½ÃÀ庸°í¼­
»óǰÄÚµå
1372042

ÄÁÇǵ§¼È ÄÄÇ»ÆÃ ½ÃÀå ¿¹Ãø(-2030³â) : ±¸¼º¿ä¼Òº°, Àü°³ ¸ðµåº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ºÐ¼®

Confidential Computing Market Forecasts to 2030 - Global Analysis By Component (Services, Hardware and Software),Deployment Mode (Cloud and On-premises), Application, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é, ¼¼°è ÄÁÇǵ§¼È ÄÄÇ»ÆÃ ½ÃÀåÀº 2023³â 62¾ï 6,200¸¸ ´Þ·¯·Î 2030³â±îÁö CAGR 24% ¼ºÀåÇÏ¿© 282¾ï 2,700¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ÄÁÇǵ§¼È ÄÄÇ»ÆÃÀº »ç¿ë ÁßÀÎ µ¥ÀÌÅÍ¿¡ ´ëÇÑ Á¢±ÙÀ» Á¦ÇÑÇÏ¿© µ¥ÀÌÅ͸¦ º¸È£ÇÒ ¼ö ÀÖµµ·Ï ¸Þ¸ð¸® ³»¿¡¼­ ¾ÏȣȭµÈ µ¥ÀÌÅ͸¦ ó¸®ÇÒ ¼ö ÀÖµµ·Ï ÇÏ´Â °³³äÀÔ´Ï´Ù. ÄÁÇǵ§¼È ÄÄÇ»ÆÃÀº ±ÍÁßÇÑ ÁöÀû Àç»êÀÌ ¾ÇÀÇÀûÀÎ »ç¶÷À̳ª ³»ºÎ À§ÇùÀ¸·ÎºÎÅÍ ÀûÀýÈ÷ º¸È£µÉ ¼ö ÀÖµµ·Ï º¸ÀåÇÕ´Ï´Ù. Ư±ÇÀû Á¢±ÙÀ» À§ÇÑ ÇÁ·Î±×·¡¹Ö Äڵ带 Á¦°øÇϱâ À§ÇØ Æ¯º°È÷ Çã°¡µÈ »ç¶÷¸¸ Á¢±ÙÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÎÆ÷¸ÅƼī¿¡ µû¸£¸é 2019³â ÇÑ ÇØ µ¿¾È 5,000°Ç ÀÌ»óÀÇ µ¥ÀÌÅÍ À¯ÃâÀÌ ¹ß»ýÇÏ¿© 80¾ï °ÇÀÇ ±â·ÏÀÌ À¯ÃâµÇ¾ú´Ù°í ÇÕ´Ï´Ù.

±ÔÁ¦ ¿ä°Ç ÃæÁ·ÀÇ Çʿ伺 Áõ°¡

ÀϹݰ³ÀÎÁ¤º¸º¸È£±ÔÁ¤(GDPR)°ú ͏®Æ÷´Ï¾Æ ¼ÒºñÀÚ °³ÀÎÁ¤º¸ º¸È£¹ý(CCPA)°ú °°Àº µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ±ÔÁ¦´Â ±â¾÷¿¡°Ô °í°´ µ¥ÀÌÅ͸¦ º¸È£ÇÒ Àǹ«¸¦ ºÎ°úÇÕ´Ï´Ù. Á¶Á÷Àº ¾ÈÀüÇÏ°í ºñ°ø°³ÀûÀΠó¸® ȯ°æÀ» Á¦°øÇÏ´Â ÄÁÇǵ§¼È ÄÄÇ»ÆÃÀ» »ç¿ëÇÏ¿© ±ÔÁ¤À» ÁؼöÇÒ ¼ö ÀÖ½À´Ï´Ù. ÄÁÇǵ§¼È ÄÄÇ»ÆÃÀº µ¥ÀÌÅͰ¡ ¾ÈÀüÇÏ°í ±â¹ÐÇÏ°Ô Ã³¸®µÇµµ·ÏÇÔÀ¸·Î½á Á¶Á÷ÀÌ ÀÌ·¯ÇÑ ¿ä±¸¸¦ ÃæÁ·ÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÒ ¼ö ÀÖ½À´Ï´Ù. Á¶Á÷Àº ÄÁÇǵ§¼È ÄÄÇ»ÆÃÀ» »ç¿ëÇÏ¿© ¾ÈÀüÇÑ Ã³¸® ȯ°æÀ» Á¦°øÇÏ°í ½ÃÀå È®´ë·Î À̾îÁö´Â ÄÁÇǵ§¼È ÄÄÇ»ÆÃÀ» »ç¿ëÇÏ¿© ±ÇÇÑÀÌ ¾ø´Â °³Àο¡ ÀÇÇÑ ¿µ¾÷ ºñ¹Ð¿¡ ´ëÇÑ Á¢±Ù ¹× À¯Ãâ·ÎºÎÅÍ º¸È£ÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÄÁÇǵ§¼È ÄÄÇ»ÆÃ°ú °ü·ÃµÈ ³ôÀº ºñ¿ë

ÄÁÇǵ§¼È ÄÄÇ»ÆÃ ¼Ö·ç¼ÇÀ» µµÀÔÇϰí À¯ÁöÇϱâ À§Çؼ­´Â µ¥ÀÌÅÍ º¸¾È, ¾Ïȣȭ ±â¼ú ¹× Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ¿¡ ´ëÇÑ Áö½ÄÀ» °®Ãá ÀÚ°ÝÀ» °®Ãá Àü¹®°¡°¡ ÇÊ¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Àü¹®°¡¸¦ °í¿ëÇϰí À¯ÁöÇÏ´Â µ¥´Â ºñ¿ëÀÌ ¸¹ÀÌ µé¸ç, ¿ª·®À» ÃֽŠ»óÅ·ΠÀ¯ÁöÇϱâ À§Çؼ­´Â Á¤±âÀûÀÎ ±³À°ÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¶ÇÇÑ, ±âÁ¸ IT ÀÎÇÁ¶ó¸¦ ÄÁÇǵ§¼È ÄÄÇ»ÆÃ ¼Ö·ç¼Ç°ú ¿¬°áÇØ¾ß Çϴµ¥, ÀÌ´Â ½Ã°£°ú ºñ¿ëÀÌ ¸¹ÀÌ µì´Ï´Ù. À̸¦ À§Çؼ­´Â »õ·Î¿î ½Ã½ºÅÛÀ̳ª ¾ÛÀ» óÀ½ºÎÅÍ »õ·Î ¸¸µé°Å³ª ÀÌ¹Ì Á¸ÀçÇÏ´Â ½Ã½ºÅÛÀ» º¸¾È ÄÄÇ»ÆÃ ¼Ö·ç¼Ç°ú ÇÔ²² ÀÛµ¿Çϵµ·Ï ¼öÁ¤ÇØ¾ß ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀÌ ½ÃÀå ¼ºÀå¿¡ °É¸²µ¹ÀÌ µÇ°í ÀÖ½À´Ï´Ù.

±â¹Ð¼ºÀÌ ³ôÀº AI ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡

ÀΰøÁö´É(AI) ¾ÖÇø®ÄÉÀ̼ÇÀÌ Áõ°¡ÇÔ¿¡ µû¶ó AI ¸ðµ¨°ú µ¥ÀÌÅÍÀÇ ÇÁ¶óÀ̹ö½Ã º¸È£¸¦ Áö¿øÇÏ´Â ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¹Î°¨ÇÑ AI µ¥ÀÌÅ͸¦ º¸È£Çϱâ À§ÇØ ±â¹Ð AI ¼Ö·ç¼ÇÀº º¸¾È ÀÎŬ·ÎÀú¿Í µ¿Çü ¾Ïȣȭ ±â¼úÀ» »ç¿ëÇϸç, AI ¸ðµ¨Àº °³ÀÎ ½Äº° Á¤º¸(PII) ¹× ¿µ¾÷ ºñ¹Ð°ú °°Àº ¹Î°¨ÇÑ µ¥ÀÌÅͰ¡ Æ÷ÇÔµÈ ´ë±Ô¸ð µ¥ÀÌÅÍ ¼¼Æ®¸¦ »ç¿ëÇÏ¿© ÇнÀµÇ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ÀÌ´Â ¿¹»ó ±â°£ µ¿¾È ½ÃÀå ¼ºÀåÀ» ÃËÁøÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ÄÁÇǵ§¼È ÄÄÇ»ÆÃ ±â¼ú ƯÀ¯ÀÇ º¹À⼺

ÄÁÇǵ§¼È ÄÄÇ»ÆÃÀ» µµÀÔÇϰí À¯ÁöÇÏ´Â µ¥´Â ƯÁ¤ Àü¹® Áö½Ä°ú ±â¼úÀÌ ÇÊ¿äÇϱ⠶§¹®¿¡ ÀϺΠ±â¾÷À̳ª Á¶Á÷, ƯÈ÷ IT ÀÚ¿øÀÌ ÀûÀº ¼Ò±Ô¸ð ±â¾÷Àº ÄÁÇǵ§¼È ÄÄÇ»ÆÃ ½ÃÀå¿¡ ÁøÀÔÇÏ±â ¾î·Æ½À´Ï´Ù. ±× ÀÌÀ¯ Áß Çϳª´Â ÄÁÇǵ§¼È ÄÄÇ»ÆÃÀÇ ±â¹Ý ±â¼úÀÌ ºñ±³Àû »õ·Ó°í Áö¼ÓÀûÀ¸·Î ¹ßÀüÇϰí Àֱ⠶§¹®ÀÔ´Ï´Ù. ¶ÇÇÑ, ÄÁÇǵ§¼È ÄÄÇ»ÆÃ ¼Ö·ç¼ÇÀ» ±âÁ¸ IT ÀÎÇÁ¶ó¿¡ ÅëÇÕÇØ¾ß ÇÏ´Â °æ¿ì°¡ ¸¹Àºµ¥, ÀÌ´Â ½±Áö ¾ÊÀº ÀÏÀÔ´Ï´Ù. ¼Ö·ç¼ÇÀÌ °èȹ´ë·Î ÀÛµ¿ÇÏ°í »õ·Î¿î Ãë¾àÁ¡À̳ª ȣȯ¼º ¹®Á¦°¡ ¹ß»ýÇÏÁö ¾Êµµ·Ï Çϱâ À§Çؼ­´Â ÁýÁßÀûÀÎ Å×½ºÆ®¿Í µð¹ö±ëÀÌ ÇÊ¿äÇÕ´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

COVID-19ÀÇ ´ëÀ¯Çà°ú ¿ø°Ý ±Ù¹«ÀÇ ºÎ»óÀ¸·Î ±â¾÷ °æ¿µÀÌ ´õ¿í ¾î·Á¿öÁö°í ÀÖÀ¸¸ç, COVID-19°¡ ÃÖ±Ù °æÁ¦ ºÒȲ¿¡ ¹ÌÄ£ ¿µÇâÀº ´ëü ºñÁö´Ï½º ¹æ¹ýÀÇ Çʿ伺À» °­Á¶Çϰí ÀÖ½À´Ï´Ù. ±â¾÷ °æ¿µÁøÀº ÀÌÁ¦ Ŭ¶ó¿ìµå ÄÄÇ»ÆÃÀ» ¼ö¿ëÇÏ°í µ¥ÀÌÅÍ¿þ¾îÇϿ콺¸¦ Ŭ¶ó¿ìµå·Î ÀüÈ¯ÇØ¾ß ÇÕ´Ï´Ù. ±×·¯³ª ÀÌ´Â ±â¾÷ÀÌ Àå±âÀûÀÎ ¼ºÀå°ú È®ÀåÀ» Ãß±¸Çϸ鼭µµ ´Ü±âÀûÀ¸·Î ¾ÈÁ¤ÀûÀÎ ºñÁö´Ï½º ȯ°æÀ» À¯ÁöÇÏ´Â µ¥ µµ¿òÀÌ µÉ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. µ¥ÀÌÅÍ¿þ¾îÇϿ콺 ¼­ºñ½º´Â °¡¿ë¼º Çâ»ó, ´ë±â ½Ã°£ ´ÜÃà, È®À强, ¿£ÅÍÇÁ¶óÀÌÁî±Þ º¸¾È µîÀÇ ÀåÁ¡À¸·Î ÀÎÇØ ´Ù¾çÇÑ »ê¾÷ ºÐ¾ßÀÇ ±â¾÷¿¡¼­ äÅÃÇϰí ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¼­ºñ½º ºÎ¹®ÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»ó

¼­ºñ½º ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÄÁÇǵ§¼È ÄÄÇ»ÆÃ ½Ã½ºÅÛÀÇ µµÀÔ, ¹èÆ÷ ¹× À¯Áöº¸¼ö´Â ¼­ºñ½º¿¡ Å©°Ô ÀÇÁ¸ÇÕ´Ï´Ù. ±â¾÷ÀÌ ÄÁÇǵ§¼È ÄÄÇ»ÆÃ ±â¼úÀ» µµÀÔÇϰí Ȱ¿ëÇÒ ¼ö ÀÖµµ·Ï Áö½Ä, Áö¿ø ¹× Àü¹® ¼­ºñ½º¸¦ Á¦°øÇÕ´Ï´Ù. ÄÁÇǵ§¼È ÄÄÇ»ÆÃÀ» µµÀÔÇÏ´Â Á¶Á÷Àº ÄÁÇǵ§¼È ÄÄÇ»ÆÃ µµÀÔÀÇ ÀÌÁ¡, À§Çè ¹× È¿°ú¸¦ ÀνÄÇÏ´Â µ¥ µµ¿òÀÌ µÇ´Â ÄÁ¼³ÆÃ ¹× ÀÚ¹® ¼­ºñ½º¸¦ ÅëÇØ ÇýÅÃÀ» ¹ÞÀ» ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÄÁÇǵ§¼È ÄÄÇ»ÆÃÀ» µµÀÔÇÒ ¶§ ÀûÀýÇÑ ±â¼úÀ» ¼±ÅÃÇϰí, ¾ÈÀüÇÑ ¾ÆÅ°ÅØÃ³¸¦ ±¸ÃàÇϸç, º¸¾È Á¤Ã¥À» ¼ö¸³ÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¶¾ðµµ Á¦°øÇÕ´Ï´Ù. ÀÌ ¼­ºñ½º´Â ±â¾÷ÀÌ ¾ÈÀüÇÑ ÄÄÇ»ÆÃ ¼Ö·ç¼ÇÀ» ¸¸µé¾î ±âÁ¸ ½Ã½ºÅÛ ¹× ¼ÒÇÁÆ®¿þ¾î¿¡ ÅëÇÕÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È µ¥ÀÌÅÍ º¸¾È ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»ó

µ¥ÀÌÅÍ º¸¾È ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. º¸¾È ¹× °Ý¸®µÈ ȯ°æÀº Àü¿ë Çϵå¿þ¾î ÀÎÇÁ¶ó¸¦ »ç¿ëÇÏ¿© ÄÁÇǵ§¼È ÄÄÇ»ÆÃÀ» ÅëÇÑ µ¥ÀÌÅÍ Ã³¸®¸¦ À§ÇØ Á¦°øµË´Ï´Ù. ÀÌ ÀÎÇÁ¶ó¿¡´Â Çϵå¿þ¾î ±â¹Ý º¸¾È ±â´É, º¸¾È ÀÎŬ·ÎÀú, ½Å·ÚÇÒ ¼ö ÀÖ´Â ½ÇÇà ȯ°æ µîÀÌ Æ÷ÇԵ˴ϴÙ. Ŭ¶ó¿ìµå ¼­ºñ½º Á¦°ø¾÷ü¿Í µ¥ÀÌÅͼ¾ÅÍ´Â °í°´¿¡°Ô ½Å·ÚÇÒ ¼ö ÀÖ°í ¾ÈÀüÇÑ ÄÄÇ»ÆÃ ȯ°æÀ» Á¦°øÇϱâ À§ÇØ ÇÁ¶óÀ̺ø ÄÄÇ»ÆÃ ÀÎÇÁ¶ó¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ°ú ºÐ»ê ÄÄÇ»ÆÃ ½Ã½ºÅÛÀÌ È®»êµÊ¿¡ µû¶ó µ¥ÀÌÅÍ º¸¾ÈÀ» À¯ÁöÇÏ´Â °ÍÀÌ Á¡Á¡ ´õ ¾î·Á¿öÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹®Á¦¿¡ ´ëÀÀÇϱâ À§ÇØ ÄÁÇǵ§¼È ÄÄÇ»ÆÃÀÌ µµÀԵǰí ÀÖ½À´Ï´Ù. ÄÁÇǵ§¼È ÄÄÇ»ÆÃÀº µ¥ÀÌÅͰ¡ ¿ÜºÎ ȯ°æ¿¡¼­ 󸮵Ǵõ¶óµµ µ¥ÀÌÅÍ ¼ÒÀ¯ÀÚ°¡ µ¥ÀÌÅ͸¦ °ü¸®ÇÒ ¼ö Àֱ⠶§¹®¿¡ µ¥ÀÌÅÍ ¿ÜºÎ À§Å¹¿¡ µû¸¥ À§ÇèÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù.

°¡Àå ³ôÀº Á¡À¯À²À» º¸ÀÌ´Â Áö¿ª

ºÏ¹Ì Áö¿ªÀº ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ ½ÃÀåÀº À¯ÀÍÇÑ IT ÀÎÇÁ¶ó, ¸¹Àº Á¶Á÷ÀÇ Á¸Àç, ±â¼ú ÀÎÀçÀÇ °¡¿ë¼º µî ´Ù¾çÇÑ ¿äÀο¡ ÈûÀÔ¾î ½ÃÅ©¸´ ÄÄÇ»ÆÃ µµÀÔÀÌ °¡Àå Ȱ¹ßÇÑ ½ÃÀåÀÔ´Ï´Ù. ÄÁÇǵ§¼È ÄÄÇ»ÆÃ äÅÃÀº Ŭ¶ó¿ìµå Á¦Ç° ¹× ¼­ºñ½ºÀÇ º¸¾È Æò°¡, ½ÂÀÎ, Áö¼ÓÀûÀÎ ¸ð´ÏÅ͸µ¿¡ Á¤ÀÇµÈ ¹æ¹ýÀ» Àû¿ëÇÏ´Â Fed RAMP¿Í °°Àº ¹ýÀû ¿ä°Ç¿¡µµ ¿µÇâÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±â¼ú ¹ßÀü°ú ÇÔ²² µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¹× º¸¾È¿¡ ´ëÇÑ ¿ä±¸»çÇ×ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ±â¹Ð µ¥ÀÌÅ͸¦ º¸È£ÇÏ°í µ¥ÀÌÅÍ º¸È£¹ýÀ» ÁؼöÇϱâ À§ÇØ ¹Ì±¹ÀÇ ¿©·¯ ±â¾÷µéÀÌ ÄÁÇǵ§¼È ÄÄÇ»ÆÃÀ» µµÀÔÇϰí ÀÖ½À´Ï´Ù. ÁÖ¿ä µµÀÔ ±â¾÷Àº ±ÝÀ¶, ÀÇ·á, Á¤ºÎ ¹× ±â¼ú ºÎ¹®ÀÔ´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª

¾Æ½Ã¾ÆÅÂÆò¾çÀº ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾ç¿¡¼­´Â Ŭ¶ó¿ìµå ±â¹Ý ¹× Ŭ¶ó¿ìµå Áö¿ø Ŭ¶ó¿ìµå µ¥ÀÌÅÍ ¿þ¾îÇϿ콺¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, ÀÌ´Â ´Ù¾çÇÑ »ê¾÷¿¡¼­ ÁöÃâ Áõ°¡¿Í ±â¼ú Çõ½ÅÀ¸·Î À̾îÁö°í ÀÖÀ¸¸ç, ¾Æ½Ã¾ÆÅÂÆò¾ç¿¡¼­´Â Á¦Á¶¾÷ÀÌ °¡Àå Å« »ê¾÷À̸ç, ¼Ò¸Å¾÷, E-Commerce, BFSI°¡ ±× µÚ¸¦ ÀÕ°í ÀÖ½À´Ï´Ù. ½ÃÀå °æÀï·ÂÀ» À¯ÁöÇϱâ À§Çؼ­´Â ÀÌ·¯ÇÑ °úÁ¦¸¦ ½Å¼ÓÇÏ°Ô ÇØ°áÇØ¾ß ÇÕ´Ï´Ù. °æÀï ¿ìÀ§¿Í ¼öÀÍ ¼ºÀåÀ» À§ÇØ ÀÌ Áö¿ª ±â¾÷µéÀº °í°´ ¼­ºñ½º °­È­¿¡ °è¼Ó ÁýÁßÇϰí ÀÖ½À´Ï´Ù.

¹«·á ¸ÂÃãÇü ¼­ºñ½º

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù:

  • ȸ»ç ÇÁ·ÎÇÊ
    • Ãß°¡ ½ÃÀå ±â¾÷ Á¾ÇÕ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤ ¹× ¿¹Ãø, CAGR(Âü°í: Ÿ´ç¼º °ËÅä¿¡ µû¸¥)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù¹ý
  • Á¶»ç¿ø
    • 1Â÷ Á¶»ç¿ø
    • 2Â÷ Á¶»ç¿ø
    • °¡Á¤

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾»ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • ½ÅÁ¾ Äڷγª¹ÙÀÌ·¯½º °¨¿°Áõ(COVID-19)ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ±¸¸ÅÀÚÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü¿©¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷ °£ÀÇ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ÄÁÇǵ§¼È ÄÄÇ»ÆÃ ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • ¼­ºñ½º
  • Çϵå¿þ¾î
  • ¼ÒÇÁÆ®¿þ¾î

Á¦6Àå ¼¼°èÀÇ ÄÁÇǵ§¼È ÄÄÇ»ÆÃ ½ÃÀå : Àü°³ ¹æ½Äº°

  • Ŭ¶ó¿ìµå
  • ¿ÂÇÁ·¹¹Ì½º

Á¦7Àå ¼¼°èÀÇ ÄÁÇǵ§¼È ÄÄÇ»ÆÃ ½ÃÀå : ¿ëµµº°

  • ½ÃÅ¥¾î ¿£Å¬·¹À̺ê
  • µ¥ÀÌÅÍ º¸¾È
  • »ç¿ëÀÚ°£ Åõ¸í¼º
  • ±âŸ ¿ëµµ

Á¦8Àå ¼¼°èÀÇ ÄÁÇǵ§¼È ÄÄÇ»ÆÃ ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • Á¤ºÎ¡¤¹æÀ§
  • IT¡¤Åë½Å
  • ÇコÄɾ»ý¸í°úÇÐ
  • ÀºÇà, ±ÝÀ¶ ¼­ºñ½º, º¸Çè(BFSI)
  • ¼Ò¸Å¡¤¼ÒºñÀç
  • Á¦Á¶¾÷
  • ±³À°
  • ±âŸ ÃÖÁ¾»ç¿ëÀÚ

Á¦9Àå ¼¼°èÀÇ ÄÁÇǵ§¼È ÄÄÇ»ÆÃ ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦10Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕÀÛÅõÀÚ
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦11Àå ±â¾÷ °³¿ä

  • AMD(Advanced Micro Devices)
  • Anjuna Security
  • Amazon Web Services
  • Decentriq AG
  • Arm Holdings
  • Google LLC
  • Huawei Technologies Co., Ltd.
  • Fortanix
  • Microsoft Corporation
  • OVHcloud
  • Swisscom
  • Intel Corporation
  • Super Protocol
  • R3
  • IBM Corporation
  • Alibaba Cloud
ksm 23.11.15

According to Stratistics MRC, the Global Confidential Computing Market is accounted for $6.262 billion in 2023 and is expected to reach $28.227 billion by 2030 growing at a CAGR of 24% during the forecast period. Confidential computing is a concept in which encrypted data can be processed in memory to limit access to ensure data in use is protected. Confidential computing ensures that valuable intellectual property is properly protected from malicious and insider threats. This is only accessible to specially authorized for the purpose of providing privileged access programming code.

According to Informatica, in 2019, the company noted over 5,000 data breaches with 8 billion records exposed.

Market Dynamics:

Driver:

Rising need to meet regulatory requirements

Data privacy regulations such as the General Data Protection Regulation (GDPR) and the California Consumer Privacy Act (CCPA) require businesses to protect their customers' data. Organisations can comply with the regulations through the use of confidential computing, which offers a safe and private processing environment. By ensuring that data is processed safely and confidentially, confidential computing can assist organisations in meeting this need. Organisations can safeguard their trade secrets from being accessed or compromised by unauthorised individuals by using confidential computing, which offers a secure processing environment and leads to market expansion.

Restraint:

High cost related to confidential computing

Implementing and maintaining confidential computing solutions requires qualified experts with knowledge of data security, cryptography, and cloud computing. Such specialists can be expensive to hire and maintain, and they need regular training to keep their abilities current. Additionally, the existing IT infrastructure must be linked with confidential computing solutions, which can be time-consuming and expensive. This may entail creating new systems and apps from scratch or modifying already-existing ones to work with secure computing solutions. These factors hamper market growth.

Opportunity:

Growing demand for confidential AI solutions

A rising need exists for solutions that can aid in preserving the privacy of AI models and data as the number of artificial intelligence (AI) applications increases. Secure enclaves and homomorphic encryption techniques are used by confidential AI solutions to safeguard sensitive AI data. AI models are frequently trained using sizable datasets, including sensitive data such as personally identifiable information (PII) or secret corporate secrets. Over the course of the anticipated period, this is expected to fuel the market's growth.

Threat:

Confidential computing technology's inherent complexity

It is challenging for some firms and organizations, especially smaller ones with fewer IT resources, to crack the confidential computing market since it requires specific expertise and skills to deploy and maintain. There are many causes, one of which is the fact that the technology underlying secret computing is relatively young and continually developing. Additionally, integrating confidential computing solutions into the current IT infrastructure is frequently required, which can be difficult. To make sure the solution works as planned and does not create additional vulnerabilities or compatibility problems, intensive testing and debugging are needed.

COVID-19 Impact:

The COVID-19 pandemic and the rise of remote work settings have rendered it more challenging for companies to operate. The influence of COVID-19 on the recent economic recession highlights the necessity for alternative business methods. Business owners now need to embrace cloud computing and move their data warehouses to the cloud. However, this will assist firms in maintaining a stable business environment in the short term while aiming for long-term growth and expansion. Data warehouse services are employed by businesses in a wide range of industries due to their improved availability, reduced latency, scalability, and enterprise-grade security, among other benefits.

The Services segment is expected to be the largest during the forecast period

The services segment is anticipated to be the largest during the projected period. The implementation, deployment, and maintenance of confidential computing systems depend significantly on services. To assist enterprises in implementing and utilizing confidential computing technology, they offer knowledge, support, and specialized services. Organizations which employ confidential computing might benefit from consulting and advisory services that assist them recognize the advantages, dangers, and effects of doing so. Moreover, for implementations of confidential computing, they offer advice on choosing the appropriate technology, creating safe architectures, and establishing security policies. Services help firms create and incorporate secure computing solutions into their current systems and software.

The data security segment is expected to have the highest CAGR during the forecast period

The data security segment is anticipated to have highest CAGR during the forecast period. Secure and isolated environments are offered for data processing via confidential computing with the use of specialized hardware infrastructure. This infrastructure includes hardware-based security features, secure enclaves, and trusted execution environments. To provide their clients with reliable and safe computing environments, cloud service providers and data centers are investing in private computing infrastructure. Moreover, data security is becoming increasingly challenging to maintain as cloud computing and distributed computing systems become more popular. These issues are addressed by confidential computing, which reduces the risks associated with outsourcing data by enabling data owners to keep control over their data even when it is processed in external environments.

Region with largest share:

North America is projected to have largest share throughout the extrapolated period. It is the most developed market in terms of the adoption of secret computing, driven by a variety of circumstances, including beneficial IT infrastructure, the presence of many organizations, and the availability of technical talents. Confidential computing adoption is also influenced by legal requirements like Fed RAMP, which applies a defined methodology to security evaluation, authorization, and continuous monitoring for cloud products and services. Additionally, it is growing in demand as data privacy and security requirements grow along with technological improvements. To safeguard sensitive data and adhere to data protection laws, several US firms are implementing confidential computing. Leading adopters consist of the financial, healthcare, government, and technology sectors.

Region with highest CAGR:

The Asia Pacific region is estimated to witness highest CAGR throughout the projected period. The Asia Pacific region is experiencing a rise in demand for cloud-driven and cloud-supported cloud data warehouses, which has led to higher expenditures and technological breakthroughs in a variety of industries. In the APAC area, manufacturing is the largest industry vertical, followed by retail, e-commerce, and BFSI. Lower operational costs and higher productivity have grown to be major challenges for local manufacturers as a result of global competition; these issues must be swiftly resolved in order to maintain market competitiveness. For competitive advantage and revenue growth, businesses in this region continue to put their attention on enhancing customer service.

Key players in the market:

Some of the key players in Confidential Computing Market include: AMD (Advanced Micro Devices), Anjuna Security, Amazon Web Services, Decentriq AG, Arm Holdings, Google LLC, Huawei Technologies Co., Ltd., Fortanix, Microsoft Corporation, OVHcloud, Swisscom, Intel Corporation, Super Protocol, R3, IBM Corporation and Alibaba Cloud.

Key Developments:

In May 2023, Intel announced the release of a new security-as-a-service solution called Project Amber. The solution is an independent trust authority, designed to remotely verify whether a compute asset in the cloud, network's edge or on-premises environment is trustworthy.

In April 2023, Microsoft announced the expansion of its confidential VM family with the launch of the DCesv5-series and ECesv5-series in preview. Featuring 4th Gen Intel Xeon Scalable processors, these VMs are backed by an all-new hardware-based Trusted Execution Environment called Intel Trust Domain Extensions (TDX). Organizations can use these VMs to seamlessly bring confidential workloads to the cloud without any code changes to their applications.

In April 2023, Google and Intel collaborated on a new research project to identify potential security vulnerabilities in Intel's new confidential computing technology, Intel Trust Domain Extensions (Intel TDX). In addition to an expanded feature set, Intel Tdx offers full vm compute models without requiring any code changes.

Components Covered:

  • Services
  • Hardware
  • Software

Deployment Modes Covered:

  • Cloud
  • On-premises

Applications Covered:

  • Secure Enclaves
  • Data Security
  • Pellucidity Between Users
  • Other Applications

End-users Covered:

  • Government & Defense
  • IT & Telecommunications
  • Healthcare & Life Sciences
  • Banking, Financial Services and Insurance (BFSI)
  • Retail & Consumer Goods
  • Manufacturing
  • Education
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2021, 2022, 2023, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Confidential Computing Market, By Component

  • 5.1 Introduction
  • 5.2 Services
  • 5.3 Hardware
  • 5.4 Software

6 Global Confidential Computing Market, By Deployment Mode

  • 6.1 Introduction
  • 6.2 Cloud
  • 6.3 On-premises

7 Global Confidential Computing Market, By Application

  • 7.1 Introduction
  • 7.2 Secure Enclaves
  • 7.3 Data Security
  • 7.4 Pellucidity Between Users
  • 7.5 Other Applications

8 Global Confidential Computing Market, By End User

  • 8.1 Introduction
  • 8.2 Government & Defense
  • 8.3 It & Telecommunications
  • 8.4 Healthcare & Life Sciences
  • 8.5 Banking, Financial Services and Insurance (BFSI)
  • 8.6 Retail & Consumer Goods
  • 8.7 Manufacturing
  • 8.8 Education
  • 8.9 Other End Users

9 Global Confidential Computing Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 AMD (Advanced Micro Devices)
  • 11.2 Anjuna Security
  • 11.3 Amazon Web Services
  • 11.4 Decentriq AG
  • 11.5 Arm Holdings
  • 11.6 Google LLC
  • 11.7 Huawei Technologies Co., Ltd.
  • 11.8 Fortanix
  • 11.9 Microsoft Corporation
  • 11.10 OVHcloud
  • 11.11 Swisscom
  • 11.12 Intel Corporation
  • 11.13 Super Protocol
  • 11.14 R3
  • 11.15 IBM Corporation
  • 11.16 Alibaba Cloud
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦