½º È®´ë´Â Á¶È¸¦ ÀÌ·ç°í ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Artificial Intelligence In Remote Patient Monitoring Market is accounted for $1.4 billion in 2023 and is expected to reach $7.7 billion by 2030 growing at a CAGR of 27.8% during the forecast period. Remote patient monitoring (RPM), sometimes known as artificial intelligence (AI), is the process of remotely monitoring a patient's health using AI and related technologies. By utilizing a variety of sensors, gadgets, and digital platforms, this technology enables healthcare professionals to track a patient's health state without the need for regular in-person visits. By automating data analysis, offering predictive insights, and enabling more individualized and pro-active healthcare, AI improves RPM. When significant changes or anomalies are found, RPM systems with AI can send alerts and notifications to healthcare providers. Timely intervention is made possible by these notifications.
According to the Centers for Disease Control and Prevention (CDC), more than 18.2 million adults aged 20 and above have coronary artery disease in the U.S.
In the context of Remote Patient Monitoring (RPM), artificial intelligence (AI) significantly improves medication adherence. A major problem in healthcare is medication non-adherence, which reduces the efficacy of treatment and raises expenditures. Personalized medication reminders can be sent to patients by AI-powered RPM systems via a variety of media, including mobile apps, text messages, or emails. The patient will find it easier to remember to take their meds as directed, which are customized to the patient's medication schedule. To develop individualized pharmaceutical plans, AI can examine a patient's medical background, present health, and drug routine. These plans ensure that patients receive the best possible treatment recommendations by taking into account elements like dose frequency, pharmaceutical interactions, and potential side effects. Hence all the above factors boost the market growth throughout the extrapolated period.
Patient health information is extremely sensitive, and any disclosure of this information may have negative effects. AI in RPM is susceptible to intrusions and data breaches since it relies on gathering and transferring patient data. Patient information may be vulnerable to unauthorized access due to weak encryption techniques or insufficient security measures and the data could potentially be accessed by unauthorized people, putting patients' privacy at risk. RPM's AI algorithms could pick up biases from the training data, which could result in disparate healthcare results for various racial and ethnic groups thus AI systems may worsen healthcare inequities by offering varying degrees of care or diagnostic accuracy for various patient groups if they are not carefully planned and maintained. Thus, all the above factors hamper the growth of the market.
Remote monitoring driven by AI can spot early warning indications of health decline, enabling prompt interventions. This lessens the need for hospital hospitalizations, especially for the management of chronic diseases and post-operative care. By preventing trips to the emergency department for non-urgent problems, early diagnosis and intervention through remote monitoring can lessen the demand on emergency healthcare services. The long-term cost savings and improved healthcare outcomes make AI in Remote Monitoring an appealing choice for healthcare providers and payers looking to optimize healthcare delivery and cut costs, even though the initial investment in AI technology and infrastructure may be necessary.
Artificial intelligence (AI) has become a potent tool in the healthcare industry with the potential to revolutionize patient care, cut costs, and enhance outcomes. While AI-based RPM solutions have quickly taken off in high-income nations, their adoption in low- and middle-income nations (LMICs) is still relatively low. The allocation of funding for the purchase and deployment of AI-based RPM systems, which can be expensive, might be difficult in LMICs because healthcare budgets there are frequently tight. Having sufficient hospitals, clinics, and medical professionals with the necessary training can be difficult in some low- and middle-income nations which impedes the market growth.
The COVID-19 epidemic has pushed the use of gadgets for patient remote monitoring due to the country's government's travel limitations during the pandemic, implementing remote patient monitoring services became urgently necessary. Additionally, healthcare businesses responded quickly to the COVID-19 scenario by providing a huge number of medical gadgets for remote sickness monitoring. For instance, in order to reduce patient interaction and manage health remotely, the U.S. Food and Drug Administration (U.S. FDA) approved Dexcom and Abbott to offer continuous glucose monitoring devices in hospitals in April 2020.
The vital monitors segment is estimated to have a lucrative growth, as remote assessment of a patient's health status is made possible by AI-powered vital sign monitors, which are meant to continuously or sporadically collect and evaluate a variety of physiological indicators from patients. When appropriate, these monitors can let healthcare professionals intervene early and with significant insights. To track a patient's heart rate, AI systems might examine electrocardiogram (ECG) data or pulse waveforms. It is possible to monitor both systolic and diastolic blood pressure using cuff-based devices or non-invasive techniques like photoplethysmography (PPG) when there are irregularities in heart rhythm. Hence vital monitor segment contributes to the enhancing growth of the market.
The machine learning segment is anticipated to witness the highest CAGR growth during the forecast period, as the effectiveness and efficiency of RPM systems are significantly improved by machine learning (ML), a branch of artificial intelligence. Large amounts of patient data, including vital signs, sensor readings, and electronic medical records, are processed expertly by machine learning algorithms. These algorithms can spot patterns and trends that human caregivers might overlook. For instance, ML can identify small alterations in vital signs that signal a person's health is worsening or a potential medical emergency. Based on past data, ML models can predict the outcomes of patients. These models can forecast disease progression, hospital readmissions, or the likelihood of adverse events by studying patient records and medical histories. This enables healthcare professionals to deliver individualized care plans and intervene pro-actively.
Europe is projected to hold the largest market share during the forecast period owing to good legislative conditions, the presence of a sufficient healthcare infrastructure, and the quick uptake of the AI devices, Europe retained the largest share in the market. Additionally, the rollout of these AI assisted monitoring devices in the region is being aided by strategic alliances amongst the businesses to offer patients complete remote patient monitoring, which will increase acceptance. For instance, MTech Mobility and GenieMD signed a partnership agreement in August 2021 to offer their customers a wide range of remote patient monitoring options which are enhancing the market growth in this region.
North America is projected to have the highest CAGR over the forecast period, owing to a number of variables, such as an aging population, an increase in chronic diseases, and the demand for affordable healthcare solutions, have contributed to North America's continuous expansion. The COVID-19 epidemic has also sped up the introduction of technologies for remote patient monitoring. A number of businesses in North America are actively working to develop AI-driven applications for remote patient monitoring. These include both well-known healthcare IT firms and emerging AI-focused healthcare businesses. AI-driven RPM solutions and the expansion of telehealth services in North America work in harmony.
Some of the key players profiled in the Artificial Intelligence In Remote Patient Monitoring Market include: Koninklijke Philips N.V., Medtronic, GE Healthcare, Abbott Laboratories, Resideo Life Care Solutions, Cardiomo Care, Inc., Current Health Limited, Biofourmis Inc., CU-BX Automotive Technologies Ltd., AiCure, LLC, Binah.ai, ChroniSense Medical, Ltd., Huma Therapeutics Limited, Feebris Ltd., iRhythm Technologies, Inc., iHealth Labs, Inc., Gyant.com, Inc., Myia Labs Inc., iBeat, Inc., Neteera Technologies Ltd. and VivaLNK Inc.
In September 2023, Medtronic Diabetes announces CE Mark for new Simplera™ CGM with disposable all-in-one design. The company's newest no-fingerstick sensor does not require over tape and is seamlessly integrated with the InPen™ smart insulin pen, which provides real-time, personalized dosing guidance
In June 2023, Medtronic presents new data on MiniMed™ 780G system on fixed meal dosing and real-world Time in Range across wide variety of users. hese latest results were presented this weekend at the 83rd American Diabetes Association (ADA) Scientific Sessions in San Diego, CA.
In June 2023, Philips and Masimo introduce new, advanced monitoring capabilities to Philips high acuity patient monitors. The latest extension of Masimo and Philips' ongoing collaboration will help enable clinicians to make quick and informed decisions without the need for additional monitoring equipment.
In May 2023, Philips launches AI-powered CT system to accelerate routine radiology and high-volume screening programs. Powered by AI, the Philips CT 3500 includes a range of image-reconstruction and workflow-enhancing features that help to deliver the consistency, speed, and first-time-right image quality