![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1371907
¼¼°è À½Çâ ±¤ÇÐ µðÇ÷ºÅÍ ½ÃÀå : Á¦Ç° À¯Çü, ¿ëµµ, ÃÖÁ¾ »ç¿ëÀÚ, Áö¿ªº° ¿¹Ãø(-2030³â)Acousto-Optic Deflector Market Forecasts to 2030 - Global Analysis By Product Type (UV Acousto-optical Deflectors, NIR Acousto-optical Deflectors and Visible Acousto-optical Deflectors), Application, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¼¼°è À½Çâ ±¤ÇÐ µðÇ÷ºÅÍ ½ÃÀåÀº 2023³â 5¾ï 1,310¸¸ ´Þ·¯¸¦ Â÷ÁöÇÏ°í ¿¹Ãø ±â°£ µ¿¾È º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 9.2%¸¦ ³ªÅ¸³¾ Àü¸ÁÀ̸ç 2030³â¿¡´Â 9¾ï 6,250¸¸ ´Þ·¯¿¡ À̸¦ Àü¸ÁÀÔ´Ï´Ù.
À½Çâ ±¤ÇÐ µðÇ÷ºÅÍ´Â À½Çâ ±¤ÇÐ È¿°ú¸¦ ÀÌ¿ëÇÏ¿© ·¹ÀÌÀú ºöÀ» ¾È³»ÇÏ´Â ±¤ÇÐ ÀåÄ¡. ·¹ÀÌÀú ºöÀÇ Á¶ÀÛÀ» ¼ö¹ÝÇÏ´Â ¸¹Àº ¿ëµµ¿¡¼ ÀÚÁÖ ÀÌ¿ëµÇ´Â À¯¿¬ÇÑ ÀåÄ¡ÀÔ´Ï´Ù. ÀÌ ÀåÄ¡ÀÇ ÁÖ¿ä ±â´ÉÀº ºö °¡À̵åÀÔ´Ï´Ù. RF ½ÅÈ£ÀÇ Á֯ļö¸¦ º¯È½ÃÅ´À¸·Î½á ·¹ÀÌÀú ºöÀÇ ÆíÇâ°¢À» Á¤È®ÇÏ°Ô Á¦¾îÇÒ ¼ö ÀÖ½À´Ï´Ù. µû¶ó¼ ·¹ÀÌÀú ½ºÄµ, ·¹ÀÌÀú Àμâ, ·¹ÀÌÀú ±â¹Ý À̹Ì¡ µîÀÇ ½Ã½ºÅÛ¿¡¼ À¯¿ëÇÏ°í ºñ ±â°èÀûÀÔ´Ï´Ù.
À½Çâ ±¤ÇÐ ÆíÇâ±â(AOD)ÀÇ ¿¬±¸ °³¹ß ¹× ÀÀ¿ëÀº ·¹ÀÌÀú ±â¼úÀÇ ¹ßÀü¿¡ Å« ¿µÇâÀ» ¹Þ°í ÀÖÀ¸¸ç ·¹ÀÌÀú ºöÀÇ °ü¸® ¹× Á¶Á¤¿¡ ÇʼöÀûÀÎ ±¤ÇÐ µµ±¸ÀÔ´Ï´Ù. Àڿܼ±(UV)¿¡¼ Àû¿Ü¼±(IR)±îÁöÀÇ ÀüÀڱ⠽ºÆåÆ®·³ÀÌ ´Ù¸¥ ÆÄÀåÀÇ ·¹ÀÌÀú¸¦ ÀÌ¿ëÇÒ ¼ö ÀÖ°Ô µÈ °ÍÀº ·¹ÀÌÀú ±â¼úÀÇ Áøº¸ÀÇ °á°úÀÔ´Ï´Ù. À½Çâ ±¤ÇÐ ÆíÇâ±â´Â ÀÌ·¯ÇÑ ´Ù¾çÇÑ ·¹ÀÌÀú ±¤¿ø¿¡ ´ëÀÀÇÒ ¼ö ÀÖÀ¸¹Ç·Î ´Ù¾çÇÑ ¿ëµµ¿¡¼ ºö steering°ú ºö ¼öÁ¤À» ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ·¹ÀÌÀú ±¤¿øÀº AOD¿Í ¿¬µ¿µÇ¾î Åë½Å ¹× Àç·á °¡°ø µî »ê¾÷¿¡¼ Á¤È®ÇÑ ºö Á¦¾î°¡ °¡´ÉÇØ À½Çâ ±¤ÇÐ ÆíÇâ±â ½ÃÀåÀ» È®´ëÇϰí ÀÖ½À´Ï´Ù.
À½Çâ ±¤ÇÐ ÆíÇâ±â(AOD) ½ÃÀåÀº ´Ù¸¥ ±â¼ú°úÀÇ °æÀï¿¡ ÀÇÇØ Å©°Ô ¾ïÁ¦µÇ°í ÀÖ½À´Ï´Ù. ·¹ÀÌÀú ºö Á¶Çâ ¹× Á¦¾î¸¦ À§ÇÑ À½Çâ ±¤ÇÐ ÆíÇâ±âÀÇ ±âÁ¸ ´ëü ±â¼úÀº Áö¼ÓÀûÀÎ °³¹ß°ú ÆÐ±ÇÀ» À§ÇùÇÒ ¼ö ÀÖ½À´Ï´Ù. °Ô´Ù°¡, Àü±â ±¤ÇÐ ÆíÇâ±â´Â Àü±â ±¤ÇÐ È¿°ú¸¦ ÀÌ¿ëÇÏ¿© ·¹ÀÌÀú ºöÀÇ ¹æÇâÀ» Á¦¾îÇÏ´Â °ÍÀ¸·Î, º¯Á¶³ª ºö steering¿¡ ÀÌ¿ëÇÒ ¼ö ÀÖ¾î ÀÀ´ä ½Ã°£µµ ºü¸¨´Ï´Ù. °í¼Ó µ¿ÀÛÀ̳ª RF°¡ ÇÊ¿ä ¾ø±â ¶§¹®¿¡ Àü±â ±¤ÇÐ ÆíÇâ±â°¡ ƯÁ¤ ¿ëµµ·Î ¼±È£µÇÁö ¾ÊÀ» ¼ö ÀÖÀ¸¸ç, ÀÌ´Â ½ÃÀå ¼ºÀåÀ» ¹æÇØÇÕ´Ï´Ù.
´Ù¾çÇÑ Áø´Ü ¹× Ä¡·á ¸ñÀûÀ» À§ÇØ ·¹ÀÌÀú ºöÀ» Á¤È®ÇÏ°í ½Å¼ÓÇÏ°Ô Á¦¾îÇØ¾ß ÇÏ´Â ¹ÙÀÌ¿À Æ÷Åä´Ð½º ¹× ÀÇ·á ¿µ»ó ó¸® ÀÀ¿ë ºÐ¾ß¿¡¼ À½Çâ ±¤ÇÐ ÆíÇâ±â´Â Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. À½Çâ ±¤ÇÐ ÆíÇâ±â´Â ¹ÙÀÌ¿À Æ÷Åä´Ð½ºÀÇ °·ÂÇÑ À̹Ì¡ ±â¼úÀÎ °øÃÊÁ¡ ·¹ÀÌÀú ½ºÄ³´× Çö¹Ì°æ¿¡¼ ÀÚÁÖ »ç¿ëµË´Ï´Ù. ÀÌ ¹æ¹ý¿¡¼ »ùÇÿ¡ ·¹ÀÌÀú ºöÀÌ Á¶»çµÇ°í, ±× ·¹ÀÌÀú ºöÀº À½Çâ ±¤ÇÐ ÆíÇâ±â¿¡ ÀÇÇØ »ùÇÃÀ» ½ºÄ³´×µË´Ï´Ù. À̸¦ ÅëÇØ »ý¹°ÇÐÀû ¹°ÁúÀÇ 3Â÷¿ø °íÇØ»óµµ »çÁøÀ» ¼öÁýÇÒ ¼ö ÀÖÀ¸¸ç Á¶Á÷ÇÐ, ½Å°æÇÐ ¹× ¼¼Æ÷ »ý¹°ÇÐ ºÐ¾ß¿¡¼ ¸Å¿ì À¯¿ëÇÕ´Ï´Ù.
À½Çâ ±¤ÇÐ ÆíÇâ ¼ÒÀÚ(AOD)ÀÇ Á¦Á¶ ºñ¿ëÀÌ ³ô±â ¶§¹®¿¡ Á¦Á¶¾÷ü¿Í ÀáÀç °í°´µµ Å« ¾î·Á¿ò¿¡ Á÷¸éÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀåÄ¡¿¡ ÇÊ¿äÇÑ ÀÌ»êÈÅڷ縣(TeO2)³ª ¼®¿µ°ú °°Àº °íǰÁúÀÇ À½Çâ ±¤ÇÐ °áÁ¤Àº »ó´çÈ÷ ºñ½Ô´Ï´Ù. ÀÌ·¯ÇÑ °áÁ¤ÀÇ °¡°ÝÀº Á¦Á¶ÀÇ ÃÑ ºñ¿ë¿¡ Æ÷ÇԵ˴ϴÙ. ¶ÇÇÑ °íÁ¤¹Ð ±¤ÇÐ ºÎǰÀ̱⠶§¹®¿¡ °áÁ¤, Ç¥¸é ¹× ±¤ÇÐ ÄÚÆÃÀÇ Ç°ÁúÀÌ ¸Å¿ì ¾ö°ÝÇÑ °øÂ÷ ³»¿¡ ÀÖ¾î¾ßÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ³ôÀº ¼öÁØÀÇ Á¤È®¼ºÀ» ´Þ¼ºÇϰí À¯ÁöÇϱâ À§Çؼ´Â Àü¹®ÀûÀÎ µµ±¸¿Í Áö½ÄÀÌ ÇÊ¿äÇÏ¸ç ºñ¿ëÀÌ ¸¹ÀÌ µé ¼ö ÀÖ½À´Ï´Ù.
COVID-19ÀÇ ´ëÀ¯ÇàÀº Àü±â ¹× ±¤ÇÐ ºÎǰ, ƯÈ÷ À½Çâ ±¤ÇÐ ÆíÇâ±âÀÇ Á¦Á¶¿Í À¯Åë¿¡ ¿µÇâÀ» ÁÖ¾î ¼¼°è°ø±Þ ¶óÀο¡ ÁöÀåÀ» ÃÊ·¡Çß½À´Ï´Ù. Á¦Á¶¾÷ü°¡ ¿øÀç·á³ª ºÎǰÀÇ ÀÔ¼ö, »ý»ê ½ºÄÉÁÙÀÇ À¯Áö¿¡ °í»ýÇÑ °á°ú, ¿Ï¼ºÇ°ÀÇ ³³Ç°ÀÌ Áö¿¬µÇ¾úÀ» °¡´É¼ºÀÌ ÀÖ½À´Ï´Ù. ±× °á°ú, À¯Çà ±â°£ µ¿¾È ÀÌ·¯ÇÑ Àåºñ¿¡ ´ëÇÑ ¼ö¿ä´Â ¾Æ¸¶µµ ÀûÀº °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. °Ç° °ü¸® À§±â¿¡ ´ëÇÑ ´ëÀÀÀ¸·Î¼ ÀÇ·á±â±â³ª ÀÇ·á¿ëǰ¿¡ »ý»êÀÇ ÁßÁ¡À» ¿Å±ä ±â¾÷µµ ÀÖ½À´Ï´Ù. À½Çâ ±¤ÇÐ ÆíÇâ±â ¹× ±âŸ ºñÇʼö ºÎǰÀÇ Á¦Á¶´Â ÀÌ·¯ÇÑ ¿ì¼±¼øÀ§ º¯°æÀÇ °á°ú·Î ÀϽÃÀûÀ¸·Î ¾î·Á¿òÀ» °ÞÀ» ¼ö ÀÖ½À´Ï´Ù.
ÀÚ¿Ü À½Çâ ±¤ÇÐ ÆíÇâ±â ºÎ¹®Àº À¯¸®ÇÑ ¼ºÀåÀ» ´Þ¼ºÇÒ °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù. ÀÚ¿Ü À½Çâ ±¤ÇÐ ÆíÇâ±â´Â ¼öÁ¤¿¡ °ø±ÞµÇ´Â RF(¹«¼± Á֯ļö) ½ÅÈ£ÀÇ Á֯ļö¿Í ÁøÆøÀ» º¯°æÇÏ¿© ÀÛµ¿ÇϹǷΠÀڿܼ± ·¹ÀÌÀú ºöÀ» ºü¸£°í Á¤È®ÇÏ°Ô ÆíÇâ½Ãų ¼ö ÀÖ½À´Ï´Ù. ÀÌ ¶§¹®¿¡ Àڿܱ¤Àº ¹Ð¸®ÃÊÀÇ ÀÀ´ä ½Ã°£À¸·Î °í¼ÓÀ¸·Î À§Ä¡ °áÁ¤, ½ºÄµÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ÀåÄ¡´Â ºñ ±â°èÀûÀÌ¸ç °Å¿ïÀ̳ª galvanometer scanners¿Í °°Àº ±â°èÀû ºö Á¶Çâ ÀåÄ¡¿Í ´Þ¸® ¿òÁ÷ÀÌ´Â ºÎǰÀÌ ¾ø½À´Ï´Ù. ÀÌ·Î ÀÎÇØ ¸¶¸ð, ¼Õ»ó, ±â°èÀû Áøµ¿, À¯Áö º¸¼ö ÇÊ¿ä µîÀÇ À§ÇèÀÌ ³·°í Àå±âÀûÀÌ°í ³ôÀº 󸮷®ÀÇ ¿ëµµ¿¡ ÀûÇÕÇÏ¸ç ½ÃÀåÀ» °ßÀÎÇϰí ÀÖ½À´Ï´Ù.
À½Çâ ±¤ÇÐ µðÇ÷ºÅÍ´Â ¸¶ÀÌÅ©·Î ½ºÄÉÀÏÀÇ Á¤¹Ðµµ°¡ ¿ä±¸µÇ´Â ¿ëµµ¿¡¼ ·¹ÀÌÀú ºöÀÇ ÀÛµ¿°ú Á¦¾î¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. À½Çâ ±¤ÇÐ ÆíÇâ±â´Â ·¹ÀÌÀúÀÇ ¹æÇâÀ» ½Å¼ÓÇÏ°Ô º¯°æÇÏ¿© ¼ºê ¸¶ÀÌÅ©·ÐÀÇ Á¤È®µµ·Î »ùÇà ¹× °øÀÛ¹°ÀÇ Æ¯Á¤ ÁöÁ¡À» Ÿ°ÙÆÃÇÒ ¼ö ÀÖ½À´Ï´Ù. Àç·áÀÇ ÀýÁ¦ ¹× Àý´ÜÀº ¸¶ÀÌÅ©·ÎÇÁ·Î¼¼½Ì¿¡¼ À½Çâ ±¤ÇÐ ÆíÇâ±âÀÇ ÀüÇüÀûÀÎ ¿ëµµÀÔ´Ï´Ù. ¶ÇÇÑ, Áý±¤µÈ ·¹ÀÌÀú ºöÀ» Àç·á Ç¥¸é¿¡ Á¶½É½º·´°Ô ÇâÇÏ°Ô ÇÔÀ¸·Î½á ¿ ¿µÇâºÎ¸¦ ÃÖ¼ÒÈÇÏ¸é¼ Àç·á ÃþÀ» Á¦°ÅÇϰųª Àý´ÜÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·± ½ÄÀ¸·Î À§ÀÇ ¸ðµç ¿äÀÎÀÌ ½ÃÀåÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.
¾Æ½Ã¾ÆÅÂÆò¾çÀº ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ´Â ·¹ÀÌÀú ½Ã½ºÅÛÀ̳ª ±¤ÇÐ ±â±â¿¡ ÀÚÁÖ Ã¤¿ëµÇ´Â À½Çâ ±¤ÇÐ ÆíÇâ±â ¼ö¿ä°¡ ¾Æ¸¶µµ ÀÌ·¯ÇÑ »ó½ÂÀÇ ¿µÇâÀ» ¹Þ±â ¶§¹®ÀÔ´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾ç¿¡´Â ¸¹Àº À½Çâ ±¤ÇÐ ÆíÇâ±â Á¦Á¶¾÷ü¿Í °ø±Þ¾÷ü°¡ ÀÖÀ¸¸ç, ÀÌµé ±â¾÷Àº ±¹³»¿Ü ½ÃÀåÀ» À§ÇÑ À½Çâ ±¤ÇÐ ÆíÇâ±â¸¦ Á¦Á¶ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ µð¹ÙÀ̽º ¼º´É Çâ»ó°ú ¼ÒÇüÈ µî À½Çâ ±¤ÇÐ ±â¼úÀÇ ¹ßÀü¿¡µµ ¿µÇâÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Áøº¸´Â Çѱ¹, Áß±¹, ÀϺ» µîÀÇ ¿¬±¸ÀÚ¿Í »ý»êÀÚÀÇ ³ë·Â¿¡ ÀÇÇØ °¡´ÉÇØÁø °ÍÀ¸·Î, ÀÌ Áö¿ª ½ÃÀåÀ» °ßÀÎÇϰí ÀÖ½À´Ï´Ù.
ºÏ¹Ì´Â ¿¹Ãø ±â°£ µ¿¾È º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)ÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ Áö¿ª¿¡¼´Â ·¹ÀÌÀú ½ºÄ³´×, ·¹ÀÌÀú ±â¹Ý À̹Ì¡, ºÐ±¤ÇÐ, Àç·á °¡°ø µî ¼ö¸¹Àº ¿ëµµ¿¡¼ À½Çâ ±¤ÇÐ µðÇ÷ºÅͰ¡ ÀÌ¿ëµÇ°í Àֱ⠶§¹®ÀÔ´Ï´Ù. À½Çâ ±¤ÇÐ ÆíÇâ±â´Â ¹ÝµµÃ¼, ¹ÙÀÌ¿À Æ÷Åä´Ð½º ¹× Åë½Å Àåºñ Á¦Á¶¿¡ »ç¿ëµÇ´Â ·¹ÀÌÀú ½Ã½ºÅÛ¿¡ ÇʼöÀûÀÎ ±¸¼º ¿ä¼ÒÀÔ´Ï´Ù. ºÏ¹Ì¿¡¼ Æ÷Åä´Ð½º¿Í ±¤ÇÐ ¿¬±¸°¡ Ȱ¹ßÇÑ °ÍÀº ¹Ì±¹ÀÔ´Ï´Ù. ÀÌ Áö¿ªÀÇ ¿¬±¸½Ã¼³, Çмú ±â°ü ¹× »ó¾÷ ±â¾÷Àº À½Çâ ±¤ÇÐ ÀåÄ¡¸¦ Æ÷ÇÔÇÑ ÃÖ÷´Ü ±¤ÇÐ ±â¼ú °³¹ß¿¡ Àû±ØÀûÀ¸·Î ³ë·ÂÇϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Acousto-Optic Deflector Market is accounted for $513.1 million in 2023 and is expected to reach $962.5 million by 2030 growing at a CAGR of 9.2% during the forecast period. An acousto-optic deflector is an optical device that directs a laser beam using the acousto-optic effect. It is a flexible instrument frequently utilized in numerous applications involving the manipulation of laser light. The main function of these devices is beam guiding. The laser beam's deflection angle can be precisely controlled by varying the RF signal's frequency. They are hence useful in systems like laser scanning, laser printing, and laser-based imaging and are non-mechanical.
Acousto-Optic Deflectors (AODs) research and application have been significantly impacted by developments in laser technology and are optical tools that are essential for managing and adjusting laser beams. The availability of lasers at different wavelengths across the electromagnetic spectrum, from ultraviolet (UV) to infrared (IR), is a result of advances in laser technology. Acousto-optic deflectors are adaptable instruments for beam steering and modification across a variety of applications since they can operate with these various laser sources. These laser sources work with AODs, making it possible for precise beam control in industries like communications and material processing which enhances the market for acousto optical deflectors.
The Acousto-Optic Deflector (AOD) market is significantly restrained by competition from other technologies. Existing alternatives to acousto-optic deflector for laser beam steering and control could represent a threat to their continued development and hegemony. Additionally, electro-optic deflectors employ the electro-optic effect to control the direction of a laser beam and can be utilized for modulation and beam steering and have quick response times. Due to its traits, like high-speed operation and the lack of RF needs, electro-optic deflectors may occasionally be preferable for particular applications which hamper the growth of the market.
In biophotonics and medical imaging applications, where accurate and quick control of laser beams is necessary for various diagnostic and therapeutic objectives, acousto-optic deflectors play a significant role. They are frequently employed in confocal laser scanning microscopy, a potent biophotonics imaging method. In this method, a specimen is illuminated by a laser beam, which is then scanned across the specimen by acousto-optic deflectors. This makes it possible to gather three-dimensional, high-resolution photographs of biological material, which is extremely useful in the fields of histology, neurology, and cell biology.
Both manufacturers and potential customers may face substantial difficulties as a result of the high manufacturing costs of acousto-optic deflectors (AODs). High-quality acousto-optic crystals, like tellurium dioxide (TeO2) or quartz, are necessary for these devices can be quite pricey. The price of these crystals goes into the total cost of production. Moreover, their high-precision optical components that need crystal, surface, and optical coating quality to be within extremely tight tolerances. These high levels of precision must be attained and maintained with specialized tools and knowledge, which can be expensive.
The COVID-19 pandemic affected the manufacture and distribution of electrical and optical components, particularly acousto-optical deflectors, and interrupted worldwide supply lines. Deliveries of the finished goods may have been delayed as a result of difficulties manufacturers may have had obtaining raw materials, components, and keeping production schedules. As a result, there was probably less of a demand for these devices during the pandemic. In response to the healthcare crisis, some firms have moved their production emphasis to medical equipment and supplies. The manufacturing of acousto-optical deflectors or other non-essential components may have momentarily suffered as a result of this change in priorities.
The UV acousto-optical deflectors segment is estimated to have a lucrative growth, as they work by altering the frequency and amplitude of the RF (radio frequency) signal supplied to the crystal, UV acousto-optical deflectors can quickly and precisely deflect UV laser beams. Due to this, UV light can be positioned and scanned at high speeds with millisecond response times. These devices are non-mechanical, which means they don't have any moving components, in contrast to mechanical beam steering devices like mirrors and galvanometer scanners. This makes them suited for long-term and high-throughput applications by lowering the danger of wear and tear, mechanical vibrations, and the requirement for maintenance which drives the market.
The micro processing segment is anticipated to witness the highest CAGR growth during the forecast period, because they are very accurate and adaptable method for microprocessing, acousto-optical deflectors enable the manipulation and control of laser beams in applications demanding microscale accuracy. They are able to target particular spots on a sample or workpiece with sub-micron accuracy by quickly changing the laser's direction. Material ablation and cutting is a typical use of acousto-optical deflectors in microprocessing. Moreover, they are capable of removing or cutting through layers of material with a minimum amount of heat-affected zones by carefully aiming a focused laser beam onto a material surface. Thus, all the above factors boost the market.
Asia Pacific is projected to hold the largest market share during the forecast period owing to the demand for acousto-optic deflectors, which are frequently employed in laser systems and optical instruments, has probably been impacted by this rise. The Asia-Pacific is home to a number of acousto-optic deflector producers and suppliers and these businesses might create acousto-optic deflectors for both home and foreign markets. Moreover, it has been impacted by developments in acousto-optic technology, including better device performance and downsizing. These advancements have been made possible because of the work of researchers and producers in nations like South Korea, China, and Japan, which are propelling the regions market.
North America is projected to have the highest CAGR over the forecast period, because numerous applications, such as laser scanning, laser-based imaging, spectroscopy, and materials processing, make use of acousto-optic deflectors in this region. They are essential components of laser systems used in the production of semiconductors, biophotonics, and telecommunications equipment. The region of North America renowned for having a significant presence in photonics and optics research is the United States, in particular. The region's research facilities, academic institutions, and commercial businesses are actively engaged in the development of cutting-edge optical technology, including acousto-optic devices.
Some of the key players profiled in the Acousto-Optic Deflector Market include: Brimrose, Isomet, Gooch&Housego, IntraAction Corp., CASTECH, AA Opto Electronic, Coherent, Inc., A*P*E Angewandte Physik & Elektronik GmbH, AA Opto Electronic, Harris Corporation, AMS Technologies AG, Lightcomm Technology Co., Ltd. , IntraAction Corp., Hudson Robotics Inc., MVM Electronics Inc, Lambda Photometrics Ltd, Quanta Tech Inc and Opto Science Inc
In October 2023, Coherent and Faraday 1867 partner to scale manufacturing of superconducting tape to enable mass deployment of fusion reactors, with the objective of scaling up manufacturing of high-temperature superconducting (HTS) tape to enable mass deployment of nuclear fusion reactors and support the green energy transition.
In September 2023, Coherent Unveils Industry's First 140 Gbaud Optical Subassembly to Enable 800g In Ultracompact Pluggable Form Factors for Optical Communications Networks. This solution lowers the total cost of network ownership for hyperscalers and service providers by eliminating an entire layer of transponder equipment.
In September 2023, coherent and kinetic extend partnership to enable 100g services leveraging the industry's first 100g qsfp28 0 dbm dco transceiver. The 100G QSFP28 DCO transceiver with 0 dBm output power is the industry's first, and it enables Kinetic to deploy 100 Gbps coherent transceiver technology in the access aggregation networks efficiently and sustainably