½ÃÀ庸°í¼­
»óǰÄÚµå
1372041

¼¼°è Ŭ¶ó¿ìµå µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ½ÃÀå : À¯Çüº°, Àü°³ ¸ðµ¨º°, Á¶Á÷ ±Ô¸ðº°, ¿ëµµº°, ¿ëµµº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®(-2030³â)

Cloud Data Warehouse Market Forecasts to 2030 - Global Analysis By Type, Deployment Model, Organization Size, Usage, Application, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°è Ŭ¶ó¿ìµå µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ½ÃÀåÀº 2023³â 323¾ï 7,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇÏ°í ¿¹Ãø ±â°£ µ¿¾È º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 12.7%¸¦ ³ªÅ¸³¾ Àü¸ÁÀ̸ç 2030³â¿¡´Â 747¾ï 6,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

Ŭ¶ó¿ìµå µ¥ÀÌÅÍ ¿þ¾îÇϿ콺´Â ºÐ¼®, ±Ô¸ð, »ç¿ë ÆíÀǼºÀ» ÃÖÀûÈ­ÇÑ °ü¸®Çü ¼­ºñ½º·Î °ø¿ë Ŭ¶ó¿ìµå¿¡¼­ Á¦°øµÇ´Â µ¥ÀÌÅͺ£À̽ºÀÔ´Ï´Ù. Ŭ¶ó¿ìµå µ¥ÀÌÅÍ ¿þ¾îÇϿ콺´Â È®ÀåµÇ´Â µ¥ÀÌÅÍ ¼Ò½º¸¦ ó¸®ÇÏ´Â µ¥ ÇÊ¿äÇÕ´Ï´Ù. ±â¾÷Àº ERP, CRM, ¼Ò¼È ¹Ìµð¾î, Áö¿ø, ¸¶ÄÉÆÃ µ¥ÀÌÅ͸¦ µ¥ÀÌÅÍ Áß½ÉÀÇ ¼±ÅÃÀ» Çϱâ À§ÇØ ¼Óµµ¿Í ¼º´ÉÀ» À¯ÁöÇϸ鼭 ¿¬°áÇØ¾ß ÇÕ´Ï´Ù. ÇöÀå µ¥ÀÌÅÍ ¿þ¾îÇϿ콺¿¡¼­´Â µû¶óÀâ±â°¡ ¾î·Á¿öÁö°í ÀÖ½À´Ï´Ù.

´ë±Ô¸ð Ŭ¶ó¿ìµå µ¥ÀÌÅÍ ¿þ¾îÇϿ콺¸¦ ½Å¼ÓÇÏ°Ô ¹èÆ÷

ÇöÀç IT architecture´Â µ¥ÀÌÅÍ ¾çÀÌ °è¼Ó Áõ°¡ÇÏ°í º¹À⼺ÀÌ Ä¿Áö±â ¶§¹®¿¡ Á¶Á÷Àº IT ÀÎÇÁ¶óº¸´Ù ºñÁî´Ï½º ¿î¿µ¿¡ ÁýÁßÇÒ ¼ö ÀÖ´Â ¼Ö·ç¼ÇÀ» ã°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ Å¬¶ó¿ìµå ±â¹Ý µ¥ÀÌÅÍ ¸¶Æ®¿Í µ¥ÀÌÅÍ ¿þ¾îÇϿ콺ÀÇ Ã¤ÅÃÀº Ŭ¶ó¿ìµå ±â¹Ý ÀÎÇÁ¶óÀÇ °³¼±À¸·Î ÀÎÇØ ±â¾÷ÀÌ Áß¿äÇÑ ºñÁî´Ï½º ¾÷¹«¸¦ ¸¶À̱׷¹À̼ÇÇÒ ¼ö ÀÖ°Ô ÇÕ´Ï´Ù. ¶ÇÇÑ ±â¾÷ °æ¿µÁøÀº ÀÌÁ¦ Ŭ¶ó¿ìµå ÄÄÇ»ÆÃÀ» äÅÃÇÏ°í µ¥ÀÌÅÍ ¿þ¾îÇϿ콺¸¦ Ŭ¶ó¿ìµå·Î ¸¶À̱׷¹À̼ÇÇØ¾ß ÇÕ´Ï´Ù. À̸¦ ÅëÇØ ±â¾÷Àº Àå±â ¼ºÀå°ú ½ÃÀå È®´ë¸¦ ¸ñÇ¥·Î ´Ü±âÀûÀ¸·Î ¾ÈÁ¤ÀûÀÎ ºñÁî´Ï½º ȯ°æÀ» À¯ÁöÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÚ¿ø°ú Àü¹®Áö½Ä ºÎÁ·

µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ¼­ºñ½º¸¦ µµÀÔÇÏ·Á¸é Á÷¿øÀÇ °í¿ë°ú ±³À°ÀÌ ÇʼöÀûÀÔ´Ï´Ù. ¿¹»êÀÇ Á¦¾àÀ¸·Î ÀÎÇØ »õ·Î¿î ÀÎÀ縦 ¾ò±â ¾î·Á¿î ±â¾÷µµ ÀÖÀ¸¸ç, ÇöÀç Á÷¿ø ±³À°¿¡ ºñ¿ëÀÌ ¸¹ÀÌ µéÁö ¾Ê½À´Ï´Ù. ±×·¯³ª Ŭ¶ó¿ìµå¿¡¼­ °¡Àå ¾î·Á¿î ½Ã½ºÅÛ Áß Çϳª´Â µ¥ÀÌÅÍ ¿þ¾îÇϿ콺À̸ç, ÇÊ¿äÇÑ Àü¹® Áö½ÄÀÌ ¾øÀ¸¸é ºÒ°¡´ÉÇÕ´Ï´Ù. ±â¾÷ÀÌ Å¬¶ó¿ìµå µ¥ÀÌÅÍ ¿þ¾îÇϿ콺¸¦ ¼º°ø½Ã۱â À§Çؼ­´Â Ŭ¶ó¿ìµå architecture Àü¹® Áö½Ä, µ¥ÀÌÅÍ ½Ã½ºÅÛ ÅëÇÕ¿¡ ´ëÇÑ ±â¼úÀû Áö½Ä, Ŭ¶ó¿ìµå º¸¾È ¹× governance Áö½ÄÀ» °®Ãá Á÷¿øÀÌ ÇÊ¿äÇÕ´Ï´Ù. ±× °á°ú, µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ¼­ºñ½º¿¡ ´ëÇÑ ½ÃÀå ¼ö¿ä´Â ÈÆ·ÃµÈ ÀÚ¿ø ºÎÁ·¿¡ ÀÇÇØ ¿µÇâÀ» ¹ÞÀ» °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

µ¥ÀÌÅÍ ¿þ¾îÇϿ콺¿¡¼­ AI »ç¿ë Áõ°¡

»ç¿ëÀÚ ¿ä±¸ »çÇ×À» ÃæÁ·Çϱâ À§ÇØ µ¥ÀÌÅ͸¦ ÀÚµ¿À¸·Î ÃÖÀûÈ­ÇÏ°í º¯È¯ÇÏ´Â ½º¸¶Æ® µ¥ÀÌÅÍ ¿þ¾îÇϿ콺´Â AI¿Í ¸Ó½Å·¯´×À» ÅëÇØ ½ÇÇöµË´Ï´Ù. ±â¾÷Àº ÀÌ·¯ÇÑ ±â¼úÀ» Ȱ¿ëÇÏ°í ±Ã±ØÀûÀ¸·Î µ¥ÀÌÅ͸¦ Áö¼ÓÀûÀÌ°í ¹Ýº¹ÀûÀÎ °¡Ä¡·Î º¯È¯ÇÏ´Â ´É·ÂÀ» °³¹ßÇÔÀ¸·Î½á °æÀï ¾÷ü¿ÍÀÇ Â÷º°È­¸¦ µµ¸ðÇÏ°í ¹Îø¼º°ú Çõ½Å¼ºÀ» ³ôÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¶ÇÇÑ ¸Ó½Å·¯´× ±â¹ÝÀÇ ÀÚµ¿È­µÈ Áö½Ä ¹ß°ß, ¿¹Ãø ¹× ¹ýÀÇÇÐ ºÐ¼® ¿Ü¿¡µµ ¹æ´ëÇÑ µ¥ÀÌÅÍ ¼¼Æ®¿¡¼­ ÀáÀçÀû ¿¹Ãø µ¥ÀÌÅ͸¦ ÀÚµ¿À¸·Î ÃßÃâÇÒ ¼ö ÀÖ½À´Ï´Ù. °á°úÀûÀ¸·Î ¿¹Ãø ±â°£ µ¿¾È µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ¼Ö·ç¼Ç¿¡ ÀÌ·¯ÇÑ ±â¼úÀ» äÅÃÇϸé Å« ½ÃÀå ÀáÀç·ÂÀ» Á¦°øÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¾×¼¼½º Á¦¾îÀÇ ÀûÀýÇÑ ±¸Á¶ ºÎÁ·

µ¥ÀÌÅÍ ¿þ¾îÇϿ콺¸¦ äÅÃÇÒ ¶§ ¾×¼¼½º Á¦¾î ÇÁ·¹ÀÓ¿öÅ©¸¦ Á¤ÀÇÇÏ´Â °ÍÀÌ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ±â¾÷Àº ¾î¶² »ç¿ëÀÚ³ª Á¶Á÷ÀÌ µ¥ÀÌÅÍ ¿þ¾îÇϿ콺¿¡ ¾×¼¼½ºÇØ¾ß ÇÏ´ÂÁö °áÁ¤ÇÏ´Â µ¥ ¾î·Á¿òÀ» °Þ½À´Ï´Ù. ±×·¯³ª »ç¿ëÀÚ¿Í ¹ßÇà±Ç °£ÀÇ ±ÕÇüÀ» ¸ÂÃßÁö ¾ÊÀ¸¸é ½Ã½ºÅÛÀº ÇÊ¿¬ÀûÀ¸·Î º´¸ñÀ¸·Î À̾îÁö´Â Å« ¼ö¿äÇÏ¿¡ ÀÖÀ½À» ¾Ë ¼ö ÀÖ½À´Ï´Ù. ÀûÀýÇÑ ¾×¼¼½º Á¦¾î¸¦ ¼öÇàÇÏÁö ¾ÊÀ¸¸é ¹Î°¨ÇÑ µ¥ÀÌÅͰ¡ ±ÇÇÑÀÌ ¾ø´Â »ç¶÷µéÀÌ ¾×¼¼½ºÇÒ ¼ö ÀÖ¾î ½ÃÀå ¼ºÀåÀÌ Å©°Ô ÀúÇØµÉ ¼ö ÀÖ½À´Ï´Ù. µû¶ó¼­ µ¥ÀÌÅÍ ¿þ¾îÇϿ콺¸¦ µµÀÔÇÏ·Á¸é ¸íÈ®ÇÏ°Ô Á¤ÀÇµÈ ¾×¼¼½º Á¦¾î ¸ÞÄ¿´ÏÁòÀÌ ÇÊ¿äÇÕ´Ï´Ù.

COVID-19ÀÇ ¿µÇâ:

COVID-19ÀÇ ¹ß»ý°ú À̾ ¼¼°è °¢±¹ Á¤ºÎ°¡ ½ÃÇàÇÑ ºÀ¼â ±ÔÁ¦´Â ´Ù¾çÇÑ »ê¾÷ÀÇ ¼³ºñÅõÀÚ¿¡ ½É°¢ÇÑ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ±× °á°ú, DWaaS(data warehouse as a service) ¼¼°è ½ÃÀåÀº ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ´Ù¾çÇÑ ¾÷°è¿¡¼­ »ç¾÷À» Àü°³ÇÏ´Â ±â¾÷ÀÇ ´ëºÎºÐÀÌ ¾÷¹«½Ã¼³°ú Á¦Á¶½Ã¼³ÀÇ Æó¼â¸¦ °­¿ä´çÇ߱⠶§¹®ÀÔ´Ï´Ù. Ç÷¯½º ¸é¿¡¼­´Â ¹ÙÀÌ·¯½º°¡ ¸¸¿¬ÇÑ °á°ú ¼¼°è ±â¾÷ÀÌ Å¬¶ó¿ìµå ÄÄÇ»ÆÃ°ú °°Àº ÃÖ÷´Ü ±â¼úÀ» µµÀÔÇÏ¿© Ŭ¶ó¿ìµå µ¥ÀÌÅÍ ¿þ¾îÇϿ콺·Î ÀÌÇàÇϰí ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ¼­ºñ½º·Î¼­ÀÇ µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ½ÃÀåÀº ¿ø°Ý ±Ù¹« ȯ°æÀÇ Á߿伺ÀÌ ³ô¾ÆÁü¿¡ µû¶ó Å« ÀÌÀÍÀ» °¡Á®¿Ã °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¿î¿µ µ¥ÀÌÅÍ ½ºÅ丮Áö ºÐ¾ß°¡ ÃÖ´ëÈ­µÉ Àü¸ÁÀÔ´Ï´Ù

¿¹Ãø ±â°£ µ¿¾È ¿î¿µ µ¥ÀÌÅÍ ½ºÅ丮Áö ºÎ¹®ÀÌ ÃÖ´ë Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ½Ç½Ã°£ µ¥ÀÌÅÍ ºÐ¼®°ú ¸®Æ÷ÆÃ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, ÀÌ´Â ÁÖ¿ä Áõ°¡ ¿äÀÎÀÌ µÇ¾ú½À´Ï´Ù. Á¶Á÷¿¡ ¿î¿µ µ¥ÀÌÅÍ ½ºÅ丮Áö¸¦ µµÀÔÇÏ¸é ±âÁ¸ µ¥ÀÌÅÍ ÀÎÇÁ¶ó¸¦ ¿Ï¼ºÇϸ鼭 Á¶Á÷ÀÇ ÇöÀç ¹× Àå±âÀûÀÎ ¿ä±¸¸¦ ÃæÁ·ÇÕ´Ï´Ù. ¶ÇÇÑ ODS ¾÷°è´Â µ¥ÀÌÅÍ ¿þ¾îÇϿ콺¿¡¼­ AIÀÇ È°¿ë È®´ë·Î ÀÎÇÑ ¹Ì·¡ ¼ºÀå Àü¸ÁÀ» °æÇèÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Ŭ¶ó¿ìµå µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ½ÃÀåÀÇ ±â¾÷Àº µ¥ÀÌÅÍ ¾çÀÇ ±Þ°ÝÇÑ Áõ°¡¿¡ ´ëÀÀÇÏ°í ¹ýÀû ¿ä±¸ »çÇ×À» ÃæÁ·ÇÏ´Â ÃÖ÷´Ü ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù.

¿¹Ãø±â°£ Áß ÀºÇà ¹× ±ÝÀ¶¼­ºñ½º,º¸Çè(BFSI) ºÐ¾ßÀÇ º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)ÀÌ °¡Àå ³ô¾ÆÁú Àü¸ÁÀÔ´Ï´Ù

BFSI(ÀºÇà,±ÝÀ¶¼­ºñ½º,º¸Çè) ºÎ¹®Àº Á¤±âÀûÀ¸·Î »ý¼ºµÇ´Â ´ë·®ÀÇ °í°´ µ¥ÀÌÅ͸¦ ó¸®Çϱâ À§ÇØ ¼¼°è ½ÃÀåÀ» µ¶Á¡Çϰí ÀÖ½À´Ï´Ù. BFSI ºÐ¾ßÀÇ ±â¾÷Àº ÀÌ ¾÷°è¿¡ Á¸ÀçÇÏ´Â ¹æ´ëÇÑ ¾çÀÇ ±¸Á¶È­ ¹× ºñ±¸Á¶È­ µ¥ÀÌÅÍ·Î ÀÎÇØ ½Ã½ºÅÛ¿¡ ÀúÀåµÈ Á¤º¸ÀÇ µ¿ÀÛ°ú ¼º´ÉÀ» ÀÚµ¿À¸·Î ÃßÀûÇϱâ À§ÇØ µ¥ÀÌÅÍ¿þ¾î ÇÏ¿ì¡ ¼Ö·ç¼ÇÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¶ÇÇÑ ºñÁî´Ï½º °èȹÀ» ¼ö¸³ÇÏ°í ºñÁî´Ï½º È¿À²¼ºÀ» ³ôÀ̱â À§ÇÑ µ¥ÀÌÅ͵µ ÇÊ¿äÇÕ´Ï´Ù. ¼¼°è ±ÝÀ¶ ÄÁ¼³ÆÃ ȸ»ç°¡ DWaaS(¼­ºñ½º·Î¼­ÀÇ µ¥ÀÌÅÍ ¿þ¾îÇϿ콺)¸¦ Ȱ¿ëÇÔÀ¸·Î½á ¿ÂÇÁ·¹¹Ì½º Çϵå¿þ¾î ¹× ¼ÒÇÁÆ®¿þ¾î¸¦ ¾÷µ¥ÀÌÆ®ÇÏ´Â ¹®Á¦¸¦ ÇÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

°¡Àå Á¡À¯À²ÀÌ ³ôÀº Áö¿ª

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Ŭ¶ó¿ìµå µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ¼Ö·ç¼Ç°ú °°Àº ÃÖ÷´Ü ±â¼úÀÇ ÀÌ¿ë°ú ³Î¸® ¾Ë·ÁÁø Áö¿ª ±â¾÷°úÀÇ ÇÕº´ ¹× Á¦ÈÞ°¡ ÀÌ Áö¿ª¿¡¼­ÀÇ ¼­ºñ½º È®´ë¿¡ ¹ÚÂ÷¸¦ °¡ÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¿¹¸¦ µé¾î, Snowflake¿Í Next Pathway´Â 2019³â 10¿ù, ÀÌÀü µ¥ÀÌÅÍ ¿þ¾îÇϿ콺ÀÇ Snowflake·ÎÀÇ ÀüȯÀ» °¡¼ÓÈ­Çϱâ À§ÇØ Çù·Â Á¦ÈÞ¸¦ ¼³¸³Çß½À´Ï´Ù. ¶ÇÇÑ ÀÌ Áö¿ª¿¡¼­´Â ÃÖ÷´Ü µ¥ÀÌÅÍ¿þ¾î ÇϿ콺 ÀÎÇÁ¶ó¸¦ »ç¿ëÇÒ ¼ö ÀÖÀ¸¹Ç·Î ¼ö¿ä°¡ Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¾Ö³Î¸®Æ½½º ¼Ö·ç¼ÇÀº ¼Ò¸Å, ÀºÇà,±ÝÀ¶¼­ºñ½º,º¸Çè(BFSI), °Ç°­ °ü¸® µî ¾÷°è¸¦ Áß½ÉÀ¸·Î Àü±¹ ±â¾÷¿¡¼­ ºü¸£°Ô µµÀԵǰí ÀÖ½À´Ï´Ù.

º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)ÀÌ °¡Àå ³ôÀº Áö¿ª:

¾Æ½Ã¾ÆÅÂÆò¾çÀº Áß±¹°ú Àεµ¿Í °°Àº ½ÅÈï °æÁ¦ ±¹°¡¿¡¼­ ¿©·¯ »ê¾÷¿¡ °ÉÄ£ ±â¼ú °³¹ß°ú ÅõÀÚ È®´ë·Î ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)À» À¯ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. °Ô´Ù°¡ ÀÌ Áö¿ª ±â¾÷µéÀÌ Á¦°øÇÏ´Â ¿î¿µºñ¿ë Àý°¨°ú »ý»ê¼º Çâ»óÀ¸·Î ¼¼°è ½ÃÀå ÁøÃâ ±â¾÷ÀÇ ´ëºÎºÐÀÌ Å« ¿ì·Á¸¦ °¡Áö°í ÀÖ´Ù°í ¿¹»óµË´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ±â¾÷µéÀº °í°´ ¼­ºñ½º °­È­¿¡ ÈûÀ» ½ñ°í ÀÖÀ¸¸ç, ÀÌ·Î½á °í°´ À¯ÁöÀ²ÀÌ Çâ»óµÇ°í ÀÖ½À´Ï´Ù.

¹«·á ¸ÂÃã ¼³Á¤ ¼­ºñ½º:

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀû ÇÁ·ÎÆÄÀϸµ(3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ ÀÀÇÑ ÁÖ¿ä±¹ ½ÃÀå Ãß°è,¿¹Ãø ¹× º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)(ÁÖ: Ÿ´ç¼º È®Àο¡ µû¸§)
  • °æÀï º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû Á¸Àç, Àü·«Àû Á¦ÈÞ¿¡ ±â¹ÝÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç ¼Ò½º
    • 1Â÷ Á¶»ç ¼Ò½º
    • 2Â÷ Á¶»ç ¼Ò½º
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼Ò°³
  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾ »ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
  • ±¸¸ÅÀÚÀÇ Çù»ó·Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü°¡¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°è Ŭ¶ó¿ìµå µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ½ÃÀå : À¯Çüº°

  • ¼Ò°³
  • ¿î¿µ µ¥ÀÌÅÍ ÀúÀå
  • ¿£ÅÍÇÁ¶óÀÌÁî Ŭ¶ó¿ìµå µ¥ÀÌÅÍ ¿þ¾îÇϿ콺

Á¦6Àå ¼¼°è Ŭ¶ó¿ìµå µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ½ÃÀå : Àü°³ ¸ðµ¨º°

  • ¼Ò°³
  • °ø¿ë Ŭ¶ó¿ìµå
  • ÇÁ¶óÀ̺ø Ŭ¶ó¿ìµå
  • ÇÏÀ̺긮µå Ŭ¶ó¿ìµå

Á¦7Àå ¼¼°è Ŭ¶ó¿ìµå µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ½ÃÀå : Á¶Á÷ ±Ô¸ðº°

  • ¼Ò°³
  • ´ë±â¾÷
  • Áß¼Ò±â¾÷

Á¦8Àå ¼¼°è Ŭ¶ó¿ìµå µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ½ÃÀå : ¿ëµµº°

  • ¼Ò°³
  • ºÐ¼®
  • º¸°í
  • µ¥ÀÌÅÍ ¸¶ÀÌ´×

Á¦9Àå ¼¼°è Ŭ¶ó¿ìµå µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ½ÃÀå : ¿ëµµº°

  • ¼Ò°³
  • °ø±Þ¸Á °ü¸®
  • °í°´ºÐ¼®
  • ¸®½ºÅ©¿Í compliance °ü¸®
  • ÀÚ»ê ¿î¿ë °ü¸®
  • ºÎÁ¤ ÇàÀ§ÀÇ °ËÃâ°ú À§Çù
  • ±âŸ ¿ëµµ

Á¦10Àå ¼¼°è Ŭ¶ó¿ìµå µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • ¼Ò°³
  • ¹Ìµð¾î ¹× ¿£ÅÍÅ×ÀÎ¸ÕÆ®
  • Á¦Á¶ ¹× ÀÚµ¿Â÷
  • ¼Ò¸Å ¹× ÀüÀÚ»ó°Å·¡
  • °Ç°­ °ü¸® ¹× »ý¸í°úÇÐ
  • Á¤ºÎ ¹× °ø°ø ºÎ¹®
  • ÀºÇà,±ÝÀ¶¼­ºñ½º,º¸Çè(BFSI)
  • ¿©Çà°ú Á¢°´
  • ±âŸ ÃÖÁ¾ »ç¿ëÀÚ

Á¦11Àå ¼¼°è Ŭ¶ó¿ìµå µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ½ÃÀå : Áö¿ªº°

  • ¼Ò°³
  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦12Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷ ¹× ÇÕÀÛÅõÀÚ(JV)
  • Àμö ¹× ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦13Àå ±â¾÷ ÇÁ·ÎÆÄÀÏ

  • Amazon Web Services
  • Actian Corporation
  • Google
  • AtScale
  • Mark Logic Corporation
  • Microsoft Corporation
  • Micro Focus
  • Hortonworks
  • Teradata Corporation
  • Netavis GmbH
  • Oracle Corporation
  • SAP SE
  • Veeva Systems Inc.
  • Snowflake
  • Cloudera
  • Pivotal
  • Solver
JHS 23.11.10

According to Stratistics MRC, the Global Cloud Data Warehouse Market is accounted for $32.37 billion in 2023 and is expected to reach $74.76 billion by 2030 growing at a CAGR of 12.7% during the forecast period. Cloud data warehouse is a database delivered in a public cloud as a managed service that is optimized for analytics, scale and ease of use. Cloud data warehouses are necessary to handle the expanding number of data sources. Businesses must connect ERP, CRM, social media, support, and marketing data while retaining speed and performance in order to make data-driven choices. On-site data warehouses are finding it difficult to keep up.

Market Dynamics:

Driver:

Rapidly deploying massive cloud data warehouses

Organisations are seeking solutions to concentrate on business operations rather than the IT infrastructure due to the ever-increasing data quantities and complexity levels in the current IT architecture. Additionally, the adoption of cloud-based data marts and data warehouses is being prompted by improvements in cloud-based infrastructure, which are enabling businesses to move their crucial business operations. Moreover, business owners now need to embrace cloud computing and move their data warehouses to the cloud. This will assist organisations in maintaining a stable business environment in the short term while aiming for long-term growth and expansion of the market.

Restraint:

Lack of resources and expertise

The hiring and training of staff members are essential steps in implementing data warehouse services. Budget restrictions make it challenging for certain businesses to acquire new personnel, and training current employees is often expensive. However, one of the trickiest systems to implement in the cloud is a data warehouse, which is impossible to do without the necessary expertise. Companies need employees with expertise in cloud architecture, technical knowledge of integrating data systems, and knowledge of cloud security and governance to run cloud data warehouses successfully. As a result, the market's demand for data warehouse services is anticipated to be impacted by the scarcity of trained resources.

Opportunity:

Increased use of AI in data warehouses

A smart data warehouse that automatically optimizes and converts data to fulfil user requirements is made possible by AI and machine learning. Businesses are utilizing these technologies to eventually develop the ability to continuously and repeatedly transform data into value, which is predicted to differentiate them from their rivals and increase their agility and innovation. Additionally, it enables machine learning-based automated knowledge discovery, prediction, and forensic analysis, in addition to the automatic extraction of latent predictive data from sizable datasets. As a result, during the projected period, the adoption of these technologies for data warehousing solutions is expected to offer significant market potential.

Threat:

Lack of proper structure of access control

While employing data warehouses, it is crucial to define the access control framework. Businesses frequently struggle to decide which users and organizations need access to the data warehouse. However, without balancing users and issuing rights, the system finds itself beneath a heavy demand that inevitably leads to bottlenecks. Without adequate access control, sensitive data may become accessible to unauthorized people, severely hampering the expansion of the market growth. Thus, the deployment of data warehouses requires a clearly defined access control mechanism.

COVID-19 Impact:

The COVID-19 outbreak and the subsequent lockdown restrictions implemented by governments worldwide have had a severe effect on capital investments in a variety of different industries. As a result, the global market for DWaaS (data warehouse as a service) has experienced a lack of growth. Since the majority of businesses operating in various industries had to close their operational and manufacturing facilities. On the plus side, businesses globally are embracing cutting-edge technology like cloud computing and moving to cloud data warehouses as a result of the virus's spread. Furthermore, the market for data warehouses as a-service is anticipated to profit greatly from the growing emphasis on remote work settings.

The operational data storage segment is expected to be the largest during the forecast period

During the projected period, it is anticipated that operational data storage segment hold the largest share. Real-time data analytics and reporting are getting more in demand, which is primarily responsible for the rise. Operational data storage installation in an organization meets the current and long-term needs of the organization while completing the data infrastructure already in place. Additionally, the ODS industry is projected to experience future growth prospects resulting from the expanding usage of AI in data warehouses. Businesses in the cloud data warehouse market offer cutting-edge solutions to handle the exponential development in data quantities and satisfy legal requirements.

The banking, financial services and insurance (BFSI) segment is expected to have the highest CAGR during the forecast period

The BFSI (Banking, Financial Services, and Insurance) segment controls the global market since it deals with a significant volume of regularly generated customer data. Businesses in the BFSI sector need data warehousing solutions in order to automatically track the behavior and performance of the information that is stored in their systems due to the enormous amount of structured and unstructured data that exists in this industry. Additionally, they require data to create business plans and enhance operational efficiency. The use of DWaaS (data warehouse as a service) by financial consulting firms worldwide allows them to avoid the challenges of updating their on-premise hardware and software.

Region with largest share:

North America is anticipated to have largest share during the forecast period. The use of cutting-edge technology like cloud data warehouse solutions as well as mergers and collaborations with widely known regional businesses are predicted to fuel the expansion of these services in the area. For instance, Snowflake and Next Pathway established a collaborative alliance in October 2019 to quicken the migration of old data warehouses to Snowflake. Additionally, the availability of cutting-edge data warehouse infrastructure in the area is anticipated to increase demand. Analytics solutions are rapidly being adopted by businesses nationwide, especially in industries like retail, BFSI, healthcare, and others.

Region with highest CAGR:

Asia Pacific region is expected to hold highest CAGR throughout the projected period as a result of the expanding technology developments and investments across several verticals in emerging economies like China and India. Furthermore, a number of significant participants in the worldwide market are expected to have significant concerns due to the lower operational costs and higher productivity provided by businesses in the region. Businesses in the Asia Pacific area are putting more effort into enhancing customer service, which increases client retention.

Key players in the market:

Some of the key players in Cloud Data Warehouse Market include: Amazon Web Services, Actian Corporation, Google, AtScale, Mark Logic Corporation, Microsoft Corporation, Micro Focus, Hortonworks, Teradata Corporation, Netavis GmbH, Oracle Corporation, SAP SE, Veeva Systems Inc., Snowflake, Cloudera, Pivotal and Solver.

Key Developments:

In May 2023, Oracle Autonomous Data Warehouse, the industry's first and only autonomous database driven by machine learning and optimized for analytics workloads, received major enhancements. Oracle is enabling native multi-cloud features along with standard-based data sharing throughout databases, facilitating data integration and analysis with a novel low-code-based tool.

In January 2022, Firebolt, the cloud data warehouse for developers of next-generation analytics experiences, announced a USD 100 million Series C fundraising round bringing the company's valuation to USD 1.4 billion just 12 months after releasing from stealth mode. This new round of funding raises the total amount invested to USD 269 million.

Types Covered:

  • Operational Data Storage
  • Enterprise Cloud Data warehouse

Deployment Models Covered:

  • Public Cloud
  • Private Cloud
  • Hybrid Cloud

Organization Sizes Covered:

  • Large Enterprises
  • Small and Medium-Sized Enterprises

Usages Covered:

  • Analytics
  • Reporting
  • Data Mining

Applications Covered:

  • Supply Chain Management
  • Customer Analytics
  • Risk And Compliance Management
  • Asset Management
  • Fraud Detection And Threat
  • Other Applications

End-users Covered:

  • Media And Entertainment
  • Manufacturing And Automotive
  • Retail & Ecommerce
  • Healthcare And Life Sciences
  • Government And Public Sector
  • Banking, Financial Services and Insurance (BFSI)
  • Travel And Hospitality
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2021, 2022, 2023, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Cloud Data Warehouse Market, By Type

  • 5.1 Introduction
  • 5.2 Operational Data Storage
  • 5.3 Enterprise Cloud Data warehouse

6 Global Cloud Data Warehouse Market, By Deployment Model

  • 6.1 Introduction
  • 6.2 Public Cloud
  • 6.3 Private Cloud
  • 6.4 Hybrid Cloud

7 Global Cloud Data Warehouse Market, By Organization Size

  • 7.1 Introduction
  • 7.2 Large Enterprises
  • 7.3 Small and Medium-Sized Enterprises

8 Global Cloud Data Warehouse Market, By Usage

  • 8.1 Introduction
  • 8.2 Analytics
  • 8.3 Reporting
  • 8.4 Data Mining

9 Global Cloud Data Warehouse Market, By Application

  • 9.1 Introduction
  • 9.2 Supply Chain Management
  • 9.3 Customer Analytics
  • 9.4 Risk And Compliance Management
  • 9.5 Asset Management
  • 9.6 Fraud Detection And Threat
  • 9.7 Other Applications

10 Global Cloud Data Warehouse Market, By End User

  • 10.1 Introduction
  • 10.2 Media And Entertainment
  • 10.3 Manufacturing And Automotive
  • 10.4 Retail & Ecommerce
  • 10.5 Healthcare And Life Sciences
  • 10.6 Government And Public Sector
  • 10.7 Banking, Financial Services and Insurance (BFSI)
  • 10.8 Travel And Hospitality
  • 10.9 Other End Users

11 Global Cloud Data Warehouse Market, By Geography

  • 11.1 Introduction
  • 11.2 North America
    • 11.2.1 US
    • 11.2.2 Canada
    • 11.2.3 Mexico
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 Italy
    • 11.3.4 France
    • 11.3.5 Spain
    • 11.3.6 Rest of Europe
  • 11.4 Asia Pacific
    • 11.4.1 Japan
    • 11.4.2 China
    • 11.4.3 India
    • 11.4.4 Australia
    • 11.4.5 New Zealand
    • 11.4.6 South Korea
    • 11.4.7 Rest of Asia Pacific
  • 11.5 South America
    • 11.5.1 Argentina
    • 11.5.2 Brazil
    • 11.5.3 Chile
    • 11.5.4 Rest of South America
  • 11.6 Middle East & Africa
    • 11.6.1 Saudi Arabia
    • 11.6.2 UAE
    • 11.6.3 Qatar
    • 11.6.4 South Africa
    • 11.6.5 Rest of Middle East & Africa

12 Key Developments

  • 12.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 12.2 Acquisitions & Mergers
  • 12.3 New Product Launch
  • 12.4 Expansions
  • 12.5 Other Key Strategies

13 Company Profiling

  • 13.1 Amazon Web Services
  • 13.2 Actian Corporation
  • 13.3 Google
  • 13.4 AtScale
  • 13.5 Mark Logic Corporation
  • 13.6 Microsoft Corporation
  • 13.7 Micro Focus
  • 13.8 Hortonworks
  • 13.9 Teradata Corporation
  • 13.10 Netavis GmbH
  • 13.11 Oracle Corporation
  • 13.12 SAP SE
  • 13.13 Veeva Systems Inc.
  • 13.14 Snowflake
  • 13.15 Cloudera
  • 13.16 Pivotal
  • 13.17 Solver
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦