½ÃÀ庸°í¼­
»óǰÄÚµå
1371963

¼¼°è Á¤¹ÐÀÇ·á ºÐ¾ß ÀΰøÁö´É(AI) ½ÃÀå : Á¦°ø, ±â¼ú, ¿ëµµ, Áö¿ªº° ºÐ¼®(-2030³â)

Artificial Intelligence In Precision Medicine Market Forecasts to 2030 - Global Analysis By Offering, Technology, Application and By Geography.

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°è Á¤¹ÐÀÇ·á ºÐ¾ß ÀΰøÁö´É(AI) ½ÃÀåÀº 2023³â¿¡ 17¾ï 3,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇÏ°í ¿¹Ãø ±â°£ µ¿¾È º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 33.8%¸¦ ³ªÅ¸³¾ Àü¸ÁÀ̸ç, 2030³â¿¡´Â 133¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÈ´Ù.

Á¤¹ÐÀÇ·á ºÐ¾ß ÀΰøÁö´É(AI)¿¡´Â °³ÀÎÈ­µÈ ÀǷḦ °³¹ßÇϱâ À§ÇØ °³Àο¡ ´ëÇÑ °Ô³ð µ¥ÀÌÅ͸¦ »ç¿ëÇÏ´Â °ÍÀÌ Æ÷ÇԵ˴ϴÙ. ÀÌ µ¥ÀÌÅʹ ȯÀÚÀÇ Ä¡·á °èȹÀ» ¸¸µé ¼ö ÀÖ½À´Ï´Ù. ÀÇ·á ÀΰøÁö´É(AI)´Â ¾Ë°í¸®Áò°ú ¼ÒÇÁÆ®¿þ¾îÀÇ µµ¿òÀ¸·Î Àΰ£ÀÇ ÀÎÁö¸¦ ±Ù»çÇÏ¿© º¹ÀâÇÑ ÀÇ·á µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ´Â µ¥ »ç¿ëµË´Ï´Ù. AI ±â¼úÀº ÀÌ ÇÁ·Î¼¼½º¸¦ º¸´Ù ºü¸£°í Àú·ÅÇÏ°Ô ¸¸µé°í, Á¦¾à ȸ»ç ¹× »ý¸í °øÇРȸ»çÀÇ È¿À²¼ºÀ» Çâ»ó½Ãų °ÍÀ¸·Î ±â´ëµË´Ï´Ù.

¹Ì±¹¸³À§»ý¿¬±¸¼Ò(NIH) º¸°í¼­¿¡ µû¸£¸é 2023³â¿¡´Â ¹Ì±¹ ³»¿¡¼­¸¸ 190¸¸¸íÀÇ ¾Ï ȯÀÚ°¡ »õ·Ó°Ô ¹ß»ýÇÏ¿© 60¸¸9820¸íÀÌ »ç¸ÁÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù. µû¶ó¼­ Á¾¾çÇп¡¼­ AIÀÇ ÅëÇÕÀº ¾ÏÀÇ º¸´Ù Á¤È®ÇÏ°í ½Å¼ÓÇÑ Áø´Ü¿¡ ±â¿©Çϰí ȯÀÚ °á°úÀÇ Çâ»óÀ¸·Î À̾îÁú °ÍÀ¸·Î ±â´ëµË´Ï´Ù.

¾Ï ÀÌȯÀ² Áõ°¡

¾Ï ÀÌȯÀ²Àº °è¼Ó »ó½ÂÇϰí ÀÖÀ¸¸ç, º¸´Ù È¿°úÀûÀ̰í Á¤È®ÇÑ Ä¡·á Àü·«ÀÌ ÇÊ¿äÇÕ´Ï´Ù. ÷´Ü ¾Ë°í¸®Áò°ú ¸Ó½Å·¯´× ±â´ÉÀ» °®Ãá AI´Â ¾Ï Áø´Ü, ¿¹ÈÄ, °³ÀÎÈ­ Ä¡·áÀÇ º¹À⼺À» ´Ù·ç´Â °­·ÂÇÑ µµ±¸·Î µîÀåÇß½À´Ï´Ù. AI´Â ¿µ»ó ºÐ¼®À» ÅëÇØ ¾Ï Áø´Ü¿¡ Å« ¿µÇâÀ» ¹ÌÄ¡¸ç ¾Ï°ú ÀüÀÌÀÇ ¸Å¿ì Á¤È®ÇÑ Á¶±â ¹ß°ß¿¡ µµ¿òÀÌ µË´Ï´Ù. ¶ÇÇÑ AI ÁÖµµÀÇ ¿¹Ãø ¸ðµ¨¸µÀº Áúº´ °á°ú¿Í ´Ù¾çÇÑ Ä¡·á¿¡ ´ëÇÑ È¯ÀÚÀÇ ¹ÝÀÀÀ» ¿¹ÃøÇÏ´Â µ¥ µµ¿òÀÌ µÇ¸ç ¸ÂÃãÇü ÃÖÀûÈ­µÈ Ä¡·á Á¢±Ù¹ýÀ» ÃËÁøÇÕ´Ï´Ù. AI´Â ȯÀÚ°¡ °¡Àå ÀûÀýÇϰí È¿°úÀûÀÎ Ä¡·á¸¦ ¹ÞÀ» ¼ö ÀÖµµ·Ï Çϰí, °á±¹ »ýÁ¸À²À» Çâ»ó½ÃÄÑ ¾Ï Ä¡·á ÀüüÀÇ ÁúÀ» ³ôÀÔ´Ï´Ù.

³ôÀº ºñ¿ë

Á¤¹ÐÀǷḦ À§ÇÑ AI ±â¼úÀÇ °³¹ß°ú ¹èÆ÷¿¡´Â ¿¬±¸, µ¥ÀÌÅÍ ¼öÁý, ¾Ë°í¸®Áò °³¹ß, ÄÄÇ»ÆÃ ¸®¼Ò½º, Àü¹®ÀûÀÎ Àü¹® Áö½Ä µî ¸¹Àº ºñ¿ëÀÌ µì´Ï´Ù. ºñ¿ë Áý¾àÀûÀÎ ÇÁ·Î¼¼½º¿¡´Â ÃÖ÷´Ü ÄÄÇ»ÆÃ ÀÎÇÁ¶ó ±¸Ãà ¹× À¯Áö, ¾öû³­ °Ç°­ °ü¸® µ¥ÀÌÅÍ Æò°¡, AI ¸ðµ¨ °³¹ß µîÀÌ Æ÷ÇԵ˴ϴÙ. ÀÌ·¯ÇÑ °æÁ¦Àû À庮Àº Á¢±Ù¼º°ú °¡¿ë¼º¿¡ ¾î·Á¿òÀ» ÁÖ¾î Á¤¹ÐÀÇ·á ºÐ¾ß ÀΰøÁö´É(AI)ÀÇ º¸±Þ°ú ±¸ÇöÀ» Á¦ÇÑÇϸç, ±Ã±ØÀûÀ¸·Î °Ç°­ °ü¸®ÀÇ °á°ú¿Í °³ÀÎÈ­ Ä¡·á¿¡ Çõ¸íÀ» °¡Á®¿Ã °¡´É¼º ¿µÇâÀ» ¹ÌĨ´Ï´Ù.

±â¼ú Áøº¸

AI´Â ´«ºÎ½Å Áøº¸¸¦ ÀÌ·ç°í, ¸Ó½Å·¯´×, ½ÉÃþ ÇнÀ, ÀÚ¿¬¾î ó¸®, ¿¹Ãø ºÐ¼®À» Ȱ¿ëÇÏ¿© Á¤¹ÐÀÇ·áÀÇ ¸Æ¶ô¿¡¼­ ÀÇ·á µ¥ÀÌÅÍÀÇ ºÐ¼® ¹× Ȱ¿ë ¹æ¹ý¿¡ Çõ¸íÀ» °¡Á®¿À°í ÀÖ½À´Ï´Ù. ÀΰøÁö´ÉÀÌ Å¾ÀçµÈ µµ±¸´Â Áø´Ü, ÀǾàǰ, ȯÀÚÀÇ À§Çè Æò°¡ ¹× Ä¡·á ÃÖÀûÈ­¸¦ Áö¿øÇÏ¿© Àü¹ÝÀûÀΠȯÀÚ °ü¸® ¹× °á°ú¸¦ Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, AI ¾Ë°í¸®Áò°ú ¸ðµ¨ÀÇ Áö¼ÓÀûÀÎ °­È­´Â Á¤¹ÐÀÇ·áÀÇ º¸´Ù Á¤È®Çϰí È¿À²ÀûÀÌ°í ½Å·Ú¼º ÀÖ´Â AI ¼Ö·ç¼ÇÀÇ Ã¢ÃâÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ±â¼úÀÌ °è¼Ó ÁøÈ­ÇÔ¿¡ µû¶ó Á¤¹ÐÀÇ·á¿¡¼­ AIÀÇ ´É·ÂÀÌ ´õ¿í È®´ëµÇ°í º¸´Ù È¿°úÀûÀÌ°í ½Ã±âÀûÀýÇÑ °³ÀÎÈ­µÈ ÀÇ·á °³ÀÔ¿¡ ±â¿©ÇÏ¸ç ±Ã±ØÀûÀ¸·Î ÀÇ·á ½Çõ ¹æ¹ý¿¡ Çõ¸íÀ» °¡Á®´Ù¿¡¼­ ȯÀÚÀÇ °á°ú¸¦ °³¼±ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

º¸¾È À§Çè

AI ÅëÇÕ¿¡´Â À¯ÀüÀÚ µ¥ÀÌÅÍ ¹× ÀÇ·á ±â·Ï°ú °°Àº ¾öû³­ ¾çÀÇ È¯ÀÚº° Á¤º¸°¡ ÇÊ¿äÇÕ´Ï´Ù. ÀÌ Ç³ºÎÇÑ °³ÀÎ µ¥ÀÌÅÍ´ÂÀÌ ºÐ¾ß¸¦ »çÀ̹ö À§Çù, µ¥ÀÌÅÍ Ä§ÇØ ¹× ¹«´Ü ¾×¼¼½ºÀÇ ¸ð½ÀÀ» ¸ñÇ¥·ÎÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¹Î°¨ÇÑ Á¤º¸¸¦ ¾ÇÀÇÀûÀÎ °ø°ÝÀ¸·ÎºÎÅÍ º¸È£ÇÏ°í ¾ö°ÝÇÑ ÇÁ¶óÀ̹ö½Ã ±ÔÁ¤À» ÁؼöÇÏ´Â °ÍÀº Å« °úÁ¦ÀÔ´Ï´Ù. º¸¾È Ä§ÇØ´Â ȯÀÚÀÇ ±â¹Ð¼ºÀ» ÀúÇØÇϰí, AI¸¦ žÀçÇÑ ½Ã½ºÅÛ¿¡ ´ëÇÑ ½Å·Ú¸¦ ÀúÇØÇϰí, °Ç°­ °ü¸® Á¦°ø¾÷ü ¹× ȯÀÚ ¸ðµÎ°¡ ÀÌ·¯ÇÑ º¯È­¸¦ °¡Á®¿Ã ¼ö ÀÖ´Â ±â¼úÀÇ Ã¤¿ëÀ» »ý°¢ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ À§ÇùÀÌ ½ÃÀå ¼ºÀåÀ» ¹æÇØÇϰí ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

COVID-19ÀÇ À¯ÇàÀº Á¤¹ÐÀÇ·á ºÐ¾ß ÀΰøÁö´É(AI) ½ÃÀå¿¡ ±àÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. °Ç°­ °ü¸® ºÎ¹®Àº ÆÒµ¥¹ÍÀÌ °¡Á®¿Â ¹®Á¦¿¡ ´ëóÇϱâ À§ÇØ AI ±â¼úÀÇ È°¿ë¿¡ ´õ¿í ÁÖ·ÂÇÏ°Ô µÇ¾î ÀÖ½À´Ï´Ù. COVID-19 À§±âÀÇ °æ¿ì AI´Â Áø´Ü, Ä¡·á¹ý °³¹ß, ½Å¾à ¹ß°ß, ȯÀÚ °ü¸® µîÀÇ ºÐ¾ß¿¡¼­ ÇʼöÀûÀÔ´Ï´Ù. ¶ÇÇÑ AI ¾Ë°í¸®ÁòÀ» »ç¿ëÇϸé COVID-19 »ç·Ê¸¦ Á¤È®ÇÏ°í ½Å¼ÓÇÏ°Ô Áø´ÜÇÒ ¼ö ÀÖ´Â ¹æ´ëÇÑ µ¥ÀÌÅͺ£À̽º ºÐ¼®ÀÌ °¡´ÉÇÕ´Ï´Ù. AI¸¦ Ȱ¿ëÇÑ ¼Ö·ç¼ÇÀº ¾à¹° È常¦ ÆÄ¾ÇÇÏ°í ¾à¹° Àç»ç¿ë °úÁ¤À» °¡¼ÓÈ­ ÇÔÀ¸·Î½á ÀáÀçÀûÀÎ Ä¡·áÁ¦¿Í ¹é½Å °³¹ßÀ» ÃËÁøÇÏ¿© À¯¸ÁÇÑ ±âȸ¸¦ âÃâÇÕ´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¼ÒÇÁÆ®¿þ¾î ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ Àü¸ÁÀÔ´Ï´Ù.

Á¤¹ÐÀÇ·á ºÐ¾ß ÀΰøÁö´É(AI)À» ±â¹ÝÀ¸·Î ÇÏ´Â ¼ÒÇÁÆ®¿þ¾î ¼Ö·ç¼ÇÀº Á¶Á÷, °Ç°­ °ü¸® ³³ºÎÀÚ, ȯÀÚ ¹× ÀÇ·á Á¦°ø¾÷ü°¡ ½Å¼ÓÇÏ°Ô Ã¤ÅÃÇÏ¿© ¼ÒÇÁÆ®¿þ¾î ºÐ¾ß°¡ °¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù. ¶ÇÇÑ ¿ø°ÝÀÇ·á, ·Îº¿ ¼ö¼ú, ÀÓ»ó½ÃÇè, »çÀ̹ö º¸¾È, Åõ¿© ¹Ì½º »è°¨, °¡»ó ¾î½Ã½ºÅÏÆ®, ÀÓ»ó½ÃÇè µî °Ç°­ °ü¸® ¾÷°è¿¡¼­ AI ±â¼úÀÇ ÀÀ¿ëÀÌ È®´ëµÇ°í ÀÖ´Â °Íµµ ¼ºÀåÀÇ ¿äÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù. °Ô´Ù°¡ Á¤ºÎ¿Í »ó¾÷Àû ³ë·Âµµ ÀÌ ºÎ¹®ÀÇ È®´ë¸¦ µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. ¿©·¯ ±â¾÷ÀÌ °úÇÐÀû ¿¹Ãø¿¡ ´ëÇÑ ±íÀº Áö½ÄÀ» ±â¹ÝÀ¸·Î ML ¾Ë°í¸®ÁòÀ» »ç¿ëÇÏ¿© ¾Ï ÁøÇàÀ» ÃßÁ¤ÇÏ´Â ¼ÒÇÁÆ®¿þ¾î ¼­ºñ½º¸¦ Á¦°øÇϰí ÀÖÀ¸¸ç Ä¡·á¿¡ ´ëÇÑ ¹ÝÀÀÀ¸·Î ¾Ï ÁøÇàÀ» È¿°úÀûÀ¸·Î ¿¹ÃøÇÒ ¼ö ÀÖ½À´Ï´Ù. µµ¿òÀÌ µË´Ï´Ù.

½Å°æºÐ¾ß´Â ¿¹Ãø±â°£ Áß °¡Àå ³ôÀº º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)ÀÌ ¿¹»óµË´Ï´Ù.

½Å°æºÐ¾ß´Â °£Áú, Ä¡¸Å, ÆíµÎÅë, ¾ËÃ÷ÇÏÀ̸Ӻ´, ³úÁ¾¾ç µî ½Å°æÁúȯÀÇ À¯º´·üÀÌ »ó½ÂÇϰí Àֱ⠶§¹®¿¡ ¿¹Ãø±â°£ Áß¿¡ À¯¸®ÇÑ ¼ºÀåÀÌ ¿¹»óµË´Ï´Ù. ÀÌ ºÐ¾ßÀÇ ¼ºÀåÀº Á¤¹ÐÇÑ Ä¡·á¸¦ Á¦°øÇÔÀ¸·Î½á ³úÁ¹ÁßÀ» ¾Î°í Àִ ȯÀÚ¸¦ Ä¡·áÇÒ ¼ö ÀÖ´Â ÀΰøÁö´É¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡µµ µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. AI´Â ³ú ¿Ü°ú ¼ö¼úÀÇ ¼ö¼ú Àü, ¼ö¼ú Áß, ¼ö¼ú ÈÄ ´Ü°è¸¦ °­È­ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¿ä¼Ò´Â ÀÌ ºÐ¾ßÀÇ ¼ºÀåÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.

ÃÖ´ë Á¡À¯À² Áö¿ª

ºÏ¹Ì´Â °Ç°­°ú º¹Áö¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ÁöÃâ·ÂÀÌ ³ô°í, ¿¬±¸°³¹ß °ü·Ã ÅõÀÚ°¡ ±ÞÁõÇϰí ÀÖÀ¸¸ç, ¹Ì±¹°ú ij³ª´Ù µî ±¹°¡¿¡ °­·ÂÇÑ ÀÇ·á ÀÎÇÁ¶ó°¡ Á¸ÀçÇÏ´Â °Í, 2022³â Á¤¹ÐÀÇ·á ÀΰøÁö´É½ÃÀå¿¡¼­ ¿ìÀ§¸¦ Â÷ÁöÇϰí ÀÖ´Â µîÀ¸·ÎºÎÅÍ ¿¹Ãø±â°£ Áß¿¡ ÃÖ´ë ½ÃÀå Á¡À¯À²À» ȹµæÇß½À´Ï´Ù. °Ô´Ù°¡ AI ¼ÒÇÁÆ®¿þ¾î³ª ½Ã½ºÅÛÀÇ À¯¸í Á¦Á¶¾÷ü°¡ º¹¼ö Á¸ÀçÇÏ´Â °Í, ½ºÅ¸Æ®¾÷ ±â¾÷ÀÇ AI ÀÌ¿ëÀ» Áö¿øÇÏ´Â Á¤ºÎÀÇ ´ëó°¡ Ȱ¹ßÇØÁö°í ÀÖ´Â °Íµµ, ÀÌ ºÐ¾ßÀÇ ¼ºÀåÀ» °¡¼Ó½Ãų °ÍÀ̶ó°í »ý°¢µË´Ï´Ù.

º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)ÀÌ °¡Àå ³ôÀº Áö¿ª:

À¯·´Àº ¿¹Ãø ±â°£ µ¿¾È ¼öÀͼº ³ôÀº ¼ºÀåÀ» ÀÌ·ê °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¸¸¼º ÁúȯÀÇ ºóµµ »ó½Â°ú ³ëÀÎ Àα¸ Áõ°¡´Â °¨¿°ÀÇ Á¶±â ¹ß°ß°ú °­È­ÀÇ Çʿ伺À» Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ ±¹°¡µéÀº °Ç°­ °ü¸®ÀÇ ¼º°ú¸¦ ³ôÀ̱â À§ÇØ AI ±â¼úÀ» Àû±ØÀûÀ¸·Î µµÀÔÇϰí ÀÖ½À´Ï´Ù. ÀΰøÁö´ÉÀº ¾öû³­ ÀÇ·á µ¥ÀÌÅÍ ¼¼Æ® ÇØ¼®, Ä¡·á °³º°È­ ¹× ¾à¹° Ä¡·á ÇÁ·Î¼¼½º ÃÖÀûÈ­¿¡ Ȱ¿ëµË´Ï´Ù. ´Ù¾çÇÑ ±â¾÷µéÀÌ Å¸»çº¸´Ù °æÀï ¿ìÀ§¸¦ Â÷ÁöÇϱâ À§ÇÑ Àü·«À» ½Ç½ÃÇß½À´Ï´Ù. °Ô´Ù°¡ Çмú°è, »ê¾÷°è, ÀÇ·á Á¦°øÀÚ °£ÀÇ Çù·ÂÀûÀÎ ´ëó°¡ Á¤¹ÐÀÇ·á¿¡ À־ÀÇ AIÀÇ ¼ºÀåÀ» °¡¼ÓÇϰí, À¯·´À» ÀÌ º¯ÇõÀûÀÎ °Ç°­ °ü¸® ¿µ¿ª¿¡¼­ Áß¿äÇÑ ¼±¼ö·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

¹«·á ¸ÂÃã ¼³Á¤ ¼­ºñ½º:

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀû ÇÁ·ÎÆÄÀϸµ(3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ ÀÀÇÑ ÁÖ¿ä±¹ ½ÃÀå Ãß°è,¿¹Ãø ¹× º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)(ÁÖ: Ÿ´ç¼º È®Àο¡ µû¸§)
  • °æÀï º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû Á¸Àç, Àü·«Àû Á¦ÈÞ¿¡ ±â¹ÝÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç ¼Ò½º
    • 1Â÷ Á¶»ç ¼Ò½º
    • 2Â÷ Á¶»ç ¼Ò½º
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼Ò°³
  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ±â¼ú ºÐ¼®
  • ¿ëµµ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
  • ±¸¸ÅÀÚÀÇ Çù»ó·Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü°¡¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°è Á¤¹ÐÀÇ·á ºÐ¾ß ÀΰøÁö´É(AI) ½ÃÀå : Á¦°ø³»¿ëº°

  • ¼Ò°³
  • Çϵå¿þ¾î
  • ¼­ºñ½º
  • ¼ÒÇÁÆ®¿þ¾î

Á¦6Àå ¼¼°è Á¤¹ÐÀÇ·á ºÐ¾ß ÀΰøÁö´É(AI) ½ÃÀå : Å×Å©³î·ÎÁöº°

  • ¼Ò°³
  • ¸Ó½Å·¯´×
  • »óȲÀÎ½Ä ÄÄÇ»ÆÃ
  • ÀÚ¿¬¾î ó¸®
  • ÄÄÇ»ÅÍ ºñÀü
  • Querying Method
  • µö·¯´×

Á¦7Àå ¼¼°è Á¤¹ÐÀÇ·á ºÐ¾ß ÀΰøÁö´É(AI) ½ÃÀå: ¿ëµµº°

  • ¼Ò°³
  • Á¾¾çÇÐ
  • ½Å°æ³»°ú
  • ½ÉÀ庴ÇÐ
  • È£Èí±â°è
  • ¾È°ú
  • ½ÅÀåÇÐ
  • À̺ñÀÎÈİú
  • ±âŸ ¿ëµµ

Á¦8Àå ¼¼°è Á¤¹ÐÀÇ·á ºÐ¾ß ÀΰøÁö´É(AI) ½ÃÀå : Áö¿ªº°

  • ¼Ò°³
  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦9Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷ ¹× ÇÕÀÛÅõÀÚ(JV)
  • Àμö ¹× ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦10Àå ±â¾÷ ÇÁ·ÎÆÄÀÏ

  • BioXcel Therapeutics Inc.
  • Intel Corporation
  • Insilico Medicine
  • Microsoft Corporation
  • NVIDIA Corporation
  • Sensely, Inc.
  • Alphabet Inc.(Google)
  • IBM
  • AceTech
  • Enlitic Inc
  • GE Healthcare
  • AstraZeneca
  • Sanofi
  • Microsoft Corporation
  • Welletok Inc.
  • General Vision
  • Atomwise Inc.
  • Caption Health
  • Zephyr AI
  • Berg Health
JHS 23.11.10

According to Stratistics MRC, the Global Artificial Intelligence In Precision Medicine Market is accounted for $1.73 billion in 2023 and is expected to reach $13.3 billion by 2030 growing at a CAGR of 33.8% during the forecast period. Artificial intelligence (AI) in precision medicine involves the use of genomic data about an individual to develop personalised medicine. With this data, it is possible to create treatment plans for patients. Artificial intelligence (AI) in medicine is used to analyse complex medical data by approximating human cognition with the help of algorithms and software. AI technology can help make this process faster and cheaper, which in turn is expected to improve the efficiency of pharmaceutical and biotechnology companies.

According to the National Institutes of Health (NIH) report, in 2023, 1.9 million new cancer cases and 609,820 cancer deaths are projected to occur in the U.S. only. Therefore, integration of AI in oncology is expected to contribute to more accurate and faster diagnosis of cancer, leading to enhanced patient outcomes.

Market Dynamics:

Driver:

Increasing prevalence of cancer

Cancer incidence rates continue to escalate, necessitating more effective and precise treatment strategies. AI, with its advanced algorithms and machine learning capabilities, has emerged as a potent tool to tackle the complexities of cancer diagnosis, prognosis, and personalised treatment. AI has a significant impact on the diagnosis of cancer through image analysis, assisting in the very accurate early detection of cancers and metastases. Moreover, AI-driven predictive modelling helps anticipate disease outcomes and patient responses to various treatments, facilitating tailored and optimised therapeutic approaches. AI ensures that patients receive the most appropriate and effective treatments, ultimately improving survival rates and enhancing the overall quality of cancer care.

Restraint:

High cost

The development and deployment of AI technologies for precision medicine entail substantial expenses in terms of research, data collection, algorithm development, computational resources, and specialised expertise. The cost-intensive processes include building and maintaining cutting-edge computing infrastructure, evaluating vast amounts of healthcare data, and developing AI models. These financial barriers pose challenges in accessibility and affordability, limiting the widespread adoption and implementation of AI in precision medicine and ultimately affecting its potential to revolutionise healthcare outcomes and personalised treatments.

Opportunity:

Technological advancements

AI has evolved with remarkable progress, leveraging machine learning, deep learning, natural language processing, and predictive analytics to revolutionise how medical data is analysed and utilised in the context of precision medicine. AI-powered tools can assist in diagnosis, drug discovery, patient risk assessment, and treatment optimisation, enhancing overall patient care and outcomes. Moreover, the continuous enhancement of AI algorithms and models is fostering the creation of more accurate, efficient, and reliable AI solutions for precision medicine. As technology continues to evolve, the capabilities of AI in precision medicine are expected to expand further, contributing to more effective, timely, and personalised healthcare interventions, ultimately revolutionising the way medicine is practiced and improving patient outcomes on a global scale.

Threat:

Security risks

The integration of AI requires vast amounts of patient-specific information, including genetic data and medical records. This abundance of personal data makes the sector a prime target for cyber threats, data breaches, and unauthorised access. Protecting this sensitive information from malicious attacks and ensuring compliance with stringent privacy regulations poses a significant challenge. Security breaches can compromise patient confidentiality, erode trust in AI-powered systems, and deter both healthcare providers and patients from adopting these potentially transformative technologies. These threats are hampering market growth.

COVID-19 Impact

The COVID-19 pandemic had a positive impact on AI in the precision medicine market. The healthcare sector had noticed a greater focus on using AI technologies to deal with the problems the pandemic had brought up. During the COVID-19 crisis, AI was essential in areas including diagnosis, the development of treatments, the discovery of new drugs, and patient management. Additionally, the use of AI algorithms has made it possible to analyse huge databases for a precise and quick diagnosis of COVID-19 cases. AI-powered solutions have facilitated the development of potential therapeutics and vaccines by identifying drug candidates and expediting the drug repurposing process, this has produced promising opportunities.

The Software segment is expected to be the largest during the forecast period

The Software segment is estimated to hold the largest share, due to a rapid adoption of software solutions based on artificial intelligence in precision medicine by organisations, healthcare payers, patients, and providers. The growth is also attributable to the expanding applications of AI technology in the healthcare industry, including telemedicine, robotic surgery, clinical trials, cybersecurity, dosing error reduction, virtual assistants, and clinical trials. Additionally, government and commercial initiatives also fuel the segment's expansion. Several companies provide software services that estimate cancer progression using an ML algorithm based on in-depth knowledge of scientific prediction, helping to effectively anticipate cancer progression as a response to therapy.

The Neurology segment is expected to have the highest CAGR during the forecast period

The Neurology segment is anticipated to have lucrative growth during the forecast period, due to the rising prevalence of neurological conditions such as epilepsy, dementia, migraines, Alzheimer's, and brain tumours. Growth in the sector is also being fuelled as rising demand for artificial intelligence which is able to treat patients affected by strokes by providing precision treatment. AI enhances brain surgery's preoperative, postoperative, and intraoperative phases. These elements are propelling segment growth.

Region with largest share:

North America commanded the largest market share during the extrapolated period due to the region's high consumer spending power on their health and well-being, rapid growth in investment associated with research and development-related activities, the presence of a strong healthcare infrastructure in countries like the United States and Canada, and its dominance in the market for artificial intelligence in precision medicine in 2022. Moreover, the existence of multiple well-known manufacturers of AI software and systems, as well as greater government initiatives to support start-up's usage of AI, will also hasten the growth of the sector.

Region with highest CAGR:

Europe is expected to witness profitable growth over the projection period. The need for enhancing and discovering infections in their early stages is rising as a result of the rising frequency of chronic diseases and the growing older population. Countries within the region are actively embracing AI technologies to enhance healthcare outcomes. AI is being utilised to interpret vast medical datasets, personalise treatments, and optimise drug discovery processes. Various companies are implementing strategies to gain a competitive advantage over others. Additionally, collaborative efforts among academia, industry, and healthcare providers are fostering the growth of AI in precision medicine, positioning Europe as a key player in this transformative healthcare domain.

Key players in the market:

Some of the key players in the Artificial Intelligence In Precision Medicine Market include: BioXcel Therapeutics Inc., Intel Corporation, Insilico Medicine, Microsoft Corporation, NVIDIA Corporation, Sensely, Inc., Alphabet Inc. (Google), IBM, AceTech, Enlitic Inc, GE Healthcare, AstraZeneca, Sanofi, Microsoft Corporation, Welletok Inc., General Vision, Atomwise Inc., Caption Health, Zephyr AI and Berg Health .

Key Developments:

In March 2023, Enlitic, Inc. announced the launch of Enlitic Curie 1.3, an AI-based platform that hosts Curie|ENCOG and Curie|ENDEX applications. This launch makes it easier for radiology departments to improve department-wide workflows.

In November 2022, Google partnered with iCAD, Inc. The collaboration aims to improve breast cancer detection and risk assessment in the short term. Furthermore, the partnership would focus on increasing connectivity to mammography technology via cloud-based solutions.

In September 2022, NVIDIA announced collaboration with Harvard and MIT's Broad Institute. By bringing NVIDIA's computing and AI tools to the institute's Terra cloud platform, the partnership aims to assist academic researchers and pharmaceutical companies in gaining AI-enabled computing power to extract large quantities of healthcare data.

In September 2022, GE Healthcare launched an artificial intelligence-powered Cath lab, Optima IGS 320. The release is expected to offer intelligent imaging to assist patients and cardiologists with personalized therapy protocols.

In August 2022, Sanofi and Atomwise joined a partnership. As per this collaboration, the companies targeted to make the development of drug discovery more cost-effective and effective.

Offerings Covered:

  • Hardware
  • Services
  • Software

Technologies Covered:

  • Machine Learning
  • Context-aware Computing
  • Natural Language Processing
  • Computer Vision
  • Querying Method
  • Deep Learning

Applications Covered:

  • Oncology
  • Neurology
  • Cardiology
  • Respiratory
  • Ophthalmology
  • Nephrology
  • Otorhinolaryngology
  • Other Applications

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2021, 2022, 2023, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Artificial Intelligence In Precision Medicine Market, By Offering

  • 5.1 Introduction
  • 5.2 Hardware
  • 5.3 Services
  • 5.4 Software

6 Global Artificial Intelligence In Precision Medicine Market, By Technology

  • 6.1 Introduction
  • 6.2 Machine Learning
  • 6.3 Context-aware Computing
  • 6.4 Natural Language Processing
  • 6.5 Computer Vision
  • 6.6 Querying Method
  • 6.7 Deep Learning

7 Global Artificial Intelligence In Precision Medicine Market, By Application

  • 7.1 Introduction
  • 7.2 Oncology
  • 7.3 Neurology
  • 7.4 Cardiology
  • 7.5 Respiratory
  • 7.6 Ophthalmology
  • 7.7 Nephrology
  • 7.8 Otorhinolaryngology
  • 7.9 Other Applications

8 Global Artificial Intelligence In Precision Medicine Market, By Geography

  • 8.1 Introduction
  • 8.2 North America
    • 8.2.1 US
    • 8.2.2 Canada
    • 8.2.3 Mexico
  • 8.3 Europe
    • 8.3.1 Germany
    • 8.3.2 UK
    • 8.3.3 Italy
    • 8.3.4 France
    • 8.3.5 Spain
    • 8.3.6 Rest of Europe
  • 8.4 Asia Pacific
    • 8.4.1 Japan
    • 8.4.2 China
    • 8.4.3 India
    • 8.4.4 Australia
    • 8.4.5 New Zealand
    • 8.4.6 South Korea
    • 8.4.7 Rest of Asia Pacific
  • 8.5 South America
    • 8.5.1 Argentina
    • 8.5.2 Brazil
    • 8.5.3 Chile
    • 8.5.4 Rest of South America
  • 8.6 Middle East & Africa
    • 8.6.1 Saudi Arabia
    • 8.6.2 UAE
    • 8.6.3 Qatar
    • 8.6.4 South Africa
    • 8.6.5 Rest of Middle East & Africa

9 Key Developments

  • 9.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 9.2 Acquisitions & Mergers
  • 9.3 New Product Launch
  • 9.4 Expansions
  • 9.5 Other Key Strategies

10 Company Profiling

  • 10.1 BioXcel Therapeutics Inc.
  • 10.2 Intel Corporation
  • 10.3 Insilico Medicine
  • 10.4 Microsoft Corporation
  • 10.5 NVIDIA Corporation
  • 10.6 Sensely, Inc.
  • 10.7 Alphabet Inc. (Google)
  • 10.8 IBM
  • 10.9 AceTech
  • 10.10 Enlitic Inc
  • 10.11 GE Healthcare
  • 10.12 AstraZeneca
  • 10.13 Sanofi
  • 10.14 Microsoft Corporation
  • 10.15 Welletok Inc.
  • 10.16 General Vision
  • 10.17 Atomwise Inc.
  • 10.18 Caption Health
  • 10.19 Zephyr AI
  • 10.20 Berg Health
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦