![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1372037
¼¼°è ¹ÙÀÌ¿À ±â°è ½ÃÀå : À¯Çüº°, ¸ðÅÍ À¯Çüº°, ¿ëµµº°, Áö¿ªº° ºÐ¼®(-2030³â)Biological Machines Market Forecasts to 2030 - Global Analysis By Type (Myosin, Dynein, Kinesin, Ribosomes and Other Types), Motor Type, Application and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¼¼°è ¹ÙÀÌ¿À ±â°è ½ÃÀåÀº 2023³â¿¡ 46¾ï ´Þ·¯¸¦ Â÷ÁöÇÏ°í ¿¹Ãø ±â°£ µ¿¾È º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 38.4%¸¦ ³ªÅ¸³¾ Àü¸ÁÀ̸ç 2030³â¿¡´Â 453¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
¹ÙÀÌ¿À ¸Ó½ÅÀ̶ó°íµµ ºÒ¸®´Â ¹ÙÀÌ¿À ±â°è´Â ¼¼Æ÷, ´Ü¹éÁú, À¯Àü ¹°Áú µîÀÇ »ý¹°ÇÐÀû ¿ä¼Ò·ÎºÎÅÍ ¼³°èÀÇ Âø»óÀ» ¾ò°Å³ª »ý¹°ÇÐÀû ¿ä¼Ò·Î ¸¸µé¾îÁø ¼¼·ÃµÈ ½Ã½ºÅÛÀ̳ª °¡Á¬ÀÔ´Ï´Ù. À̵éÀº ƯÁ¤ ÀÛ¾÷°ú ±â´ÉÀ» ¼öÇàÇϱâ À§ÇÑ °ÍÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ÀåÄ¡´Â »ê¾÷¿ë, °úÇпë, ÀÇ·á¿ë µî ´Ù¾çÇÑ ¿ëµµ·Î »ý¹°ÀÇ ´É·ÂÀ» º¹Á¦Çϰųª Ȱ¿ëÇϵµ·Ï ¼³°èµÈ °æ¿ì°¡ ¸¹½À´Ï´Ù. ÀÌ ÀåÄ¡´Â ¸¹Àº ºÐ¾ß¸¦ º¯È½ÃŰ°í »ý¹°Çаú ±â¼ú¿¡ ´ëÇÑ Áö½ÄÀ» ¹ßÀü½ÃŰ´Â ÈûÀ» °¡Áö°í ÀÖ½À´Ï´Ù.
ÇöÀç »ý¹°ÇÐÀû ±â´É°ú ¿øÈ°ÇÏ°Ô ¿¬µ¿µÇ´Â »ý¹°ÇÐÀû ÀåÄ¡¸¦ ¸¸µé ¼ö ÀÖ½À´Ï´Ù. À¯±âÀûÀÎ »ý¹°ÇÐÀû ÇÁ·Î¼¼½ºÀÇ Á¤È®¼º°ú È¿´ÉÀ» ÀÌ¿ëÇÏ´Â °ÍÀÔ´Ï´Ù. ÀÎü ³»ÀÇ Æ¯Á¤ ¼¼Æ÷¿Í Á¶Á÷¿¡ ÃÊÁ¡À» ¸ÂÃß¾î ¾à¹°ÀÇ Åõ¿©¿Í ´õ Á¤È®ÇÑ ¾÷¹« ¼öÇà¿¡ »ç¿ëµË´Ï´Ù. »ý¹°ÇÐÀû ¼ººÐ°ú ÇÕ¼º ¼ººÐÀ» °áÇÕÇÏ¿© °³¼±µÇ°Å³ª »õ·Î¿î ±â´ÉÀ» °¡Áø ÇÏÀ̺긮µå ÀåÄ¡¸¦ ¸¸µé ¼ö ÀÖ½À´Ï´Ù. À̵éÀº ¿ÏÀüÈ÷ ÇÕ¼º µÈ ´ëüǰº¸´Ù ´õ È¿°úÀûÀÎ ¹ÙÀÌ¿À ¼¾¼, ¹ÙÀÌ¿À ¾×Ãß¿¡ÀÌÅÍ ¹× ¹ÙÀÌ¿À¿¬·áÀüÁö°¡ µÉ ¼ö ÀÖ½À´Ï´Ù. À̵éÀº ½ÃÀå È®´ëÀÇ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù.
»ý¹°ÇÐÀû ½Ã½ºÅÛÀº ¿ø·¡ º¹ÀâÇÏ°í º¯ÈÇϱ⠽±½À´Ï´Ù. ¹ÙÀÌ¿À ±â°èÀÇ °Åµ¿Àº À¯ÀüÇÐ, ȯ°æ, ¼¼Æ÷ ¹ÝÀÀ°ú °°Àº ´Ù¾çÇÑ º¯¼ö¿¡ ÀÇÁ¸Çϱ⠶§¹®¿¡ ¿¹Ãø ¹× Á¦¾î°¡ ¾î·Á¿ï ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, »ý¹°ÇÐÀû ¼ººÐÀº ½Ã°£ÀÌ Áö³²¿¡ µû¶ó ¿ÈµÉ ¼ö ÀÖÀ¸¸ç, ¼ö¸íÀº À¯ÇÑÇÕ´Ï´Ù. ÀÌ ¶§¹®¿¡ ±âÁ¸ÀÇ ±â°è ½Ã½ºÅÛ¿¡ ºñÇØ ¹ÙÀÌ¿À ±â°èÀÇ Àå±âÀûÀÎ À¯¿ë¼º°ú ½Å·Ú¼ºÀÌ Á¦ÇÑµÇ¾î ½ÃÀåÀÇ È®´ë°¡ Á¦Çѵǰí ÀÖ½À´Ï´Ù.
±âÁ¸ÀÇ »ê¾÷Àû Á¢±Ù¹ý°ú ºñ±³ÇÒ ¶§ »ý¹°ÇÐÀû ½Ã½ºÅÛÀº Æó±â¹°À̳ª À¯ÇØÇÑ Á¦Ç°º° ¹ß»ýÀÌ Àû°í ȯ°æ Ä£ÈÀûÀÔ´Ï´Ù. ÀǾàǰ, ¹ÙÀÌ¿À¿¬·á, ÈÇоàǰ µî ´Ù¾çÇÑ Á¦Ç°À» »ý»êÇϱâ À§ÇØ ÀÌ·¯ÇÑ ¹ÙÀÌ¿À ±â°è´Â ¹ÚÅ׸®¾Æ, È¿¸ð, Á¶·ù µîÀÇ »ý¹°À» »ç¿ëÇÏ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. À̵éÀº ¿ø·á¸¦ ¿øÇÏ´Â Á¦Ç°À¸·Î ¹Ù²Ù´Â µ¥ ¸Å¿ì È¿°úÀûÀ̹ǷΠÆó±â¹°ÀÇ ¹ß»ýÀÌ Àû½À´Ï´Ù. ±× °á°ú Æó±â¹° ó¸® ºñ¿ëÀÌ Àý°¨µÇ°í »ý»ê ¹æ¹ýÀÌ ´õ ±ú²ýÇØÁú ¼ö ÀÖ½À´Ï´Ù. À̰ÍÀÌ ½ÃÀå È®´ë¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ¿ä¼ÒÀÔ´Ï´Ù.
¹ÙÀÌ¿À ±â°è´Â ºÀ¼â ¹× ¾ÈÀü Ãø¸é¿¡¼ À§ÇèÇÕ´Ï´Ù. À¯ÀüÀÚ º¯Çü À¯±âü°¡ À߸ø ¹æÃâµÉ ¼ö ÀÖÀ¸¸ç »ýŰ迡 ¿¹±âÄ¡ ¾ÊÀº ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, À̵é ÀåÄ¡°¡ ¹Ýµå½Ã ÀǵµÇÑ ¸¸Å ¿¡³ÊÁö È¿À²ÀÌ ³ôÀº °ÍÀº ¾Æ´Ò ¼öµµ ÀÖ½À´Ï´Ù. »ý¹°ÇÐÀû ½Ã½ºÅÛÀº ¼¼Æ÷ ¼öÁØ¿¡¼ ¿ø·¡ ¿¡³ÊÁö È¿À²ÀÌ ¶Ù¾î³ªÁö¸¸ ±â°è¿¡ ÅëÇյǸé ÀÌ·¯ÇÑ ±¸¼º ¿ä¼Ò¸¦ À¯Áö °ü¸®ÇÏ´Â µ¥ ÇÊ¿äÇÑ ¿¡³ÊÁö°¡ »ó´çÇÒ ¼ö ÀÖ½À´Ï´Ù. À̵éÀº ½ÃÀåÀÇ Ãß°¡ È®´ë¸¦ ¸·´Â ¿ä¼ÒÀÔ´Ï´Ù.
COVID-19 ÀÌÈÄ ¹°·ù¿¡ ¾ö°ÝÇÑ ±ÔÁ¤ÀÌ Àû¿ëµÇ¾î ¹«¿ª °æ·Î°¡ Â÷´ÜµÇ¾ú½À´Ï´Ù. ÇÑ °÷¿¡¼ ´Ù¸¥ °÷À¸·ÎÀÇ Á¦Ç° ¿î¼ÛÀº °ø±Þ¸Á°ú ¹°·ù ºÎ¹®¿¡ ´ëÇÑ ±ÔÁ¦¿¡ ÀÇÇØ ¹æÇصǾú½À´Ï´Ù. ÇÏÁö¸¸ À¯Çà Áß ¿©Çà ±ÝÁö¿Í ±¹°æ Æó¼â·Î ÀÎÇØ ¼öÀÔǰÀÌ »ç¶óÁö¸é¼ ÇöÁö ¹ÌµåÀÇ ¸ÅÃâÀÌ Áõ°¡Çß½À´Ï´Ù. °Ô´Ù°¡ ¼úÁý°ú ·¹½ºÅä¶ûÀÌ ¿À·§µ¿¾È ÈÞ¾÷Ç߱⠶§¹®¿¡ °í°´Àº À½ÁÖ ½À°üÀ» ¹Ù²Ü ¼ö¹Û¿¡ ¾ø½À´Ï´Ù. canned wine°ú °°Àº ÀαâÀÖ´Â À½·á´Â ÀÌ·¯ÇÑ °æÇâÀÌ °è¼Ó µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¹Ì¿À½Å ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¹Ì¿À½ÅÀ̶ó´Â ´Ü¹éÁúÀº ±ÙÀ° ¼öÃàÀ» Æ÷ÇÔÇÑ ¸¹Àº »ý¹°ÇÐÀû ±â´É¿¡ ÇʼöÀûÀÔ´Ï´Ù. ¹Ì¿À½Å ±¸µ¿ ºÐÀÚ ¸ðÅ͸¦ ¼³¸íÇÏ´Â µ¥ »ç¿ëµÇ´Â ¹ÙÀÌ¿À ±â°è¶ó´Â ´Ü¾î¿¡´Â ¿©·¯ °¡Áö ÀåÁ¡ÀÌ ÀÖ½À´Ï´Ù. ÈÇп¡³ÊÁö(ATP)¸¦ ÀÌ¿ëÇÏ¿© ±â°èÀûÀÎ Èû°ú ¿îµ¿À» ¸¸µé¾î ³»´Â °ÍÀ¸·Î ºÐÀÚ ¸ðÅͷμ ±â´ÉÇÕ´Ï´Ù. ¾×ƾ Çʶó¸àÆ® µû¶ó °È±â´Â ¾×ƾ Çʶó¸àÆ®°¡ ¼·Î À̵¿ÇÏ¿© ±ÙÀ° ¼öÃà ¹× ±âŸ ¸¹Àº ¼¼Æ÷ ±â´ÉÀ» À¯¹ßÇÕ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)ÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹»óµÇ´Â °ÍÀº ¸Ó½Å·¯´× ºÎ¹®ÀÔ´Ï´Ù. ÀϹÝÀûÀ¸·Î ¹ÙÀÌ¿À ±â°è¶ó°í ºÒ¸®´Â ¹ÙÀÌ¿À ÇÏÀ̺긮µå ½Ã½ºÅÛÀº ¸Ó½Å·¯´×À» »ç¿ëÇÒ ¶§ ´Ù¾çÇÑ ÀÌÁ¡À» Á¦°øÇÕ´Ï´Ù. ÀÌ ½Ã½ºÅÛÀº ¼¾¼ ¹× Á¦¾î±â¿Í °°Àº Àΰø ¿ä¼Ò¿Í ¼¼Æ÷ ¹× »ý¹°°ú °°Àº »ý¹°ÇÐÀû ¿ä¼Ò¸¦ È¥ÇÕÇÏ¿© À¯¿¬Çϰí ÀûÀÀ °¡´ÉÇÑ ½Ã½ºÅÛÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº º¯ÈÇϴ ȯ°æ »óȲ°ú ¿ä±¸¿¡ ÀûÀÀÇÏ´Â ¾Ë°í¸®ÁòÀÇ ´É·ÂÀ» ÅëÇØ ´Ù¾çÇÑ Àڱؿ¡ µ¿ÀûÀ¸·Î ¹ÝÀÀÇÕ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ Áö¿ª¿¡´Â À¯Àü °øÇÐ, ¼¼Æ÷ Ä¡·á, ÀǾàǰ µî ´Ù¾çÇÑ ¿ëµµÀÇ ¹ÙÀÌ¿À ±â°è¸¦ °³¹ßÇϱâ À§ÇØ ³ë·ÂÇÏ´Â »ý¸í °øÇÐ ±â¾÷ÀÌ ¿©·¯ °³ ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ ´ëÇаú ¿¬±¸½Ã¼³Àº ¹ÙÀÌ¿À ±â°è¿Í °ü·ÃµÈ ºÐ¾ß¿¡¼ ÃÖ÷´Ü ¿¬±¸¸¦ ¼öÇàÇϰí ÀÖ½À´Ï´Ù. ÀÌ ºÐ¾ß¸¦ ¹ßÀü½Ã۱â À§ÇØ ±×µéÀº ºñÁî´Ï½º ÆÄÆ®³Ê ¹× Á¤ºÎ ±â°ü°ú ÀÚÁÖ Çù·ÂÇÕ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)ÀÌ °¡Àå ³ôÀº °ÍÀº ¾Æ½Ã¾ÆÅÂÆò¾çÀÔ´Ï´Ù. ÇÕ¼º »ý¹°ÇÐ ¿¬±¸´ÂÀÌ Áö¿ªÀÇ ±¹°¡¿¡¼ Ȱ¹ßÈ÷ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. ÀÌ ºÐ¾ß¿¡¼´Â ¹ÙÀÌ¿À¿¬·á »ý¼º, ÀǾàǰ, ȯ°æÁ¤È µî ´Ù¾çÇÑ ¿ëµµ¸¦ À§ÇØ »ý¹°ÇÐÀû ½Ã½ºÅÛ, ÀåÄ¡, ºÎǰÀ» ¼³°è ¹× ±¸ÃàÇÕ´Ï´Ù. ÀÇ·á¿¡ »ç¿ëÇϱâ À§ÇÑ »ý¹°ÇÐÀû ÀåÄ¡¸¦ ¸¸µå´Â °ÍÀº ¼¼°èÀÇ ³ë·ÂÀÔ´Ï´Ù. ¿©±â¿¡´Â Á¶Á÷°øÇÐ, ÀΰøÀå±â Á¦Á¶, ÀÇ·á±â±â¿ë »ý¹°È°¼º Àç·á Á¦Á¶ µîÀÌ Æ÷ÇԵ˴ϴÙ.
According to Stratistics MRC, the Global Biological Machines Market is accounted for $4.6 billion in 2023 and is expected to reach $45.3 billion by 2030 growing at a CAGR of 38.4% during the forecast period. Biological machines, also known bio-machines, are sophisticated systems or gadgets that get their design inspiration from or are made of biological elements like cells, proteins, or genetic material. They are intended to carry out certain jobs or functions. These devices are often designed to replicate or use the capacities of living things for a variety of uses, including as industrial, scientific, and medical ones. These devices have the power to transform a number of sectors and advance our knowledge of biology and technology.
It is possible to create biological devices that smoothly work with current biological functions. They utilize the accuracy and effectiveness of organic biological processes. They are used to administer medications or carry out duties more precisely by focusing on certain cells or tissues in the human body. Biological and synthetic components can be combined to create hybrid devices with improved or novel functionality. These could be more effective biosensors, bio actuators, or biofuel cells than completely synthetic substitutes. These are the elements driving the market's expansion.
Biological systems are naturally complicated and changeable. The behavior of biological machines can be difficult to anticipate and control since it depends on a wide range of variables, such as genetics, environment, and cellular reactions. Furthermore, biological components might deteriorate over time and have a finite lifetime. This restricts biological machines' long-term usefulness and dependability in comparison to conventional mechanical systems, which is limiting market expansion.
When compared to conventional industrial methods, biological systems often generate less waste and hazardous byproducts, making them more ecologically friendly. In order to create a variety of goods, including medicines, biofuels, chemicals, and more, these biological machines frequently employ living organisms like bacteria, yeast, or algae. They generate less waste since they are very effective at turning raw materials into the intended product. This may result in lower waste disposal costs and cleaner production methods. This is the element impacting the market's expansion.
Biological machinery is dangerous in terms of containment and safety. There is a chance that genetically modified organisms will be accidentally released, which might have unforeseen ecological effects. Additionally, it's possible that these devices aren't always as energy-efficient as intended. Although biological systems are naturally energy-efficient at the cellular level, the energy needs for maintaining and managing these components when they are incorporated into machines can be substantial. These are the elements preventing further market expansion.
Following COVID-19, strict rules were put in place for logistics, and trade channels were shut down. Transporting products from one location to another was hampered by regulations on the supply chain and logistics sector. Sales of local mead, however, increased as a result of the absence of imported goods brought on by travel bans and border closures during the epidemic. Additionally, because pubs and restaurants were closed for extended periods of time, customers were compelled to change their drinking habits. This trend is anticipated to continue because popular drinks like canned wine.
The myosin segment is expected to be the largest during the forecast period. A protein called myosin is essential for many biological functions, including muscle contraction. The term "biological machines" used to describe the myosin-driven molecular motors has multiple benefits. By utilizing chemical energy (ATP) to produce mechanical power and movement, it functions as a molecular motor. Actin filaments move past one another as it "walks" along them, triggering muscle contraction and a number of other cellular functions.
The machine learning segment is expected to have the highest CAGR during the forecast period. Biohybrid systems, commonly referred to as biological machines, provide various benefits when using machine learning. These systems mix artificial elements like sensors or controls with biological elements like cells or organisms to provide flexible and adaptable systems. These systems react dynamically to a variety of stimuli thanks to these algorithms' ability to adapt to changing environmental circumstances or needs.
North America is projected to hold the largest market share during the forecast period. There are several biotechnology businesses in this region that strive to create biological machines for a range of uses, including genetic engineering, cell therapy, and drug discovery. The region's universities and research facilities carry out cutting-edge studies in fields relating to biological machines. To progress the field, they frequently work together with business partners and governmental organizations.
Asia Pacific is projected to hold the highest CAGR over the forecast period. Synthetic biology research has been active throughout the region's nations. In this discipline, biological systems, devices, and components are designed and built for a variety of uses, including the generation of biofuel, medicines, and environmental cleanup. The creation of biological devices for use in medicine is a worldwide endeavor. This covers tissue engineering, the production of artificial organs, and the creation of bioactive materials for medical equipment.
Some of the key players in Biological Machines market include: Ginkgo Bioworks, Zymergen, Synthace, Codexis, Twist Bioscience, Evonetix, Arzeda, Synthorx, Amyris, Novozymes, Desktop Genetics, Synlogic and Molecular Machines & Industries.
In November 2022, Novozymes, the world leader in biological solutions, and LinusBio (Linus Biotechnology Inc.), a leader in precision exposome sequencing, announced the companies are forming a collaboration to test a new, non-invasive technology in a clinical trial.
In October 2022, Ginkgo Bioworks and Zymergen announced that Ginkgo has completed its previously announced acquisition of Zymergen. The acquisition is expected to significantly enhance Ginkgo's platform by integrating strong automation and software capabilities as well as a wealth of experience across diverse biological engineering approaches.