![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1371935
¼¼°è ÀÇ·á ¿µ»ó Áø´Ü ºÐ¾ß AI ½ÃÀå : Á¦°ø Á¦Ç°º°, Modalityº°, ±â¼úº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®(-2030³â)Artificial Intelligence in Medical Imaging Market Forecasts to 2030 - Global Analysis By Offering, Modality, Technology, Application, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¼¼°è ÀÇ·á ¿µ»ó Áø´Ü ºÐ¾ß AI½ÃÀåÀº 2023³â 10¾ï 110¸¸ ´Þ·¯¸¦ Â÷ÁöÇÏ°í ¿¹Ãø ±â°£ µ¿¾È º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 32.8%¸¦ ³ªÅ¸³¾ Àü¸ÁÀ̸ç 2030³â¿¡´Â 72¾ï 9280¸¸ ´Þ·¯¿¡ ´ÞÇÑ´Ù ¿¹ÃøµË´Ï´Ù.
ÀÇ·á ¿µ»ó Áø´ÜÀº ÷´Ü ÄÄÇ»ÅÍ Á¢±Ù¹ý, ƯÈ÷ ¸Ó½Å·¯´× ¹× µö·¯´× ¾Ë°í¸®ÁòÀ» »ç¿ëÇÏ¿© X ¼±, MRI ½ºÄµ, CT ½ºÄµ µîÀÇ ÀÇ·á À̹ÌÁö¸¦ ºÐ¼®Çϰí ÇØ¼®ÇÏ´Â °ÍÀ̸ç,ÀÌ ±â¼úÀÇ µµ¿ò ºô·Á, ÀÇ·á Á¾»çÀÚ´Â Áúº´ ¹× ÀÌ»óÀ» ´õ Á¤È®ÇÏ°í ½Å¼ÓÇÏ°Ô ½Äº°ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÇ·á Áø´Ü ºÐ¾ß¿¡ Çõ¸íÀ» ÀÏÀ¸ÄÑ Áúº´ÀÇ Á¶±â ¹ß°ß, Ä¡·á °èȹ, ¸ÂÃãÇü ÀǷḦ ÅëÇØ ȯÀÚÀÇ °á°ú¿Í °Ç° °ü¸®ÀÇ È¿°ú¿¡ Å« ¿µÇâÀ» ÁÙ °¡´É¼ºÀÌ ÀÖ½À´Ï´Ù.
¹Ì±¹ ¾Ï Çùȸ¿¡ µû¸£¸é ¹Ì±¹¿¡¼´Â ¿ÃÇØ Æó¾Ï°ú ±â°üÁö¾ÏÀÇ ÇÕ°è 236,740¸íÀÌ »õ·Î ÀÌȯÇÒ °ÍÀ¸·Î ÃßÁ¤µÇ°í ÀÖ½À´Ï´Ù.
¼¼°è Á¤ºÎ´Â ÀΰøÁö´ÉÀÌ È¯ÀÚÀÇ °á°ú¸¦ °³¼±ÇÏ°í °Ç° °ü¸® ÁöÃâÀ» ÁÙÀÏ ¼ö ÀÖÀ½À» ¾Ë°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÇ·á ¿µ»ó Áø´Ü¿¡ ÀÖ¾î¼ AIÀÇ À±¸®ÀûÀÌ°í ¾ÈÀüÇÑ ÀÀ¿ëÀ» Áö¿øÇϱâ À§ÇÑ ³ë·ÂÀº ¿¬±¸¿¡ ´ëÇÑ ÀÚ±Ý Áö¿ø, ¼¼±Ý ¿ì´ë Á¶Ä¡, ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ© µîÀÌ ÀÖ½À´Ï´Ù. ÀÇ·á ¿µ»ó Áø´Ü¿¡¼ AIÀÇ ¼ºÀå°ú ¹ßÀüÀº Çõ½ÅÀ» Àå·ÁÇϰí AI ¼Ö·ç¼Ç¿¡ ´ëÇÑ ÅõÀÚ¿¡ º¸´äÇÏ°í ±â¼ú ±â¾÷, ÀÇ·á Á¶Á÷ ¹× ±ÔÁ¦ ±â°üÀÇ Çù·ÂÀ»À§ÇÑ Ä£ÀýÇÑ È¯°æÀ» ¸¸µå´Â ÀÌ·¯ÇÑ Á¤Ã¥¿¡ ÀÇÇØ °¡¼ÓÈ µË´Ï´Ù. ±×·¯¹Ç·Î °¢±¹ Á¤ºÎ´Â °Ç° °ü¸®¿¡¼ AI ±â¼úÀÇ Ã¢Ãâ°ú ÀÌ¿ëÀ» ÃËÁøÇϱâ À§ÇÑ Á¤Ã¥, ´ëÃâ, ±ÔÁ¦¸¦ ½Ç½ÃÇß½À´Ï´Ù.
½ÃÀå È®´ë´Â ±¤¹üÀ§ÇÑ Áúº´À» Áø´ÜÇϱâ À§ÇØ ÀÇ·á ¿µ»ó »ùÇà ¹× ±âŸ Àåºñ¿¡ »ç¿ëµÇ´Â ´Ù¾çÇÑ ÀΰøÁö´É Á¢±Ù¹ýÀÌ ³ôÀº ºñ¿ëÀ¸·Î Á¦Çѵ˴ϴÙ. °Ô´Ù°¡, ¹Ì°³¹ß±¹À̳ª ºó°ï±¹ÀÇ ÀÇ·á ½Ã¼³ ¹× ¿¬±¸ ±â°üÀÇ ´ëºÎºÐÀº Çö½ÃÁ¡¿¡¼´Â ÀÇ·á ¿µ»ó Áø´Ü ºÐ¾ßÀÇ AI ¿¬±¸ °³¹ß¿¡ °ü·ÃÇÏ´Â ³ôÀº ºñ¿ëÀ» ÁöºÒÇÒ ¼ö ¾ø½À´Ï´Ù. µû¶ó¼ ½ÃÀå È®´ë´Â ÀÌ·¯ÇÑ ¹®Á¦·Î ÀÎÇØ ¹æÇعްí ÀÖ½À´Ï´Ù.
ÃÊÀ½ÆÄ, ÄÄÇ»ÅÍ ´ÜÃþ ÃÔ¿µ, Àڱ⠰ø¸í ¿µ»ó¹ý(MRI)Àº Å« Áøº¸¸¦ ÀÌ·é ÀÇ·á ¿µ»ó ±â¼úÀÇ ¿¹ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ÃÖ÷´Ü À̹Ì¡ ±â¼úÀº ¾öû³ ¾çÀÇ º¹ÀâÇÑ µ¥ÀÌÅ͸¦ Á¦°øÇϰí AI ¾Ë°í¸®ÁòÀ» ÅëÇØ È¿°úÀûÀ¸·Î Æò°¡ÇÔÀ¸·Î½á º¸´Ù ¸ÂÃã Ä¡·á ÇÁ·Î±×·¥À» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ±×·¯¹Ç·Î ¿µ»ó Áø´Ü ¾ç½ÄÀÇ ±â¼ú °³Ã´Àº ½ÃÀå È®´ë¸¦ ÃËÁøÇÕ´Ï´Ù.
½ÃÀå È®´ë´Â ÀÇ·á ¿µ»ó Áø´Ü ¹× ÀΰøÁö´É °æÇèÀ» ¸ðµÎ °®Ãá ÈÆ·ÃµÈ Àη ºÎÁ·À¸·Î ÀÎÇØ ¹æÇØ ¹Þ°í ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ÀÇ·á±â°üÀº ÀΰøÁö´É ¾Ë°í¸®Áò, ÀÇ·á µ¥ÀÌÅÍ, ÀÓ»ó óġÀÇ º¹À⼺À» °ü¸®ÇÒ ¼ö ÀÖ´Â Àη Ȯº¸ ¹× À°¼º¿¡ ºó¹øÇÏ°Ô ¾î·Á¿òÀ» °Þ°í Àֱ⠶§¹®¿¡ ÀÌ ºÎÁ·À¸·Î ÀΰøÁö´É ¼Ö·ç¼ÇÀÇ °³¹ß°ú ¹èÆ÷¸¦ ¹æÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. µû¶ó¼ ÀÌ·¯ÇÑ ¹®Á¦´Â ½ÃÀå È®´ë¸¦ Á¦ÇÑÇÕ´Ï´Ù.
ÀÇ·á ¿µ»ó Áø´Ü ºÐ¾ß AI ½ÃÀåÀº COVID-19ÀÇ ÆÒµ¥¹Í¿¡ ÀÇÇØ ´Ù¾çÇÑ ¸é¿¡¼ ¾Ç¿µÇâÀ» ¹Þ¾Ò½À´Ï´Ù. °ø±Þ¸ÁÀÌ È¥¶õ½º·¯¿ö AI¸¦ Ȱ¿ëÇÑ ÀÇ·á¿ë À̹ÌÁö ó¸® ¼Ö·ç¼ÇÀÇ °³¹ß°ú µµÀÔÀÌ Áö¿¬µÇ¾ú½À´Ï´Ù. ÀΰøÁö´É ±â¼úÀÇ ÀÌ¿ëÀº À¯Çà °ü·Ã ¹®Á¦¿¡ ´ëÇÑ °Ç° °ü¸® ÀÚ¿ø°ú ÃÊÁ¡ÀÇ º¯È¿¡ ÀÇÇØ ´õ¿í ¹æÇصǾú½À´Ï´Ù. ¶ÇÇÑ, ÀÇ·á ¿µ»ó Áø´ÜÀÇ AI ¾ÖÇø®ÄÉÀ̼ÇÀº ±³À° ¹× °ËÁõÀ»À§ÇÑ ÀϰüµÈ µ¥ÀÌÅÍ È帧¿¡ ÀÇÁ¸Çϱ⠶§¹®¿¡ ±ä±ÞÇÏÁö ¾ÊÀº ÀÇ·á ÀýÂ÷ ¹× ¿µ»ó °Ë»çÀÇ °¡¿ë¼ºÀÌ ¶³¾îÁ³½À´Ï´Ù. ¼ºÀå¿¡ ¿µÇâÀ» ÁÖ¾ú½À´Ï´Ù. ±×·¯¹Ç·Î ÆÒµ¥¹ÍÀº ÀÌ ¾÷°è¿¡¼ AI µµÀÔÀÇ ±Þ¼ºÀåÀ» °©Àڱ⠸ØÃè½À´Ï´Ù.
C¾Ï°ú °°Àº ÀÎÅͺ¥¼Å³Î X¼± ±â¼úÀ» ÀÌ¿ëÇÑ ¿µ»ó À¯µµ ÀýÂ÷ Áõ°¡·Î ÀÎÇØ X¼± ºÐ¾ß°¡ °¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù. °Ô´Ù°¡ C ¾Ï, ƯÈ÷ Æò¸é ÆÐ³Î °ËÃâ±â¸¦ žÀçÇÑ ¼ÒÇü C ¾Ï°ú µðÁöÅÐ X¼± ÃÔ¿µ ÀåÄ¡ÀÇ °³¹ß¿¡ ÀÇÇØ, X¼±ÀÇ Çʿ䷮ÀÌ ´ëÆø Áõ°¡Çϰí ÀÖ½À´Ï´Ù. µû¶ó¼ X¼± ¿µ»ó Áø´Ü¿¡ AI¸¦ ÅëÇÕÇϸé Áúº´ÀÇ Á¶±â Áø´ÜÀ» ´Ã¸®°í ÀÎÀ§Àû ½Ç¼ö¸¦ ÁÙÀÌ°í ±Ã±ØÀûÀ¸·Î ȯÀÚÀÇ ¿¹Èĸ¦ °³¼±ÇÏ´Â µ¿½Ã¿¡ ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù.
³ú ¹× ô¼öÀÇ MRI ¹× CT ¿µ»ó°ú °°Àº º¹ÀâÇÑ ½Å°æ ¿µ»ó µ¥ÀÌÅÍ´Â AI ±â¼ú, ƯÈ÷ ¸Ó½Å·¯´× ¹× ½ÉÃþ ÇнÀ ¾Ë°í¸®ÁòÀ» »ç¿ëÇÏ¿© ºÐ¼®µÇ¹Ç·Î ½Å°æ ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)À» °®½À´Ï´Ù. ¿¹»óµË´Ï´Ù. ¶ÇÇÑ, ÀÛÀº ±¸Á¶Àû ¹× ±â´ÉÀû ÀÌ»óÀ» °ËÃâÇÔÀ¸·Î½á, À̵é AI ½Ã½ºÅÛÀº ¾ËÃ÷ÇÏÀ̸Ӻ´, ³úÁ¹Áß, ³úÁ¾¾ç µî ½Å°æÁúȯÀÇ È®Àΰú Áø´ÜÀ» Áö¿øÇÕ´Ï´Ù. µû¶ó¼ AI´Â Áúº´ÀÇ ÁøÇà ¿¹Ãø ¹× Ä¡·á °èȹ¿¡µµ µµ¿òÀÌ µÇ¾î, ½Å°æÁúȯ ȯÀÚ¿¡ ´ëÇÑ Á¶±â °³ÀÔ°ú °³º° Äɾ °¡´ÉÇÏ°Ô Çϰí, ½Å°æÇÐÀÇ ¿µ¿ªÀ» Áøº¸½ÃÄÑ, ȯÀÚÀÇ °á°ú¸¦ Çâ»ó½Ãŵ´Ï´Ù.
¾Æ½Ã¾ÆÅÂÆò¾çÀº ÃÖ÷´Ü ±â¼úÀÇ º¸±Þ, ³×Æ®¿öÅ© ¿¬°á¼º Çâ»ó, Á¤ºÎ initiative È®´ë·Î ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇß½À´Ï´Ù. °Ô´Ù°¡ ÅõÀÚÀÇ ±Þ°ÝÇÑ ¼ºÀå, ƯÈ÷ Áß±¹°ú ÀεµÀÇ ÀΰøÁö´É(AI) ÀÌ¿ë ±â¾÷ Áõ°¡, ÈÁúÀ» Çâ»ó½ÃÅ´À¸·Î½á ÀÌ Áö¿ªÀÇ ÀÇ·á ÀÎÇÁ¶ó °ÝÂ÷¸¦ Ãà¼ÒÇÏ´Â AIÀÇ Å« °¡´É¼ºÀÌ ´õ¿í ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ AI¸¦ Ȱ¿ëÇÑ ·Îº¿ °Ë»ç³ª ÀÇ·á ¿µ»ó Áø´Ü µî °Ç° °ü¸® ¾÷°è¿¡¼´Â µðÁöÅÐȰ¡ °¡¼Óȵǰí ÀÖ½À´Ï´Ù.
ºÏ¹Ì´Â ¿¹Ãø ±â°£ µ¿¾È º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)ÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ´Â ÀÇ·á À̹ÌÁöÀÇ Á¤È®¼º, È¿À²¼º ¹× ¼Óµµ¸¦ Çâ»ó½ÃŰ´Â °í±Þ Áø´Ü ±â¼úÀÌ Á¡Á¡ ´õ ÇÊ¿äÇØÁö°í Àֱ⠶§¹®ÀÔ´Ï´Ù. ¶ÇÇÑ AI ±â¹Ý ¼Ö·ç¼ÇÀº ¹æ»ç¼±°ú ÀÇ»ç ¹× ±âŸ °Ç° °ü¸® Á÷¿øÀÌ º¹ÀâÇÑ ÀÇ·á À̹ÌÁö¸¦ Á¦½ÃÇÒ ¶§ Áö¿ø, Áø´Ü Á¤È®µµ Çâ»ó, ÀÇ»ç °áÁ¤ °³¼±À» ÃËÁøÇÒ ÀáÀç·ÂÀ» °¡Áö°í ÀÖ½À´Ï´Ù. µû¶ó¼ Áö¿ª½ÃÀåÀÇ È®´ë¿Í ÀÚ±ÝÁ¶´Þµµ º¸´Ù ¿ì¼öÇÑ Áø´Üµµ±¸¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ÈûÀÔ¾î ÀÇ·áÀ̹ÌÁö ºÐ¾ß¿¡¼ Áö¿ª AI(ÀΰøÁö´É)ÀÇ ÁÖ¿ä ÃËÁø¿äÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Artificial Intelligence in Medical Imaging Market is accounted for $1,001.1 million in 2023 and is expected to reach $7,292.8 million by 2030 growing at a CAGR of 32.8% during the forecast period. Artificial intelligence in medical imaging is the analysis and interpretation of medical images such as X-rays, MRI scans, and CT scans using sophisticated computer approaches, especially machine learning and deep learning algorithms, with the help of this technology, medical personnel can identify diseases, anomalies, and abnormalities more precisely and quickly. It has the potential to revolutionize the area of medical diagnostics and have a profound impact on patient outcomes and healthcare effectiveness through early disease identification, treatment planning, and personalized medicine.
According to the American Cancer Society, a total of 236,740 new cases of lung and bronchus cancer are estimated this year in the United States.
Governments all over the world have knowledge of how AI has the potential to improve patient outcomes and lower healthcare expenditures. Moreover, initiatives that support the ethical and safe application of AI in medical imaging include funding for research, tax breaks, and regulatory frameworks. The growth and development of AI in medical imaging is accelerated by these policies, which encourage innovation, reward investment in AI solutions, and create a friendly climate for cooperation among technology companies, healthcare organizations, and regulatory agencies. Therefore, governments have implemented policies, financing, and regulations to promote the creation and use of AI technologies in healthcare.
The expansion of the market is constrained by the high cost of various artificial intelligence approaches used in medical imaging samples and other equipment to diagnose a wide range of disorders. Additionally, the majority of healthcare facilities and research institutions in undeveloped and poor countries are unable to pay the higher costs associated with R&D for artificial intelligence in medical imaging at the moment. The market expansion is therefore hampered by these issues.
Ultrasound, computed tomography, and magnetic resonance imaging (MRI) are examples of medical imaging technologies that have made major improvements. These cutting-edge imaging techniques provide enormous amounts of complicated data, which have been effectively evaluated by AI algorithms to allow for more individualized treatment programs. Therefore, technological developments in imaging modalities promote market expansion.
The expansion of the market is hampered by the lack of trained personnel with experience in both medical imaging and artificial intelligence. Furthermore, as healthcare organizations frequently struggle to locate and train individuals who can manage the intricacies of AI algorithms, medical data, and clinical procedures, this shortage could impede the development and deployment of AI solutions. Therefore, these problems restrict the market's expansion.
The artificial intelligence in medical imaging market has been negatively impacted by the COVID-19 pandemic in a number of ways. Supply chains were upset, which delayed the development and implementation of AI-driven medical imaging solutions. The use of AI technologies was further hindered by the shift in healthcare resources and focus to pandemic-related issues. Additionally, as AI applications in medical imaging depend on a consistent stream of data for training and validation, the decreased availability of non-urgent medical procedures and imaging studies had an impact on the market's growth. Therefore, the pandemic suddenly stopped the rapid growth of AI deployment in this industry.
The X-ray segment is estimated to hold the largest share, due to the rise in image-guided procedures using interventional x-ray technology, such as C-arms and other models. Moreover, the requirement for X-rays has substantially increased due to the development of C-arms, particularly small C-arms with flat panel detectors and digital radiography. Therefore, by incorporating AI into X-ray imaging, it is possible to increase the early diagnosis of disease, lessen human error, and eventually improve patient outcomes while also saving money.
The Neurology segment is anticipated to have highest CAGR during the forecast period, due to complex neuroimaging data, such as those from MRI and CT images of the brain and spinal cord, are analyzed using AI technology, notably machine learning and deep learning algorithms. Moreover, by detecting small structural and functional anomalies, these AI systems assist in the identification and diagnosis of neurological illnesses like Alzheimer's disease, stroke, and brain tumors. Therefore, AI can also help with disease progression prediction and therapy planning, enabling early intervention and individualized care for patients with neurological diseases, progressing the area of neurology, and increasing patient outcomes.
Asia Pacific commanded the largest market share during the extrapolated period owing to the widespread use of cutting-edge technologies, improved network connectivity, and expanded government initiatives. Moreover, the exponential growth in investment, the rise in artificial intelligence (AI)-using businesses, particularly in China and India, and the great potential for AI to reduce the region's healthcare infrastructure gap by enhancing image quality are further motivating drivers. Furthermore, digitization is speeding up in the healthcare industry, including robotic testing and medical image processing powered by AI.
North America is expected to witness highest CAGR over the projection period; owing to advanced diagnostic technologies with increased accuracy, efficiency, and speed in medical imaging are becoming more and more necessary. Additionally, AI-based solutions have the potential to assist radiologists and other healthcare workers in presenting complex medical pictures, improving diagnostic precision, and facilitating improved decision-making. Therefore, regional market expansion and funding are also key drivers for regional AI (artificial intelligence) in the medical imaging sector, which is driven by the increasing demand for better diagnostic tools.
Some of the key players in the Artificial Intelligence in Medical Imaging Market include: Aitia, Arterys Inc., BenevolentAI, Digital Diagnotics Inc., EchoNous, GE Healthcare, IBM Watson Health, Intel Corporation, Lunit Inc., Nanox Imaging LTD., OrCam, Prognos Health, Qventus, Siemens Healthcare GmbH and ZealthLife technologies Pte. Ltd
In September 2022, IBM announced its intent to acquire Dialexa, a prominent U.S. digital product engineering services firm. This acquisition will strengthen the company's product engineering expertise while offering end-to-end digital transformation services for clients.
In August 2022, GE Healthcare unveiled Definium™ 656 HD, a next-generation X-ray system in its fixed X-ray products portfolio. This product offers in-room workflows and motorization with an intelligent workflow suite, flashpad detectors, and AI-driven helix advanced image processing software.
In June 2021, VUNO Inc., a South Korean AI business, announced a strategic partnership with Samsung Electronics for the incorporation of the AI-powered mobile digital X-ray system VUNO Med-Chest X-ray within the GM85. This partnership is projected to bring VUNO closer to the expansion of AI applications that are market-ready due to its access to the global market.