![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1383376
Ĩ ·¹ÀÌÀú µðĸÇÎ ¸Ó½Å ½ÃÀå ¿¹Ãø(-2030³â) : À¯Çüº°, ¿ëµµº°, Áö¿ªº° ¼¼°è ºÐ¼®Chip Laser Decapping Machine Market Forecasts to 2030 - Global Analysis By Type, Application (Integrated Circuits Trays, Plastic Packaged Devices, Printed Circuit Board Boards, Power Devices and Other Applications) and By Geography |
Stratistics MRC¿¡ µû¸£¸é Ĩ ·¹ÀÌÀú µðĸÇÎ ¸Ó½Å ¼¼°è ½ÃÀåÀº 2023³â 3¾ï 480¸¸ ´Þ·¯·Î ¿¹Ãø ±â°£ µ¿¾È CAGR 7.1%·Î ¼ºÀåÇÏ¿© 2030³â 4¾ï 9,270¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¹ÝµµÃ¼ »ê¾÷¿¡¼ »ç¿ëµÇ´Â º¹ÀâÇÑ µµ±¸´Â Ĩ ·¹ÀÌÀú µðĸÇÎ ±â°è·Î ¾Ë·ÁÁ® ÀÖÀ¸¸ç, ¿¡Æø½Ã ¼ºÇü ÈÇÕ¹° ¹× ¼¼¶ó¹Í ÆÐŰ¡°ú °°Àº ÁýÀû ȸ·Î(IC) Ĩ¿¡¼ º¸È£ ÄÚÆÃÀ» Á¤È®ÇÏ°Ô Á¦°ÅÇÏ´Â µ¥ »ç¿ëµË´Ï´Ù. ÀÌ Àåºñ´Â ÁýÁßµÈ ·¹ÀÌÀú ºöÀ» »ç¿ëÇÏ¿© ÇÏÃþ IC¸¦ º¸È£ÇÏ¸é¼ Çʿ信 µû¶ó ¹ÐºÀ Àç·á¸¦ Á¦°ÅÇÏ¿© ¿£Áö´Ï¾î¿Í °úÇÐÀÚ°¡ ǰÁú º¸Áõ, ¼³°è ºÐ¼® ¹× °áÇÔ ¹ß°ßÀ» À§ÇØ Ä¨ÀÇ ³»ºÎ ±¸Á¶¿¡ ¾×¼¼½º ÇÒ ¼ö ÀÖµµ·ÏÇÕ´Ï´Ù.
ºñÆÄ±« µðĸÇÎÀº ÁýÀûȸ·Î(IC)¿Í °°Àº ¹ÝµµÃ¼ ºÎǰÀ» ±¸Á¶Àû ¹«°á¼º¿¡ ¿µÇâÀ» ÁÖÁö ¾Ê°í °³ºÀÇÏ°í ºÐ¼®ÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ¶ÇÇÑ, ±ÍÁßÇÏ°í ºñ½Î°Å³ª Èñ±ÍÇÑ IC¸¦ ȸ¼öÇÒ ¼ö Àֱ⠶§¹®¿¡ °íÀå ºÐ¼®, ǰÁú °ü¸® ¹× ¸®¹ö½º ¿£Áö´Ï¾î¸µ¿¡ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ¶ÇÇÑ, °úÇÐ ¼ö»ç¿¡¼ Áõ°Å¸¦ º¸Á¸Çϰí, IC¸¦ ºÐÇØÇϰí ÀçÁ¶¸³ÇØ¾ß ÇÏ´Â °æ¿ì »õ·Î¿î »ùÇÃÀ» ÇÊ¿ä·Î ÇÏÁö ¾Ê°í º¸´Ù ¸é¹ÐÇÑ Á¶»ç°¡ °¡´ÉÇϱ⠶§¹®¿¡ ÀÌ ºñÆÄ±« ´É·ÂÀº ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ¶ÇÇÑ, °í°¡ÀÇ IC¸¦ ±³Ã¼ÇÒ Çʿ伺À» ÁÙÀÓÀ¸·Î½á ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù. µû¶ó¼ ÀÌ Àü·«Àº ¹ÝµµÃ¼ ºÐ¼® ¹× Á¶»çÀÇ È¿À²¼º°ú ÀûÀÀ¼ºÀ» Çâ»ó½ÃÄÑ ½ÃÀå ¼ºÀåÀ» ÃËÁøÇÒ ¼ö ÀÖ½À´Ï´Ù.
Ĩ ·¹ÀÌÀú µðĸÇÎ Àåºñ ½ÃÀå¿¡´Â ¸¹Àº Ãʱâ ÅõÀÚ°¡ ÇÊ¿äÇϱ⠶§¹®¿¡ ¸¹Àº ¾î·Á¿òÀÌ ÀÖ½À´Ï´Ù. Ãʱ⿡´Â ¼Ò±Ô¸ð ¹ÝµµÃ¼ ±â¾÷»Ó¸¸ ¾Æ´Ï¶ó ´ëÇü ¹ÝµµÃ¼ ±â¾÷µµ ÀÌ ±â¼úÀÌ °¡Á®¿À´Â ¸·´ëÇÑ ÀçÁ¤Àû ºÎ´ãÀ¸·Î ÀÎÇØ µµÀÔÀ» ¸Á¼³ÀÏ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Ãʱ⠺ñ¿ëÀÌ ¸¹ÀÌ µé±â ¶§¹®¿¡ ½Å±Ô ÁøÀÔÀ̳ª ½ºÅ¸Æ®¾÷ÀÇ ÁøÀÔÀ» ¸·´Â ¿äÀÎÀ¸·Î ÀÛ¿ëÇϱ⵵ ÇÕ´Ï´Ù. ¶ÇÇÑ, ¸·´ëÇÑ ÀÚº»ÀÌ ÇÊ¿äÇϱ⠶§¹®¿¡ ½ÃÀå °æÀï°ú ±â¼ú Çõ½ÅÀ» ÀúÇØÇÏ´Â ¿äÀÎÀ¸·Î ÀÛ¿ëÇØ µµÀÔ·üÀÌ ³·¾ÆÁú ¼ö ÀÖ½À´Ï´Ù.
¼ÒÇüÈ, ¼º´É Çâ»ó, À¯¿ë¼º È®´ë¿¡ ´ëÇÑ ¿ä±¸´Â ¹ÝµµÃ¼ ÆÐŰ¡ ±â¼úÀÇ ±Þ¼ÓÇÑ ÁøÈ¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Çø³Ä¨, º¼ ±×¸®µå ¾î·¹ÀÌ(BGA), ¿þÀÌÆÛ ·¹º§ ÆÐŰÁö µî ´Ù¾çÇÑ Ä¨ ÆÐŰÁöÀÇ µðĸÇΰú °ü·ÃÇÏ¿© Ĩ ·¹ÀÌÀú ĸÇÎ ¸Ó½ÅÀº ÷´Ü ¹ÝµµÃ¼ ÀåÄ¡ÀÇ ¼³°è ¹× Å×½ºÆ®¸¦ Áö¿øÇÏ´Â ÃÖ÷´Ü ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ, ÀüÀÚ Á¦Ç°, Â÷·®¿ë ÀüÀÚÁ¦Ç°, »ç¹°ÀÎÅͳÝ(IoT) ¾ÖÇø®ÄÉÀ̼ǿ¡ ´ëÇÑ ¼ÒºñÀÚ ¼ö¿ä Áõ°¡·Î ÀÎÇØ Àü ¼¼°è ÀüÀÚÁ¦Ç° Á¦Á¶ ºÎ¹®ÀÇ ¼ºÀåÀÌ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù.
Ĩ ·¹ÀÌÀú µðĸÇÎ ±â°è´Â ºñ±³Àû »õ·Ó°í Àü¹®ÀûÀÎ ±â¼úÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ±â°è´Â ±â´É°ú ÀåÁ¡¿¡ ´ëÇÑ ½ÃÀå Áö½ÄÀÌ ºÎÁ·Çϱ⠶§¹®¿¡ ³Î¸® äÅõÇÁö ¾ÊÀ» ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ Ä¨ ·¹ÀÌÀú µðĸÇÎ ±â°è´Â ÀÛµ¿ ¹× À¯Áöº¸¼ö¿¡ ±â¼úÀû Àü¹® Áö½ÄÀÌ ÇÊ¿äÇÑ °í±Þ ±â°èÀ̱⠶§¹®¿¡ ±â°è¸¦ ÀÛµ¿ÇÏ°í ¹®Á¦¸¦ ÇØ°áÇÏ°í ±â°èÀÇ ¼º´ÉÀ» Çâ»ó½Ã۱â À§ÇØ ¼÷·Ã µÈ ÀηÂÀÌ ÇÊ¿äÇÕ´Ï´Ù. µû¶ó¼ ÀÌ·¯ÇÑ ¿äÀεéÀÌ ½ÃÀå È®´ë¸¦ ¹æÇØÇϰí ÀÖ½À´Ï´Ù.
Ĩ ·¹ÀÌÀú µðĸÇÎ ±â°è ½ÃÀåÀº COVID-19 »çÅ·ΠÀÎÇØ ´Ù¾çÇÑ ¾Ç¿µÇâÀ» ¹Þ¾Ò½À´Ï´Ù. ¶ÇÇÑ, °ø±Þ¸Á°ú Á¦Á¶¾÷°èÀÇ È¥¶õ, Àá±Ý ¹× ¿©Çà Á¦ÇÑÀ¸·Î ÀÎÇØ »ý»ê Áö¿¬, Çʼö ºÎǰ¿¡ ´ëÇÑ Á¢±Ù Á¦ÇÑ, ±â°è ¼ö¸® ¹× À¯Áöº¸¼ö¿¡ ¾î·Á¿òÀ» °Þ¾ú½À´Ï´Ù. ¶ÇÇÑ, Ĩ ·¹ÀÌÀú µðĸÇÎ ¸Ó½Å°ú °°Àº ¹ÝµµÃ¼ ºÐ¼® µµ±¸¿Í °°Àº ´Ù¸¥ ±â¼ú ºÐ¾ß´Â COVID-19 °ü·Ã ¿¬±¸ ¹× Áø´Ü¿¡ ÀÚ¿øÀÌ ÁýÁßµÇ¸é¼ Àڱݰú °ü½ÉÀÇ °¨¼Ò¿¡ ´ëÀÀÇØ¾ß Çß½À´Ï´Ù. µû¶ó¼ Àü¿°º´ÀÇ °æÁ¦Àû ºÒÈ®½Ç¼ºÀ¸·Î ÀÎÇÑ ¿¹»ê Á¦¾àÀ¸·Î ÀÎÇØ ¸¹Àº ±â¾÷ÀÌ ÀÌ·¯ÇÑ Ã·´Ü ±â°è¸¦ ±¸¸ÅÇÏ°í »ç¿ëÇÒ ¼ö ¾ø¾î ½ÃÀå È®´ë°¡ ¾ïÁ¦µÇ¾ú½À´Ï´Ù.
¹ÝÀÚµ¿ ºÎ¹®ÀÌ °¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â °ÍÀ¸·Î ÃßÁ¤µÇ´Â ÀÌÀ¯´Â ¹ÝÀÚµ¿ ¸Åƽ ºÎ¹®À¸·Î ´ëÇ¥µÇ´Â ¼öµ¿°ú ÀÚµ¿ ±â´ÉÀÌ °áÇÕµÈ ÇüÅÂÀÇ Ä¸ÇÎ ±â°è°¡ Àֱ⠶§¹®ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ÀåºñÀÇ µðĸÇÎ ÀýÂ÷´Â ÀÚµ¿ÈµÇ¾î ÀÖÁö¸¸, ¼³Á¤ ¹× »ùÇà Á¶Á¦¿¡´Â ÀÛ¾÷ÀÚÀÇ °³ÀÔÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¶ÇÇÑ, ¹ÝÀÚµ¿ Àåºñ´Â ´Ù¿ëµµ¼º, È¿À²¼º ¹× ¸ÂÃãÇü ¼Ö·ç¼ÇÀ» ¸¸µé ¼ö ÀÖ´Â ´É·ÂÀ» Á¦°øÇϱ⠶§¹®¿¡ °íµµÀÇ Á¦¾î°¡ ÇÊ¿äÇÑ Æ¯Á¤ ¹ÝµµÃ¼ ºÐ¼® ¹× ¸®¹ö½º ¿£Áö´Ï¾î¸µ ¾ÖÇø®ÄÉÀ̼ǿ¡ ÀûÇÕÇÑ ¼±ÅÃÀÔ´Ï´Ù. µû¶ó¼ ÀÌ·¯ÇÑ Ãø¸éÀÌ ½ÃÀå È®´ë¿¡ Å©°Ô ±â¿©Çϰí ÀÖ½À´Ï´Ù.
ÁýÀûȸ·Î(IC) Æ®·¹ÀÌ ºÐ¾ß´Â Æ®·¹ÀÌ¿¡ ÀúÀåµÈ IC¸¦ µðĸÇÎÇϱâ À§ÇÑ Àü¿ë Àåºñ·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ Æ®·¹ÀÌ´Â IC ĨÀÇ Ãë±Þ ¹× º¸°üÀ» À§ÇØ ¹ÝµµÃ¼ Å×½ºÆ® ¹× Á¦Á¶¿¡ ÀÚÁÖ »ç¿ëµÇ¸ç, IC Æ®·¹ÀÌ Àå¿¡¼´Â Æ®·¹ÀÌ ³»ÀÇ IC ĨÀ» Á¤È®ÇÏ°í ºñÆÄ±«ÀûÀ¸·Î µðĸÇÎÇÏ¿© ǰÁú °ü¸®, °íÀå ºÐ¼® ¹× ¸®¹ö½º ¿£Áö´Ï¾î¸µÀ» °¡´ÉÇÏ°Ô ÇÏ´Â ¿ä±¸ »çÇ×À» ´Ù·ç°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ ±â°èµéÀº ICÀÇ ¹«°á¼ºÀ» À¯ÁöÇÏ¸é¼ ·¹ÀÌÀú ±â¼úÀ» »ç¿ëÇÏ¿© ¹ÐºÀÀ縦 Á¦°ÅÇÕ´Ï´Ù. µû¶ó¼ ¹ÝµµÃ¼ÀÇ Ç°ÁúÀ» º¸ÀåÇϰí ÃÖ÷´Ü Ĩ ±â¼úÀ» È¿À²ÀûÀÌ°í ±ÔÄ¢ÀûÀ¸·Î °³¹ßÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù.
ºÏ¹Ì¿¡´Â ¼¼Á¦ ÇýÅÃ, º¸Á¶±Ý, R&D ÀÚ±Ý Áö¿ø ÇÁ·Î±×·¥ µî ºÏ¹Ì ¹ÝµµÃ¼ »ê¾÷À» Áö¿øÇϱâ À§ÇÑ ´Ù¾çÇÑ Á¤ºÎ Á¤Ã¥°ú Áö¿øÃ¥ÀÌ ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ ÀÌ´Ï¼ÅÆ¼ºê´Â âÀǼºÀ» ÃËÁøÇϰí, ¹ÝµµÃ¼ ±â¼úÀ» ¹ßÀü½Ã۸ç, »ê¾÷ °æÀï·ÂÀ» °ÈÇϱâ À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¹Ì±¹ °úÇÐÀç´Ü(NSF)°ú ±¹¹æºÎ(DoD)¿Í °°Àº Á¤ºÎ ±â°ü¿¡¼ ¹ÝµµÃ¼ ±â¼ú ¿¬±¸¸¦ À§ÇÑ ÀÚ±ÝÀ» Áö¿øÇÏ¿© Ĩ ·¹ÀÌÀú µðĸÇÎ ¸Ó½Å°ú °°Àº Ư¼ö µµ±¸ÀÇ °³¹ß ¹× ÀÀ¿ë¿¡µµ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. µû¶ó¼ ÀÌ·¯ÇÑ ¿äÀεéÀº ½ÃÀå ±Ô¸ð¸¦ ³ôÀÌ´Â ¿äÀÎ Áß ÀϺΰ¡ µÇ°í ÀÖ½À´Ï´Ù.
À¯·´Àº Á¤È®¼º, ÀÚµ¿È ¹× È¿À²¼º¿¡ ÃÊÁ¡À» ¸ÂÃá Çõ½ÅÀûÀÎ µðĸÇÎ Àåºñ·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ¸ñ°ÝÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ Çõ½Å¿¡´Â º¸´Ù ¼±ÅÃÀûÀ̰í Á¤È®ÇÑ µðĸÇÎÀ» À§ÇÑ ¿ì¼öÇÑ ·¹ÀÌÀú ±â¼úµµ Æ÷ÇԵ˴ϴÙ. ¶ÇÇÑ, ±¹Á¦ ȯ°æ ¸ñÇ¥¿¡ ºÎÇÕÇϴ ģȯ°æ µðĸÇÎ ±â¼ú °³¹ßÀº Áö¼Ó°¡´É¼ºÀ» Áß½ÃÇÏ´Â À¯·´ÀÇ ¿µÇâÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ °íÀå Æò°¡ ¹× ¸®¹ö½º ¿£Áö´Ï¾î¸µ ´É·ÂÀº ÇÐ°è ¹× Áö¿ª »ê¾÷°è ¸®´õ¿ÍÀÇ Çù·ÂÀ» ÅëÇØ Å©°Ô Çâ»óµÇ¾ú½À´Ï´Ù. µû¶ó¼ Ĩ ·¹ÀÌÀú ĸÇÎ ±â°è ½ÃÀå¿¡¼ À¯·´ÀÇ ÀÔÁö´Â ÀÌ·¯ÇÑ ºÐ¾ßÀÇ ±â¼ú ¸®´õ½Ê¿¡ ÀÇÇØ °ÈµÇ°í ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Chip Laser Decapping Machine Market is accounted for $304.8 million in 2023 and is expected to reach $492.7 million by 2030 growing at a CAGR of 7.1% during the forecast period. A complex tool used in the semiconductor industry is known as chip laser decapping machine, which is used to precisely remove protective coatings from integrated circuit (IC) chips like epoxy molding compounds or ceramic packaging. The device uses a concentrated laser beam to remove encapsulating materials on demand while protecting the underlying IC, and it gives engineers and scientists access to the interior workings of the chip for quality assurance, design analysis, and defect finding.
It enables the opening and analysis of semiconductor components, such as integrated circuits (ICs), without affecting their structural integrity. Additionally, this is crucial for failure analysis, quality control, and reverse engineering, as it enables the recovery of valuable, expensive, or rare ICs. Moreover, in order to preserve evidence in forensic investigations or for ICs that need to be deconstructed and put back together again, this non-destructive capacity is highly sought because it eliminates the need for new samples and enables more thorough investigations. Furthermore, by reducing the need to replace priceless ICs, it also saves money. Thus, this strategy improves semiconductor analysis and research's effectiveness and adaptability, thereby drive the market growth.
There are a number of difficulties caused by the significant initial investment needed in the market for chip laser decapping machines. Initially, both small and major semiconductor companies may be discouraged from implementing this technology by the substantial financial burden it can cause. Furthermore, the significant beginning costs also prevent new and emerging enterprises from entering the market. Moreover, slower adoption rates might be caused by high capital needs, hence which also hinder market competition and innovation.
The requirements for downsizing, improved performance, and expanded usefulness are driving a rapid evolution in semiconductor packaging technology. Additionally, when it comes to decapping different chip packages, such as flip-chip, ball grid array (BGA), and wafer-level packages, chip laser decapping machines offer a cutting-edge solution that supports the design and testing of sophisticated semiconductor devices. Furthermore, increased consumer demand for electronic products, automotive electronics, and Internet of Things (IoT) applications is fueling the growth of the worldwide electronics manufacturing sector.
Machines for chip laser decapping are a relatively new and specialized technology. These machines may not be widely adopted because of the market's inadequate knowledge of their capabilities and advantages. Additionally, chip laser decapping machines are sophisticated machines that demand technical expertise to operate and maintain, so to operate the machinery, resolve problems, and improve machine performance, skilled individuals are required. Hence, these factors hindering market expansion.
The chip laser decapping machine market was adversely affected by the COVID-19 epidemic in a number of ways. Additionally, production delays, limited access to essential components, and difficulties with machine repair and maintenance were caused by the global disruption of supply chains and manufacturing, as well as lockdowns and travel restrictions. Moreover, other technological fields, such as semiconductor analysis tools like chip laser decapping machines, had to deal with a reduction in funding and attention as resources were shifted to COVID-19-related research and diagnosis. Therefore, as a result of budget constraints brought on by the pandemic's economic uncertainty, many businesses were unable to purchase and use such advanced machinery, which restrained the market's expansion.
The semi-automatic segment is estimated to hold the largest share, due to a form of decapping equipment that combines manual and automated features is represented by the semi-automatic segment. Although the decapping procedure on these devices is automated, some operator involvement is necessary for setup or sample preparation. Furthermore, semi-automatic machines are the best option for certain semiconductor analysis and reverse engineering applications when a high level of control is required because they offer versatility, efficiency, and the ability to create customized solutions. Therefore, these aspects significantly boost the market expansion.
The integrated circuits (IC) trays segment is anticipated to have highest CAGR during the forecast period, due to specialized equipment made for decapping ICs contained in trays. Additionally, these trays are frequently used in semiconductor testing and manufacturing for handling and storing IC chips. The chapter on IC Trays deals with the requirement for precise, non-destructive decapsulation of chips inside of their trays, enabling quality control, failure analysis, and reverse engineering. Moreover, while maintaining the integrity of the ICs, these machines use laser technology to remove the encapsulating materials. Therefore, they are essential for ensuring semiconductor quality and the efficient and regulated development of cutting-edge chip technology.
North America commanded the largest market share during the extrapolated period owing to wider government measures and assistance, like tax incentives, subsidies, and funding programs for R&D, has aided the semiconductor industry in North America. Additionally, these initiatives seek to promote creativity, advance semiconductor technologies, and strengthen industry competition. Moreover, funding for semiconductor technology research has occasionally been provided by government organizations like the National Science Foundation (NSF) and the Department of Defense (DoD), which has a subsequent impact on the creation and application of specialized tools like chip laser decapping machines. Therefore, these are some of the factors which help in driving the market size.
Europe is expected to witness highest CAGR over the projection period, owing to innovative decapping equipment that focus on accuracy, automation, and efficiency. The decapping procedure has been made easier by these innovations, which also include better laser technology for more selective and precise decapping. Additionally, the development of eco-friendly decapping techniques that are in line with international environmental goals has also been impacted by Europe's emphasis on sustainability. Furthermore, capabilities for failure assessment and reverse engineering have been significantly improved through collaboration between academic institutions and regional leaders in industry. Therefore, Europe's position in the market for chip laser decapping machines is strengthened by its technological leadership in these fields.
Some of the key players in the Chip Laser Decapping Machine Market include: Nisene Technology Group, Inc, Kaimeiwo Laser, Plasma-Therm LLC, Han's Laser, Rudolph Technologies, Wuhan Keyi Laser, Huacong Technology, Hamamatsu Photonics, Xcerra Corporation and Accurex Measurement.
In June 2019, Nanometrics Signs Agreement for Merger of Equals Combination With Rudolph Technologies.
In November 2018, Rudolph Technologies, Inc. announced the availability of its NovusEdge™ system for edge, notch and backside inspection of un-patterned wafers.