![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1383420
¼±·® ¸ð´ÏÅ͸µ ½ÃÀå ¿¹Ãø(-2030³â) : Á¦Ç° À¯Çü, ¿ëµµ, ÃÖÁ¾»ç¿ëÀÚ, Áö¿ªº° ¼¼°è ºÐ¼®Dose Monitoring Market Forecasts to 2030 - Global Analysis By Product Type (Hardware, Software and Services ), Application (Radiography, Radiotherapy and Other Applications), End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¼¼°è ¼±·® ¸ð´ÏÅ͸µ ½ÃÀåÀº 2023³â 43¾ï 6,000¸¸ ´Þ·¯·Î ¿¹Ãø ±â°£ µ¿¾È 9.0%ÀÇ CAGR·Î ¼ºÀåÇØ 2030³â¿¡´Â 79¾ï 7,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
´Ù¾çÇÑ ÀÇ·á ȯ°æ¿¡¼ ȯÀÚ¿¡°Ô Á¶»çµÇ´Â ¹æ»ç¼±°ú ¾à¹°ÀÇ ¾çÀ» ÃøÁ¤, ÃßÀû, °ü¸®ÇÏ´Â °úÁ¤À» ¼±·® ¸ð´ÏÅ͸µÀ̶ó°í ÇÕ´Ï´Ù. ȯÀÚÀÇ ¾ÈÀüÀ» º¸ÀåÇϰí, Ä¡·á °á°ú¸¦ ÃÖÀûÈÇϸç, ±ÔÁ¦ Ç¥ÁØÀ» ÁؼöÇÏ´Â °ÍÀº ¸ðµÎ ¼±·® ¸ð´ÏÅ͸µ¿¡ ´Þ·Á ÀÖ½À´Ï´Ù. Áø·á¼Ò, º´¿ø ¹× ±âŸ ÀÇ·á ½Ã¼³¿¡¼ ȯÀÚ¿¡°Ô Åõ¿©µÇ´Â ¾à¹°ÀÇ ¾çÀ» Á¤È®ÇÏ°Ô ÃøÁ¤Çϰí ÃßÀûÇÏ´Â °ÍÀ» ¼±·® ¸ð´ÏÅ͸µÀ̶ó°í ÇÕ´Ï´Ù. ȯÀÚ°¡ ÀûÀýÇÑ ¿ë·®À» Åõ¿©¹Þµµ·Ï º¸ÀåÇÒ »Ó¸¸ ¾Æ´Ï¶ó Åõ¾à ¿À·ù¸¦ ¹æÁöÇϰí ȯÀÚÀÇ ¾ÈÀü°ú ¼øÀÀµµ¸¦ À§ÇØ Åõ¾à·®À» ÃßÀûÇÏ´Â µ¥µµ µµ¿òÀÌ µË´Ï´Ù.
À̹Ì¡ ±â¼úÀÇ ¹ßÀüÀº ¼±·® ¸ð´ÏÅ͸µ ½ÃÀå È®´ëÀÇ ÁÖ¿ä ¿äÀÎÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú ¹ßÀüÀÇ °á°ú·Î ÀÇ·á Áø´Ü ¹× Ä¡·á °èȹ ºÐ¾ß´Â Å« º¯È¸¦ °Þ°í ÀÖÀ¸¸ç, CT ½ºÄµ, MRI ½ºÄµ ¹× PET ½ºÄµ°ú °°Àº °í±Þ ¿µ»ó ¾ç½ÄÀº ´õ ³ªÀº À̹ÌÁö ǰÁú°ú Áø´Ü Á¤È®µµ¸¦ Á¦°øÇÏ¿© Çö´ë ÀÇ·á¿¡¼ Á¡Á¡ ´õ Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù. ±×·¯³ª ÀÌ·¯ÇÑ ±â¼ú Áß »ó´ç¼ö´Â ƯÈ÷ ¸ÖƼ ½½¶óÀ̽º CT ½ºÄ³³Ê³ª ÁßÀçÀû ¹æ»ç¼± ½Ã¼ú°ú °°ÀÌ È¯ÀÚ¸¦ °í¼±·®ÀÇ ÀÌ¿ÂÈ ¹æ»ç¼±¿¡ ³ëÃâ½Ãŵ´Ï´Ù. µû¶ó¼ ȯÀÚÀÇ ¾ÈÀüÀ» º¸ÀåÇϱâ À§ÇØ Á¤È®ÇÑ ¼±·® ¸ð´ÏÅ͸µÀÌ Àý½ÇÈ÷ ÇÊ¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Ã·´Ü ¿µ»ó ó¸® °úÁ¤¿¡¼ Åõ¿©µÇ´Â ¹æ»ç¼±·®À» ÃßÀûÇÏ°í °ü¸®Çϱâ À§Çؼ± ¼±·® ¸ð´ÏÅ͸µ ¼Ö·ç¼ÇÀÌ ÇʼöÀûÀÔ´Ï´Ù.
¼±·® ¸ð´ÏÅ͸µ ±â¼úÀ» µµÀÔÇÏ´Â µ¥´Â ¸¹Àº ºñ¿ëÀÌ ¼Ò¿äµË´Ï´Ù. ¿©±â¿¡´Â ÇÊ¿äÇÑ Àåºñ¿Í ¾ÖÇø®ÄÉÀ̼ÇÀ» ±¸¸Å, ¼³Á¤, ÀÎÁõÇÏ´Â µ¥ µå´Â ºñ¿ë»Ó¸¸ ¾Æ´Ï¶ó ÀÇ·áÁø¿¡°Ô ±â¼úÀ» È¿À²ÀûÀ¸·Î »ç¿ëÇÏ´Â ¹æ¹ýÀ» ±³À°ÇÏ´Â µ¥ µå´Â ºñ¿ëµµ Æ÷ÇԵ˴ϴÙ. ±×·¯³ª ÀϺΠÀÇ·á ½Ã¼³, ƯÈ÷ ¿¹»êÀÌ ÇÑÁ¤µÈ ¼Ò±Ô¸ð ½Ã¼³ÀÇ °æ¿ì Ãʱ⠺ñ¿ëÀÌ ¸¹ÀÌ µé±â ¶§¹®¿¡ ÀÌ·¯ÇÑ ¼Ö·ç¼ÇÀ» µµÀÔÇÏ´Â µ¥ ÁÖÀúÇÒ ¼ö ÀÖ½À´Ï´Ù. µû¶ó¼ ³ôÀº Ãʱ⠺ñ¿ëÀº ½ÃÀå È®´ë¿¡ Å« °É¸²µ¹ÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù.
°í±Þ µ¥ÀÌÅÍ ºÐ¼®Àº ȯÀÚ ¾ÈÀü, Ä¡·á È¿°ú ¹× ¾÷¹« È¿À²¼ºÀ» °³¼±ÇÒ ¼ö ÀÖ´Â À¯¿¬ÇÑ ¹æ¹ýÀ» Á¦°øÇϱ⠶§¹®¿¡ ¼±·® ¸ð´ÏÅ͸µ¿¡ ¸¹Àº ÀáÀç·ÂÀ» °¡Áö°í ÀÖ½À´Ï´Ù. ƯÈ÷ ±ÔÁ¦ ´ç±¹°ú ÀÇ·á ¼ºñ½º Á¦°øÀÚ°¡ ¹æ»ç¼± ¾ÈÀüÀÇ Á߿伺À» °è¼Ó °Á¶ÇÏ´Â °¡¿îµ¥, µ¥ÀÌÅÍ ºÐ¼®Àº ¼±·® ¸ð´ÏÅ͸µÀÇ Àû¿ë°ú Ȱ¿ë¿¡ Çõ¸íÀ» ÀÏÀ¸Å³ ¼ö ÀÖ´Â Áß¿äÇÑ ¿ä¼Ò°¡ µÉ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ¹æ»ç¼± Ä¡·á ¹× ¿µ»ó Áø´Ü Áß ¹æ»ç¼± ÇÇÆø¿¡ ´ëÇÑ ÀÚ¼¼ÇÑ µ¥ÀÌÅ͸¦ ¼öÁýÇÕ´Ï´Ù. ÀÌ µ¥ÀÌÅÍ´Â °í±Þ µ¥ÀÌÅÍ ºÐ¼®À» ÅëÇØ ó¸® ¹× ºÐ¼®µÇ¾î ÀλçÀÌÆ® ÀÖ´Â °á·ÐÀ» µµÃâÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °ÍµéÀÌ ½ÃÀå ¼ö¿ä¸¦ Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù.
¼±·® ¸ð´ÏÅ͸µ ½ÃÀåÀº º¯È¿¡ ´ëÇÑ ÀúÇ×·ÂÀÌ °ÇÕ´Ï´Ù. ÀÌ´Â ÁÖ·Î ÀÇ·á ȯ°æ¿¡¼ »õ·Î¿î ÀýÂ÷³ª ±â¼úÀ» µµÀÔÇÒ ¶§ ¹ß»ýÇÏ´Â ¾î·Á¿ò ¶§¹®ÀÔ´Ï´Ù. ¼±·® ¸ð´ÏÅ͸µÀÇ ÅëÇÕÀº ÀÇ·áÁø°ú ÀÇ·á ±â°üÀÌ ÀÚÁÖ µû¸£´Â ±âÁ¸ ¿öÅ©Ç÷ο쿡¼ ¹þ¾î³¯ ¼ö ÀÖ½À´Ï´Ù. ¹æ»ç¼±Á¾¾çÇаú ¹æ»ç¼±°ú¸¦ ´Ù·ç´Â ƯÁ¤ ºÎ¼´Â ÀÏ»ó ¾÷¹«¿¡ ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ» ¿ì·ÁÇØ º¯È¿¡ ÀúÇ×ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀúÇ×Àº ¼±·® ¸ð´ÏÅ͸µ ÇÁ·Î±×·¥À» ¼³Á¤Çϰí À¯ÁöÇÏ´Â °ÍÀÌ ¾ó¸¶³ª ¾î·Á¿îÁö¿¡ ´ëÇÑ ¿ì·Á¿Í °ü·ÃÀÌÀÖÀ» ¼ö ÀÖ½À´Ï´Ù. »õ·Î¿î ±â¼úÀÌ µµÀԵǸé Á÷¿øµéÀº Ưº°ÇÑ ±³À°À» ¹Þ¾Æ¾ßÇϸçÀÌ °úµµ±â´Â ºÎ´ãÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù.
ÆÒµ¥¹ÍÀ¸·Î ÀÎÇØ ÀÇ·á¿ë ¿µ»óÁø´Ü, ƯÈ÷ COVID-19 ȯÀÚ ¸ð´ÏÅ͸µ ¹× Áø´Ü¿¡ ÇÊ¿äÇÑ CT¿Í ÈäºÎ ¿¢½º·¹ÀÌ¿¡ ´ëÇÑ Çʿ伺ÀÌ Áõ°¡Çß½À´Ï´Ù. ºÒÇÊ¿äÇÑ ÇÇÆøÀ» ÃÖ¼ÒÈÇÏ¸é¼ È¯ÀÚ°¡ ÀûÀýÇÑ ¼±·®À» ¹ÞÀ» ¼ö ÀÖµµ·Ï ÇÏ´Â ¼±·® ¸ð´ÏÅ͸µ ¼Ö·ç¼ÇÀÇ Çʿ伺Àº ¿µ»ó Áø´Ü ¼ºñ½º¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ Á÷Á¢ÀûÀÎ ¿µÇâÀ» ¹Þ¾Ò½À´Ï´Ù. ¼±·® ¸ð´ÏÅ͸µ ¼ÒÇÁÆ®¿þ¾î¿Í °°Àº µðÁöÅÐ Çコ ±â¼úÀÇ Ã¤ÅÃÀº ÆÒµ¥¹ÍÀ¸·Î ÀÎÇØ ÃËÁøµÇ¾ú½À´Ï´Ù. ÀÇ·á ¼ºñ½º Á¦°øÀÚ°¡ ¿ø°Ý ȯÀÚ µ¥ÀÌÅÍ °ü¸® ¹× ¸ð´ÏÅ͸µ ¼Ö·ç¼ÇÀ» ¿ä±¸ÇÔ¿¡ µû¶ó µðÁöÅÐ ¼±·® ¸ð´ÏÅ͸µ µµ±¸ÀÇ °¡Ä¡°¡ ³ô¾ÆÁ³½À´Ï´Ù.
¼ÒÇÁÆ®¿þ¾î ºÐ¾ß°¡ °¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù. ¼±·® ¸ð´ÏÅ͸µ ¼ÒÇÁÆ®¿þ¾î´Â ȯÀÚ¿¡°Ô Åõ¿©µÇ´Â ¹æ»ç¼± ¹× ¾à¹°ÀÇ ¼±·®À» ÃßÀû, °ü¸® ¹× ºÐ¼®Çϱâ À§ÇØ °í¾ÈµÈ Àü¿ë ÇÁ·Î±×·¥ ¹× ¾ÖÇø®ÄÉÀ̼ÇÀ» ¸»ÇÕ´Ï´Ù. ÀÌ ¼ÒÇÁÆ®¿þ¾î´Â Á¤È®ÇÑ ¼±·® °ü¸®¸¦ º¸ÀåÇϰí À§ÇèÀ» ÁÙÀ̸ç ȯÀÚÀÇ °á°ú¸¦ °³¼±ÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. ÀÇ·á¹°¸®ÇÐÀÚ¿Í ¹æ»ç¼±Á¾¾çÇÐÀÚ°¡ Ä¡·á ¿ä¹ýÀ» ÃÖÀûÈÇϰí Á¾¾çÀ» Àß °Ü³ÉÇÏ¸é¼ ÁÖº¯ °Ç°ÇÑ Á¶Á÷¿¡ ´ëÇÑ ÇÇÇØ¸¦ ÃÖ¼ÒÈÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ÀÌ ¼ÒÇÁÆ®¿þ¾îÀÇ ½Ç½Ã°£ ¸ð´ÏÅ͸µ ¹× Á¶Á¤ ±â´ÉÀ» ÅëÇØ ¹æ»ç¼± Ä¡·á¸¦ ´õ¿í Á¤È®ÇÏ°Ô ÇÒ ¼ö ÀÖ½À´Ï´Ù.
Áø´Ü ¼¾ÅÍ ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È À¯¸®ÇÑ ¼ºÀå¼¼¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¼±·® ¸ð´ÏÅ͸µ ½Ã½ºÅÛÀº ¹æ»ç¼± ³ëÃâÀ» ¾ÈÀüÇÑ ¼öÁØÀ¸·Î Á¦ÇÑÇÔÀ¸·Î½á ÀÇ·áÁøÀÌ È¯ÀÚÀÇ °Ç° À§ÇèÀ» ÁÙÀÏ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ¼±·® ¸ð´ÏÅ͸µ ¼Ö·ç¼ÇÀº ±ÇÀå ¼±·® ¼öÁذú ¾ÈÀü ÀýÂ÷¸¦ ÁؼöÇÏ¿© ¿µ»ó Áø´ÜÀÌ ÀÌ·ç¾îÁöµµ·Ï º¸ÀåÇÔÀ¸·Î½á ÀÌ·¯ÇÑ ±ÔÁ¤À» ÁؼöÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. µ¥ÀÌÅÍ ¼öÁý ¹× º¸°í ÇÁ·Î¼¼½ºÀÇ °£¼Òȸ¦ ÅëÇØ ¼±·® ¸ð´ÏÅ͸µ ¼ÒÇÁÆ®¿þ¾î´Â Áø´Ü ¼¾ÅÍÀÇ È¿À²¼ºÀ» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. ¹æ»ç¼± ¾ÈÀüÀÌ º¸ÀåµÉ »Ó¸¸ ¾Æ´Ï¶ó ÀÇ·áÁøÀÌ È¯ÀÚ Ä¡·á¿¡ Àü³äÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù.
ÃßÁ¤ ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇß½À´Ï´Ù. ¼±·® ¸ð´ÏÅ͸µ ½ÃÀåÀÇ ÁÖ¿ä Ç÷¹À̾î´Â ¹Ì±¹°ú ij³ª´ÙÀÔ´Ï´Ù. ÀÌ Áö¿ªÀº °·ÂÇÑ ÀÇ·á ½Ã½ºÅÛÀ» º¸À¯Çϰí ÀÖÀ¸¸ç ÷´Ü ÀÇ·á ±â¼ú µµÀÔ·üÀÌ ³ô½À´Ï´Ù. ºÏ¹ÌÀÇ ÀÇ·á ±â°ü°ú ÀÇ·á ¼ºñ½º Á¦°øÀÚ´Â ÃÖ÷´Ü ÀÇ·á ±â¼úÀ» µµÀÔÇÏ´Â ¼±±¸ÀÚÀÔ´Ï´Ù. ÀÌ ºÐ¾ß¿¡¼´Â º´¿ø¿¡¼ÀÇ ¾à¹° Åõ¿©¿Í ¾Ï Ä¡·á¿¡ »ç¿ëµÇ´Â ¹æ»ç¼± Ä¡·á ¸ðµÎ¿¡¼ ¼±·® ¸ð´ÏÅ͸µÀÌ Áß¿äÇÕ´Ï´Ù. ÀÌ Áö¿ªÀº ±ÔÁ¦ °È¿Í ±â¼ú ¹ßÀüÀ¸·Î ÀÎÇØ ¾ÕÀ¸·Îµµ Àü ¼¼°è ¼±·® ¸ð´ÏÅ͸µ »ê¾÷À» À̲ô´Â ÁÖ¿ä µ¿·ÂÀÌ µÉ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.
À¯·´Àº ¼±ÁøÈµÈ ÀÇ·á ÀÎÇÁ¶ó¿Í ¾ö°ÝÇÑ ±ÔÁ¦ ȯ°æÀ¸·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È ¼öÀͼº ³ôÀº ¼ºÀåÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À¯·´ ÀÇ·áÀÇ Æ¯Â¡ÀÎ ¾çÁúÀÇ È¯ÀÚ Ä¡·á¿¡ ´ëÇÑ Çå½ÅÀûÀÎ ³ë·ÂÀ¸·Î ÀÎÇØ ¼±·® ¸ð´ÏÅ͸µ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô½À´Ï´Ù. ¼±·® ¸ð´ÏÅ͸µ¿¡ ´ëÇÑ Ã·´Ü ±â¼úÀÇ »ç¿ëÀº º¸´Ù ¾ö°ÝÇÑ ¹ý·ü°ú ȯÀÚ ¾ÈÀü¿¡ ´ëÇÑ °ü½ÉÀ¸·Î ÀÎÇØ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. À¯·´ÀÇ °æÁ¦ ´ë±¹ Áß ÇϳªÀÎ µ¶ÀÏÀº °íµµ·Î ¹ß´ÞµÈ ÀÇ·á ½Ã¼³°ú Àß °®ÃçÁø ÀÇ·á ½Ã½ºÅÛÀ» ÀÚ¶ûÇÕ´Ï´Ù.
According to Stratistics MRC, the Global Dose Monitoring Market is accounted for $4.36 billion in 2023 and is expected to reach $7.97 billion by 2030 growing at a CAGR of 9.0% during the forecast period. The process of measuring, tracking, and controlling the amount of radiation or medication given to patients in different healthcare settings is known as dose monitoring. Ensuring patient safety, optimizing treatment outcomes, and adhering to regulatory standards all depend on it. The precise measurement and tracking of drug doses administered to patients in clinics, hospitals, or other healthcare facilities is referred to as dose monitoring. In addition to guaranteeing that patients receive the right doses, this also helps to prevent medication errors and keeps track of medication administration for patient safety and compliance.
Developments in imaging technology are a major factor in the market expansion for dose monitoring. The field of medical diagnosis and treatment planning has seen a substantial transformation as a result of these technological advancements. Advanced imaging modalities like CT, MRI, and PET scans, which provide better image quality and diagnostic accuracy, are becoming increasingly important in modern healthcare. However, a lot of these techniques expose patients to higher doses of ionizing radiation, especially multi-slice CT scanners and interventional radiology procedures. Therefore, accurate dose monitoring is urgently required to guarantee patient safety. In order to track and manage the radiation doses administered during these advanced imaging procedures, dose monitoring solutions have become essential.
Dose-monitoring technology implementation can be costly. This covers the cost of purchasing, setting up, and certifying the required gear and applications, in addition to the cost of educating medical staff on how to use the technology efficiently. However, some healthcare facilities, especially smaller ones with tighter budgets, may be discouraged from implementing these solutions due to the substantial upfront costs. Therefore, high initial cost is a significant barrier to market expansion.
Dose monitoring has a lot of potential because advanced data analytics offer a flexible way to improve patient safety, treatment efficacy, and operational efficiency. Data analytics can be a key factor in revolutionizing the application and utilization of dose monitoring, particularly as regulators and healthcare providers continue to stress the significance of radiation safety. These systems capture minute details regarding radiation exposure during radiation therapy and diagnostic imaging. This data can be processed and analyzed using advanced data analytics to provide insightful conclusions. These factors enhance market demand.
The market for dose monitoring is highly resistant to change, which is mostly caused by the difficulties that come with introducing new procedures and technology in healthcare settings. Integrating dose monitoring may break out of the well-established workflows that healthcare practitioners and institutions frequently follow. Particular departments dealing with radiation oncology and radiology may be resistant to change if they worry it will affect their daily operations. Furthermore, resistance may be associated with worries about how difficult it will be to set up and maintain dose monitoring programs. Staff may need extra training when new technologies are introduced, and this transitional period may be burdensome.
Due to the pandemic, there was an increase in the need for medical imaging, particularly CT and chest X-rays, which were necessary for COVID-19 case monitoring and diagnosis. The need for dose monitoring solutions to make sure that patients received the right radiation doses while minimizing unnecessary exposure was directly impacted by the rise in demand for imaging services. The adoption of digital health technologies, such as dose monitoring software, was expedited by the pandemic. The increased value of digital dose monitoring tools was driven by healthcare providers' desire for remote patient data management and monitoring solutions.
The software segment is estimated to hold the largest share. Dose monitoring software refers to the specialized programs and applications designed to track, manage, and analyze radiation or medication doses administered to patients. This software is essential for guaranteeing accurate dosage administration, reducing hazards, and improving patient outcomes. It assists medical physicists and radiation oncologists in optimizing treatment regimens, guaranteeing that the tumor is successfully targeted while causing the least amount of harm to nearby healthy tissues. Radiation therapy is more accurate due to the software's real-time monitoring and adjustment features.
The diagnostic centers segment is anticipated to have lucrative growth during the forecast period. By restricting radiation exposure to safe levels, dose monitoring systems assist medical professionals in reducing the risk to their patients' health. By guaranteeing that the diagnostic imaging procedure is carried out in compliance with the advised dose levels and safety procedures, dose monitoring solutions help to ensure compliance with these regulations. Through the simplification of the data collection and reporting process, dose monitoring software can increase the effectiveness of diagnostic centers. In addition to guaranteeing radiation safety, this allows medical staff to concentrate on patient care.
North America commanded the largest market share during the extrapolated period. The key players in the dose monitoring market are the US and Canada. The region has a strong healthcare system and a high rate of uptake of cutting-edge medical technology. Healthcare organizations and providers in North America are pioneers in the adoption of state-of-the art medical technologies. In this area, dose monitoring is critical for both medication dosing in hospitals and radiation therapy used in cancer treatment. This region will continue to be a major force behind the global dose monitoring industry as regulations tighten and technology advances.
Europe is expected to witness profitable growth over the projection period, owing to its advanced healthcare infrastructure and rigorous regulatory environment. The demand for dose monitoring solutions is high because of the dedication to high-quality patient care that characterizes the European healthcare landscape. The use of cutting-edge technologies for dose monitoring has been fuelled by stricter laws and a focus on patient safety. Germany, one of the economic superpowers of Europe, boasts highly advanced medical facilities and a well-developed healthcare system.
Some of the key players in the Dose Monitoring Market include: GE Healthcare, Siemens Healthineers, Bayer AG, Mirion Technologies, Philips Healthcare, Varian Medical Systems, Sectra AB, Civco Medical Solutions, Nelco Worldwide and Medsquare.
In July 2023, Bayer and Peking University (PKU) collaborated to foster the translation of basic pharmaceutical research into drug discovery and development, while accelerating scientific research on cutting-edge technologies across the pharmaceutical value chain.
In February 2022, Siemens Healthineers and UNICEF partner to help improve access to healthcare in sub-Saharan Africa. The partnership will help optimize Point-of-Care (POC) diagnostics networks, strengthen health systems strained by the protracted pandemic and foster community engagement.