![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1383500
CTD ÃøÁ¤ ½Ã½ºÅÛ ½ÃÀå ¿¹Ãø(-2030³â) : À¯Çü, ±â¼ú, ¿ëµµ, Áö¿ªº° ¼¼°è ºÐ¼®CTD Measuring System Market Forecasts to 2030 - Global Analysis By Type (Shallow Sea Type and Deep Sea Type), Technology (Wireless CTD Systems and Traditional CTD Systems), Application and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¼¼°è CTD ÃøÁ¤ ½Ã½ºÅÛ ½ÃÀåÀº 2023³â 38¾ï ´Þ·¯·Î ¿¹Ãø ±â°£ µ¿¾È 7.7%ÀÇ CAGR·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 65¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
CTD´Â Àüµµµµ, ¿Âµµ, ¼ö½ÉÀ» ÀǹÌÇϸç, CTD ÃøÁ¤ ½Ã½ºÅÛÀº È£¼ö, °, ÇØ¾çÀ» Æ÷ÇÔÇÑ ´Ù¾çÇÑ ¼ö»ý ȯ°æ¿¡¼ ÀÌ ¼¼ °¡Áö ¸Å°³ º¯¼ö¿¡ ´ëÇÑ µ¥ÀÌÅ͸¦ ¼öÁýÇÏ°í ±â·ÏÇÏ´Â µ¥ »ç¿ëµÇ´Â °úÇÐÀû µµ±¸ÀÔ´Ï´Ù. ÇØ¾çÇÐ, ÇØ¾ç »ý¹°ÇÐ ¹× ȯ°æ ¸ð´ÏÅ͸µ ¿¬±¸¸¦ Áö¿øÇϸç, CTD ½Ã½ºÅÛÀ» ÅëÇØ ¼öÁýµÈ µ¥ÀÌÅÍ´Â ÇØ¾ç ¼øÈ¯, ¼ö±« Ư¼º ¹× ÇØ¾ç »ý¹°ÀÇ ºÐÆ÷¸¦ ÀÌÇØÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù.
ÀÚ¿ø °ü¸®´Â CTD ÃøÁ¤ ½Ã½ºÅÛ ½ÃÀåÀÇ ÁÖ¿ä µ¿ÀÎÀ̸ç, ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ¼ö»ê ÀÚ¿øÀÇ Áö¼Ó°¡´ÉÇÑ °ü¸®¿¡ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ¾î¾÷¿¡¼ CTD µ¥ÀÌÅÍ´Â ÃÖÀûÀÇ ¾îÀåÀ» ½Äº°Çϰí, ¾î·ù °³Ã¼±º¿¡ ´ëÇÑ ¿°ºÐ ¹× ¼ö¿Â Á¶°ÇÀ» ¸ð´ÏÅ͸µÇϰí, ³²È¹À» ¹æÁöÇϰí ÇØ¾ç »ýŰ踦 º¸È£Çϱâ À§ÇØ ¾î¾÷ ¿î¿µÀÇ Áö¼Ó°¡´ÉÇÑ ½ÇÇàÀ» º¸ÀåÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ¶ÇÇÑ, CTD ½Ã½ºÅÛÀº ¼ö»ê ÀÚ¿øÀÇ Àå±âÀûÀÎ Áö¼Ó°¡´É¼ºÀ» º¸ÀåÇϰí, ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÃÖ¼ÒÈÇϸç, ÀÚ¿ø °ü¸®¿¡ ´ëÇÑ Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç°áÁ¤À» ³»¸®´Â µ¥ ÇÊ¿äÇÑ Áß¿äÇÑ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù.
CTD Àåºñ´Â º¹ÀâÇϰí Á¤¹ÐÇÑ ¿£Áö´Ï¾î¸µÀÌ ÇÊ¿äÇϱ⠶§¹®¿¡ Ãʱ⠺ñ¿ëÀÌ ¸¹ÀÌ µì´Ï´Ù. ¶ÇÇÑ, Ãʱ⠼ÒÀ¯ ºñ¿ëÀÌ ³ôÀº ÀÌÀ¯´Â ½Å·ÚÇÒ ¼ö ÀÖ°í Á¤È®ÇÑ µ¥ÀÌÅ͸¦ º¸ÀåÇϱâ À§ÇØ Áö¼ÓÀûÀÎ À¯Áöº¸¼ö ¹× ±³Á¤ÀÌ ÇÊ¿äÇϱ⠶§¹®ÀÔ´Ï´Ù. ¼Ò±Ô¸ð ¿¬±¸ ±×·ì, Çмú ±â°ü ¹× ¿¹»êÀÌ Á¦ÇÑµÈ ÇÁ·ÎÁ§Æ®ÀÇ °æ¿ì ³ôÀº ºñ¿ëÀ¸·Î ÀÎÇØ CTD ½Ã½ºÅÛ ±¸¸Å°¡ ¾î·Á¿ö ÀÌ·¯ÇÑ Áß¿äÇÑ ÀÚ¿ø¿¡ ´ëÇÑ Á¢±ÙÀÌ Á¦Çѵ˴ϴÙ. ¶ÇÇÑ ÀÚ¿øÀÌ Á¦ÇÑµÈ È¯°æ¿¡¼ ¿¬±¸ÇÏ´Â ¿¬±¸Àڵ鿡°Ôµµ ¹®Á¦°¡ µË´Ï´Ù. µû¶ó¼ ³ôÀº ºñ¿ëÀº ½ÃÀå È®´ë¿¡ Å« À庮ÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù.
ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ¿¬±¸ÀÚ¿Í °úÇÐÀÚµéÀÌ ½ÉÇØÀÇ ½Åºñ¸¦ Ç®¾î³ª°¡´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. ÇØ¾ç »ýŰè, ¼öÁß ÀÚ¿ø ¹× ±âÈÄ º¯È¿¡ ´ëÇÑ ÀÌÇØÀÇ Çʿ伺ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ÇØ¾ç Ž»çÀÇ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. CTD ½Ã½ºÅÛÀº ÇØ·ù¸¦ ÆÄ¾ÇÇϰí, ¼öÁúÀ» ¸ð´ÏÅ͸µÇϰí, ÇØ¾ç »ý¹°À» ¿¬±¸Çϱâ À§ÇØ ¼ö¿Â, ¿°ºÐ, ¼ö½É°ú °°Àº ¸Å°³ º¯¼ö¿¡ ´ëÇÑ Áß¿äÇÑ µ¥ÀÌÅ͸¦ Á¦°øÇÕ´Ï´Ù. ÇØ¾ç »óȲÀ» Æò°¡Çϰí ÇØ¾ç »ç¾÷ÀÇ Áö¼Ó°¡´É¼º°ú ¾ÈÀü¼ºÀ» º¸ÀåÇϱâ À§ÇØ CTD ±â¼úÀº ÇʼöÀûÀÌ¸ç ½ÃÀå ¼ö¿ä¸¦ ÁÖµµÇϰí ÀÖ½À´Ï´Ù.
CTD ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ´õ ¸¹Àº Á¦Á¶¾÷ü¿Í °ø±Þ¾÷ü°¡ ½ÃÀå¿¡ ÁøÀÔÇÔ¿¡ µû¶ó °æÀïÀÌ ½É鵃 °ÍÀÔ´Ï´Ù. ÀÌ·¯ÇÑ °æÀï ½ÉÈ·Î ÀÎÇØ ¾÷°è´Â ¿©·¯ °¡Áö Ãø¸é¿¡¼ ºÎÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÞÀ» ¼ö ÀÖ½À´Ï´Ù. ù°, ±â¾÷µéÀÌ ½ÃÀå Á¡À¯À²À» È®º¸Çϱâ À§ÇØ ¼·Î °æÀïÇÏ¸é¼ °¡°Ý Ã¥Á¤ ¹× ¼öÀÍ·ü¿¡ ÇÏ¹æ ¾Ð·ÂÀ» °¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. °¡°Ý °æÀïÀº Àü¹ÝÀûÀÎ ¼öÀͼºÀ» ¶³¾î¶ß¸± ¼ö ÀÖÀ¸¸ç, ÀÌ´Â ±â¾÷ÀÌ CTD ½Ã½ºÅÛÀ» °ÈÇϱâ À§ÇÑ ¿¬±¸°³¹ß¿¡ ÀÚ±ÝÀ» ÅõÀÚÇÏ±â ¾î·Æ°Ô ¸¸µì´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀÌ ½ÃÀå ¼ºÀåÀ» ÀúÇØÇϰí ÀÖ½À´Ï´Ù.
COVID-19ÀÇ ´ëÀ¯ÇàÀº CTD(Àüµµµµ, ¿Âµµ, ±íÀÌ) ÃøÁ¤ ½Ã½ºÅÛ ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ÆÒµ¥¹ÍÀ¸·Î ÀÎÇÑ °¡µ¿ Áß´Ü, ³ëµ¿·Â °¨¼Ò ¹× ¿î¼Û Á¦ÇÑÀ¸·Î ÀÎÇØ °ø±Þ¸Á¿¡ È¥¶õÀÌ ¹ß»ýÇÏ¿© CTD ½Ã½ºÅÛ ¹× °ü·Ã ÀåºñÀÇ »ý»ê ¹× ³³Ç°¿¡ Áö¿¬ÀÌ ¹ß»ýÇß½À´Ï´Ù. µ¥ÀÌÅÍ ¼öÁý ¹× ÇöÀå Á¶»ç´Â ÆÒµ¥¹ÍÀ¸·Î ÀÎÇØ Á¦ÇѵǾú½À´Ï´Ù. ¿©Çà Á¦ÇÑ, ÃâÀÔ ÅëÁ¦, »çȸÀû °Å¸®µÎ±â·Î ÀÎÇØ ¿¬±¸ÀÚµéÀÌ ÇöÀå¿¡¼ CTD ½Ã½ºÅÛÀ» ¹èÄ¡Çϰí À¯ÁöÇÏ´Â µ¥ ¾î·Á¿òÀ» °Þ°í ÀÖ½À´Ï´Ù.
½ÉÇØ À¯Çü ºÎ¹®ÀÌ °¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù. ½ÉÇØ ȯ°æÀÇ ±Ø½ÉÇÑ ¾Ð·Â, Àú¿Â ¹× ÇØ¼öÀÇ ºÎ½Ä ÀÛ¿ëÀº ¸ðµÎ ÀÌ·¯ÇÑ ½Ã½ºÅÛÀÌ °ßµô ¼ö ÀÖµµ·Ï ¸¸µé¾îÁø °ÍÀÔ´Ï´Ù. ÇØ¾çÇÐ, ÇØ¾ç Ž»ç ¹× °úÇÐ ¿¬±¸´Â ½ÉÇØ CTD ½Ã½ºÅÛÀÇ ÀϹÝÀûÀÎ ÀÀ¿ë ºÐ¾ß·Î, CTD ½Ã½ºÅÛÀº °ß°íÇÑ ÄÉÀ̽ÌÀ¸·Î ±¸¼ºµÇ¾î ³»ºÎÀÇ ±úÁö±â ½¬¿î ¼¾¼¿Í ÀüÀÚ ÀåÄ¡¸¦ º¸È£ÇÕ´Ï´Ù. ÀÌ ½Ã½ºÅÛÀ» ÅëÇØ ¿¬±¸¿øµéÀº ¼ö¿Â, ¿°ºÐ, ¾Ð·Â µî ´Ù¾çÇÑ ½ÉÇØÀÇ À§Ä¡¿Í ±íÀÌ¿¡¼ ÇØ¾ç ¸Å°³ º¯¼ö¿¡ ´ëÇÑ Á¤È®ÇÑ Á¤º¸¸¦ ¼öÁýÇÒ ¼ö ÀÖ½À´Ï´Ù.
¹«¼± CTD ½Ã½ºÅÛ ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È À¯¸®ÇÑ ¼ºÀåÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµÇ¸ç, CTD ÃøÁ¤ ½Ã½ºÅÛ¿¡¼ À¯¿ëÇÏ°í µ¶Ã¢ÀûÀÎ ¹ßÀüÀº ¹«¼± CTD(Àüµµµµ, ¿Âµµ, ¼ö½É) ½Ã½ºÅÛÀÔ´Ï´Ù. ¹«¼± CTD ½Ã½ºÅÛÀº ¼¾¼¿Í ¼ö¸é »çÀÌÀÇ µ¥ÀÌÅÍ Àü¼Û¿¡ ¹°¸®Àû ÄÉÀ̺íÀÌ ÇÊ¿äÇÏÁö ¾Ê±â ¶§¹®¿¡ ´Ù¾çÇÑ ¼öÁß È¯°æ¿¡¼ º¸´Ù À¯¿¬Çϰí È¿°úÀûÀÎ µ¥ÀÌÅÍ ¼öÁýÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÀÌ ½Ã½ºÅÛÀº À̵¿¼º Çâ»ó, ½Å¼ÓÇÑ ¹èÄ¡ ¹× ȸ¼ö, ÄÉÀÌºí ¼Õ»ó ¹× ¾ûÅ´ °¡´É¼º °¨¼Ò µî ´Ù¾çÇÑ ÀÌÁ¡À» Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ, ¾î·Á¿î ÇØ¾ç ȯ°æ¿¡¼µµ ÀÚÀ¯·Ó°Ô ¿òÁ÷ÀÏ ¼ö ÀÖ¾î ¿ø°Ý Á¶Á¾ Â÷·®(ROV) ¹× ÀÚÀ² ¼öÁß Â÷·®¿¡ ƯÈ÷ ÀûÇÕÇÕ´Ï´Ù.
ÃßÁ¤ ±â°£ µ¿¾È ºÏ¹Ì Áö¿ªÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇß½À´Ï´Ù. ¹Ì±¹°ú ij³ª´Ù¸¦ Áß½ÉÀ¸·Î ÇÑ ÀÌ Áö¿ªÀº ÇØ¾çÇÐ, ¼ö±ÇÇÐ ¹× ȯ°æ °úÇÐ ºÐ¾ßÀÇ Çõ½Å°ú ¿¬±¸ÀÇ Áß½ÉÁöÀ̸ç, CTD ½Ã½ºÅÛ ½ÃÀåÀº ´ë¼¾ç°ú ÅÂÆò¾ç¿¡ °ÉÄ£ ±¤È°ÇÑ ÇØ¾È¼±À» °¡Áø ¹Ì±¹¿¡¼ ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ij³ª´Ù´Â ´ë±Ô¸ð ´ã¼ö ÀÚ¿ø°ú ÇØ¾ç ¿µÅ並 º¸À¯Çϰí Àֱ⠶§¹®¿¡ Å« ½ÃÀå Á¡À¯À²À» °¡Áö°í ÀÖ½À´Ï´Ù.
À¯·´Àº ´Ù¾çÇÑ ÀÀ¿ë ºÐ¾ß¿Í °úÇÐ ¿¬±¸, ȯ°æ ¸ð´ÏÅ͸µ, ÇØ¾ç »ê¾÷¿¡ ´ëÇÑ ³ôÀº °ü½ÉÀ¸·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È ¼öÀͼº ÀÖ´Â ¼ºÀåÀ» ÀÌ·ê °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À¯·´¿¡´Â ÇØ¾çÇÐ, ±âÈÄ ¿¬±¸, ÇØ¾ç »ý¹°Çп¡ Á¾»çÇÏ´Â ¼¼°èÀûÀ¸·Î À¯¸íÇÑ ¿¬±¸ ±â°ü, ´ëÇÐ, °úÇÐ ±â°üÀÌ ¸¹ÀÌ ÀÖ½À´Ï´Ù. È£¼ö, °, ÇØ¾çÀÇ »ý¹°ÇÐÀû »óÅ´ CTD ½Ã½ºÅÛÀ» »ç¿ëÇÏ¿© ƯÈ÷ ±âÈÄ º¯ÈÀÇ °üÁ¡¿¡¼ Æò°¡ÇÏ°í °ü¸®ÇÒ ¼ö ÀÖÀ¸¸ç, EUÀÇ È¯°æ ±ÔÁ¦¿¡ ´ëÇÑ ´ëÀÀÀº ÀÌ Áö¿ª¿¡¼ CTD ±â¼úÀÇ º¸±ÞÀ» ÃËÁøÇÒ °ÍÀÔ´Ï´Ù.
According to Stratistics MRC, the Global CTD Measuring System Market is accounted for $3.8 billion in 2023 and is expected to reach $6.5 billion by 2030 growing at a CAGR of 7.7% during the forecast period. CTD stands for conductivity, temperature, and depth. A CTD measuring system is a scientific tool used to gather and record data on these three parameters in a variety of aquatic environments, including lakes, rivers, and oceans. They support the study of oceanography, marine biology, and environmental monitoring by enabling scientists and oceanographers to collect high-quality data on water properties at various depths. The data collected by CTD systems are crucial for understanding ocean circulation, water mass characteristics, and the distribution of marine life.
Resource management is a key driver in the CTD Measuring System market, as these systems play a crucial role in the sustainable management of aquatic resources. CTD data in fisheries aids in the identification of optimal fishing grounds, the monitoring of salinity and temperature conditions for fish populations, and the guarantee that fishing operations are conducted sustainably to avert overfishing and safeguard marine ecosystems. Moreover, CTD systems offer the vital information required to ensure the long-term sustainability of aquatic resources, minimize environmental effects, and make well-informed decisions about resource management.
CTD instruments are intricate and require precision engineering, which contributes to their substantial upfront costs. Furthermore, the higher initial cost of ownership is attributed to the continuous maintenance and calibration needed to ensure reliable and accurate data. Smaller research groups, academic institutions, and projects with tight budgets may find it prohibitive to purchase CTD systems due to their high cost, which would restrict their access to these crucial resources. It also presents a problem for researchers working in environments with limited resources. Hence, a high cost is a significant barrier to market expansion.
These systems are essential to helping researchers and scientists solve the deep sea's mysteries. A growing need to understand marine ecosystems, underwater resources, and climate change is driving ocean exploration. In order to map ocean currents, monitor water quality, and study marine life, CTD systems provide vital data on parameters like temperature, salinity, and depth. In order to evaluate ocean conditions and guarantee the sustainability and safety of offshore operations, CTD technology is essential, driving market demand.
Competition intensifies as more manufacturers and suppliers enter the market in response to the growing demand for these systems. The industry may be negatively impacted by this increased competition in a number of ways. Firstly, as businesses compete with one another to capture market share, it may put downward pressure on pricing and profit margins. Price competition can reduce overall profitability, which would make it difficult for companies to spend money on R&D to enhance their CTD systems. These factors are hindering market growth.
The COVID-19 pandemic had a notable impact on the CTD (conductivity, temperature, and depth) measuring system market. The supply chain was disrupted by lockdowns resulting from the pandemic, a smaller workforce, and transportation limitations, which caused delays in the production and delivery of CTD systems and related equipment. Data collection and field research were restricted by the pandemic. Travel restrictions, lockdowns, and social distancing measures made it difficult for researchers to deploy and maintain CTD systems in the field.
The deep sea type segment is estimated to hold the largest share. Deep-sea environments' extreme pressures, low temperatures, and the corrosive effects of saltwater are all things that these systems are built to resist. Oceanography, marine exploration, and scientific research are the usual applications for deep-sea CTD systems. They are made up of a sturdy casing that shields the fragile sensors and electronics inside. They make it possible for researchers to collect exact information on ocean parameters at various deepwater locations and depths, including temperature, salinity, and pressure.
The wireless CTD systems segment is anticipated to have lucrative growth during the forecast period. A useful and inventive advancement in the CTD measuring system are wireless CTD (conductivity, temperature, and depth) systems. Wireless CTD systems enable more flexible and effective data collection in a variety of aquatic environments by eliminating the need for physical cables to transfer data between the sensor and the surface. They have a number of benefits, such as increased mobility, quicker deployment and retrieval times, and a lower chance of damage or entanglement to the cables. Additionally, they can move freely in difficult marine environments, which make them especially well-suited for remotely operated vehicles (ROVs) and autonomous underwater vehicles.
North America commanded the largest market share during the extrapolated period. This region, primarily comprising the United States and Canada, is a hub of technological innovation and research in oceanography, limnology, and environmental sciences. The market for CTD systems is growing in the United States because of its vast coastline that stretches along both the Atlantic and Pacific Oceans. Canada has a significant market share due to its large freshwater resources and maritime territories.
Europe is expected to witness profitable growth over the projection period, owing to its diverse applications and strong emphasis on scientific research, environmental monitoring, and offshore industries. Europe hosts numerous world-renowned research institutions, universities, and scientific organizations involved in oceanography, climate studies, and marine biology. The biological condition of lakes, rivers, and oceans can be evaluated and managed with the use of CTD systems, particularly in light of climate change. Compliance with EU environmental regulations promotes a greater uptake of CTD technology in this region.
Some of the key players in the CTD Measuring System Market include: Sea-Bird Electronics, Xylem, AML Oceanographic, Sea & Sun Technology, Idronaut, JFE Advantech, Nke Instrumentation, Star-Oddi, Aquatec Group, Daowan Technology, Valeport, Keller and Kongsberg.
In Apr 2022, Xylem's New Smart Wastewater treatment solution cuts operating costs and reduces energy use by 25%. This off-the-shelf suite of digital solutions for conventional activated sludge (CAS) plants marks the latest breakthrough in the digitization of water utilities.
In Oct 2021, Valeport Launches new marine sensing and monitoring instruments. New Bathy2 - an enhanced, robust integrated instrument to provide reliable and accurate density corrected depth data up to 6000m. New miniIPS2 and uvSVX with unique interchangeable pressure heads, these next-gen sensors benefit users who work at different depths.