½ÃÀ庸°í¼­
»óǰÄÚµå
1403406

ÀÇÇпë¾î ¼ÒÇÁÆ®¿þ¾î ½ÃÀå ¿¹Ãø(-2030³â) : Á¦Ç°, À¯Çü, ¿ëµµ, ÃÖÁ¾ »ç¿ëÀÚ ¹× Áö¿ªº° ¼¼°è ºÐ¼®

Medical Terminology Software Market Forecasts to 2030 - Global Analysis By Product, Type, Application, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°è ÀÇÇпë¾î ¼ÒÇÁÆ®¿þ¾î ½ÃÀåÀº 2023³â¿¡ 12¾ï 5,000¸¸ ´Þ·¯, 2030³â¿¡´Â 27¾ï 4,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç ¿¹Ãø ±â°£ µ¿¾È 20.3%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ÀÇÇпë¾î ¼ÒÇÁÆ®¿þ¾î´Â ÀÇ·á Àü¹®°¡°¡ ÀÇÇпë¾î¸¦ Á¤È®ÇÏ°Ô ÀÌÇØÇÏ°í »ç¿ëÇÒ ¼ö ÀÖµµ·Ï ¼³°èµÈ Àü¹® µµ±¸ÀÔ´Ï´Ù. ÀϹÝÀûÀ¸·Î ÀÇÇпë¾î, ÇØºÎµµ ¹× ÀÓ»ó Á¤º¸ÀÇ Á¾ÇÕÀû ÀÎ µ¥ÀÌÅͺ£À̽º¸¦ Æ÷ÇÔÇÕ´Ï´Ù. ÀÌ ¼ÒÇÁÆ®¿þ¾î´Â ÀÇ·á ÄÚµù, ¹®¼­È­ ¹× ÀÇ·á Àü¹®°¡ °£ÀÇ ÀÇ»ç ¼ÒÅëÀ» Áö¿øÇÕ´Ï´Ù. ÀÇ·á ÇöÀå¿¡¼­ Á¤È®ÇÑ ÀÇ»ç ¼ÒÅëÀ» ÃËÁøÇÔÀ¸·Î½á ÀÇÇпë¾îÁý ¼ÒÇÁÆ®¿þ¾î´Â ȯÀÚ Ä¡·á¸¦ °³¼±ÇÏ°í ¿öÅ© Ç÷ο츦 °£¼ÒÈ­Çϸç ÀÇ·á ¹®¼­ ¹× ÄÚµù ÇÁ·Î¼¼½ºÀÇ Á¤È®¼ºÀ» Çâ»ó½ÃŰ´Â µ¥ ±â¿©ÇÕ´Ï´Ù.

Á¸ ȩŲ½º Á¶»ç¿¡ µû¸£¸é, ¹Ì±¹¿¡¼­´Â ¸Å³â 25¸¸ ¸í ÀÌ»óÀÌ ÀÓ»ó ½Ç¼ö·Î ÀÎÇØ »ç¸ÁÇϰí ÀÖÀ¸¸ç, ½ÉÀ庴, ¾Ï¿¡ ÀÌ¾î ¼¼ ¹øÂ° »ç¸Á ¿øÀÎÀ¸·Î ²ÅÈü´Ï´Ù.

ÀüÀڰǰ­±â·Ï(EHR) µµÀÔ È®´ë

ÀÇ·á ¼­ºñ½º Á¦°ø¾÷ü°¡ µðÁöÅÐÈ­µÈ ½Ã½ºÅÛÀ¸·Î ÀüȯÇÔ¿¡ µû¶ó °í±Þ ÀÇÇпë¾î ¼ÒÇÁÆ®¿þ¾î¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼Ö·ç¼ÇÀº ÀüÀÚ ±â·ÏÀÇ º¹ÀâÇÑ ÀÇ·á µ¥ÀÌÅ͸¦ °ü¸®Çϰí ÇØ¼®ÇÏ¿© È¿À²¼º, Á¤È®¼º ¹× »óÈ£ ¿î¿ë¼ºÀ» ³ôÀÌ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖÀ¸¸ç, EHR ½Ã½ºÅÛ¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁü¿¡ µû¶ó ÀÇ·á Á¤º¸ ±â¼úÀÇ ¹ßÀü°ú ÇÔ²² ÀÇÇпë¾î¸¦ ¿øÈ°ÇÏ°Ô Àü´ÞÇÏ°í ºÐ¼®ÇÒ ¼ö ÀÖ´Â Àü¹® ¼ÒÇÁÆ®¿þ¾î ½ÃÀåÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù.

µ¥ÀÌÅÍ º¸¾È¿¡ ´ëÇÑ ¿ì·Á

ȯÀÚ ±â·Ï°ú ÀÇ·á Á¤º¸¸¦ Æ÷ÇÔÇÑ ÇコÄÉ¾î µ¥ÀÌÅÍ´Â ±â¹Ð¼ºÀÌ ³ô±â ¶§¹®¿¡ ÀáÀçÀûÀÎ Ä§ÇØ¿Í ¹«´Ü Á¢±Ù¿¡ ´ëÇÑ ¿ì·Á°¡ Ä¿Áö°í ÀÖ½À´Ï´Ù. ÀÇ·á ±â°üÀÌ µðÁöÅÐ ¼Ö·ç¼ÇÀ» äÅÃÇÏ´Â °æÇâÀÌ ³ô¾ÆÁö¸é¼­ ȯÀÚÀÇ ºñ¹ÐÀ» º¸È£ÇÏ°í °³ÀÎÁ¤º¸ º¸È£ ±ÔÁ¤À» ÁؼöÇϱâ À§ÇØ °­·ÂÇÑ º¸¾È Á¶Ä¡¸¦ È®º¸ÇÏ´Â °ÍÀÌ ¸Å¿ì Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù. µû¶ó¼­ µ¥ÀÌÅÍ º¸¾È¿¡ ´ëÇÑ ¿ì·Á´Â ÀÇ·á¿ë¾îÁý ¼ÒÇÁÆ®¿þ¾î ½ÃÀåÀ» ¾ïÁ¦ÇÏ´Â ÁÖ¿ä ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù.

¸ÂÃãÇü ÀÇ·á¿Í Á¤¹ÐÀÇ·áÀÇ Á߿伺 Áõ´ë

ÇコÄÉ¾î ¾÷°è°¡ ȯÀÚ Áß½ÉÀû Á¢±Ù ¹æ½ÄÀ» äÅÃÇÏ´Â °æÇâÀÌ ³ô¾ÆÁü¿¡ µû¶ó, ȯÀÚ Ä¡·á¿Í °á°ú¸¦ ÃÖÀûÈ­Çϱâ À§ÇØ ÀÇÇпë¾îÁý ¼ÒÇÁÆ®¿þ¾î¿¡ °³ÀÎ ¸ÂÃãÇü ÀÇ·á¿Í Á¤¹ÐÀÇ·á °³³äÀ» ÅëÇÕÇÏ´Â °ÍÀÌ ÇʼöÀûÀÔ´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â ÇコÄÉ¾î ±â¼ú, À¯ÀüüÇÐ, µ¥ÀÌÅÍ ºÐ¼®ÀÇ ¹ßÀüÀ¸·Î ÀÎÇØ ´õ¿í °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. °³ÀÎÈ­µÈ ȯÀÚ µ¥ÀÌÅ͸¦ È¿À²ÀûÀ¸·Î °ü¸®ÇÏ°í ºÐ¼®ÇÒ ¼ö ÀÖ´Â ¼ÒÇÁÆ®¿þ¾î ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϸ鼭 º¸´Ù Á¤¹ÐÇÑ °³ÀÎ ¸ÂÃãÇü ÀǷḦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. µû¶ó¼­ ÀÌ·¯ÇÑ ºñÁß Áõ°¡´Â ½ÃÀå ¼ºÀå¿¡ À¯¸®ÇÏ°Ô ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù.

³ôÀº µµÀÔ ºñ¿ë°ú À¯Áöº¸¼ö ºñ¿ë

ÀÇÇпë¾î ¼ÒÇÁÆ®¿þ¾î´Â ±× Ư¼ö¼ºÀ¸·Î ÀÎÇØ µµÀÔ ¹× À¯Áöº¸¼ö ºñ¿ëÀÌ ³ôÀ¸¸ç, ±âÁ¸ ÀÇ·á ½Ã½ºÅÛ°ú Á¾ÇÕÀûÀ¸·Î ÅëÇÕÇØ¾ß ÇÕ´Ï´Ù. ¶ÇÇÑ, ´Ù¾çÇÑ ÀÇ·á ºÐ¾ß¿¡ ´ëÀÀÇϱâ À§ÇÑ Ä¿½ºÅ͸¶ÀÌ¡°ú ÁøÈ­Çϴ ǥÁØ ±Ô°Ý¿¡ ´ëÇÑ Áؼöµµ °³¹ß ºñ¿ëÀÇ ÇÑ ¿äÀÎÀ¸·Î ÀÛ¿ëÇÕ´Ï´Ù. Áö¼ÓÀûÀÎ À¯Áöº¸¼ö¿¡´Â º¯È­ÇÏ´Â ÀÇÇпë¾î¸¦ ¹Ý¿µÇÏ°í ¹ý±Ô¸¦ ÁؼöÇϱâ À§ÇÑ ¾÷µ¥ÀÌÆ®°¡ Æ÷ÇԵ˴ϴÙ. ÀÌó·³ º¹ÀâÇÑ ÀÇÇпë¾î ¼ÒÇÁÆ®¿þ¾î´Â ¸¹Àº ÅõÀÚ°¡ ÇÊ¿äÇϱ⠶§¹®¿¡ ¿¹»êÀÌ ¾Ð¹ÚÀ» ¹Þ¾Æ º¸±ÞÀÌ Á¦ÇÑµÉ ¼ö ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

Äڷγª19ÀÇ ´ëÀ¯ÇàÀº ÀÇ·á ¼­ºñ½º Á¦°ø¾÷üÀÇ µðÁöÅÐ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁö¸é¼­ ÀÇÇпë¾îÁý ¼ÒÇÁÆ®¿þ¾î ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. È¿À²ÀûÀÎ Ä¿¹Â´ÏÄÉÀÌ¼Ç ¹× ¹®¼­È­ µµ±¸¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϸ鼭 °í±Þ ÀÇÇпë¾îÁý ¼ÒÇÁÆ®¿þ¾îÀÇ µµÀÔÀÌ ÃËÁøµÆ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â ÀÇ·á ¾÷°è°¡ ¿öÅ©ÇÃ·Î¿ì °£¼ÒÈ­¿Í Á¤È®ÇÑ µ¥ÀÌÅÍ °ü¸®¸¦ ¿ì¼±¼øÀ§·Î »ï°í Àֱ⠶§¹®¿¡ ¾ÕÀ¸·Îµµ °è¼ÓµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Äڷγª19´Â ÀÇ·áÀÇ µðÁöÅÐÈ­¸¦ °¡¼ÓÈ­Çϰí ÀÇ·á ÇöÀåÀÇ Ä¿¹Â´ÏÄÉÀ̼Ç, ¹®¼­È­ ¹× Àü¹ÝÀûÀÎ È¿À²¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ´Â °­·ÂÇÑ ÀÇÇпë¾î ¼ÒÇÁÆ®¿þ¾îÀÇ Á߿伺À» °­Á¶Çϰí ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ÀǾàǰ Á¤º¸ µ¥ÀÌÅͺ£À̽º ºÐ¾ß°¡ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»ó

ÀǾàǰ Á¤º¸ µ¥ÀÌÅͺ£À̽º ºÐ¾ß´Â À¯¸®ÇÑ ¼ºÀå¼¼¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÇÇпë¾î ¼ÒÇÁÆ®¿þ¾î´Â ÀǾàǰ¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ ¼¼ºÎ Á¤º¸¸¦ Á¦°øÇϱâ À§ÇØ ÀǾàǰ Á¤º¸ µ¥ÀÌÅͺ£À̽º¸¦ ÀÚÁÖ È°¿ëÇÕ´Ï´Ù. ÀÌ·¯ÇÑ µ¥ÀÌÅͺ£À̽º¿¡´Â ¾à¹° À̸§, ºÐ·ù, º¹¿ë·®, »óÈ£ ÀÛ¿ë ¹× ºÎÀÛ¿ë°ú °°Àº Áß¿äÇÑ µ¥ÀÌÅͰ¡ Æ÷ÇԵǾî ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¥ÀÌÅͺ£À̽º¸¦ ÅëÇÕÇϸé ÀÇ·á Àü¹®°¡°¡ ȯÀÚ Ä¡·á¿Í °ü·ÃÇÏ¿© Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç °áÁ¤À» ³»¸± ¼ö ÀÖ´Â ´É·ÂÀ» Çâ»ó½ÃÄÑ Á¤È®ÇÑ Ã³¹æ °ü¸®¸¦ º¸ÀåÇϰí ÀáÀçÀû À§ÇèÀ» ÃÖ¼ÒÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ÀÓ»ó½ÃÇè ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»ó

ÀÓ»ó½ÃÇè ºÐ¾ß´Â Á¤È®ÇÑ Ä¿¹Â´ÏÄÉÀ̼ǰú µ¥ÀÌÅÍ Á¤È®¼ºÀ¸·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ Àü¹®¿ëµµ´Â ¿ë¾î °ü¸®¸¦ °£¼ÒÈ­Çϰí ÀÓ»ó½ÃÇèÀÇ °¢ ´Ü°è¿¡¼­ ÀÇÇпë¾îÀÇ Àϰü¼ºÀ» º¸ÀåÇÕ´Ï´Ù. ¿¬±¸ÀÚ °£ÀÇ Ä¿¹Â´ÏÄÉÀ̼ÇÀ» °­È­ÇÏ°í ¿À·ù¿Í ¿ÀÇØ¸¦ ÁÙÀÔ´Ï´Ù. ÀÌ ¼ÒÇÁÆ®¿þ¾î´Â Ç¥ÁØÈ­µÈ º¸°í¸¦ ¿ëÀÌÇÏ°Ô ÇÏ°í ±ÔÁ¦ Áؼö¸¦ Áö¿øÇÕ´Ï´Ù. ÅëÀÏµÈ ¾ð¾î ÇÁ·¹ÀÓ¿öÅ©¸¦ Á¦°øÇÔÀ¸·Î½á µ¥ÀÌÅÍ ºÐ¼®ÀÇ È¿À²¼º°ú ´Ù¾çÇÑ ÀÌÇØ°ü°èÀÚ°£ÀÇ Çù¾÷À» ÃËÁøÇÕ´Ï´Ù. ÀüüÀûÀ¸·Î ÀÌ µµ±¸´Â º¹ÀâÇÑ ÀÓ»ó½ÃÇè »óȲ¿¡¼­ ¸íÈ®¼º, Á¤È®¼º ¹× Àϰü¼ºÀ» À¯ÁöÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

¾Æ½Ã¾ÆÅÂÆò¾çÀº ½ÅÈï±¹ÀÇ Á¸Àç, º´¿ø ¼ö Áõ°¡, °øÁß º¸°Ç ¸ð´ÏÅ͸µ¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ, ¾ÆÅÂÁö¿ªÀº ÇコÄɾîÀÇ µðÁöÅÐÈ­µµ ºü¸£°Ô ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ±â¾÷µéÀº ÀÇ·á Àü¹®°¡µéÀÇ ÁøÈ­ÇÏ´Â ¿ä±¸¸¦ ÃæÁ·½Ã۱â À§ÇØ Çõ½ÅÀûÀÎ ¼Ö·ç¼Ç¿¡ ÁýÁßÇϰí ÀÖ½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ÀÇÇпë¾î ¼ÒÇÁÆ®¿þ¾î ½ÃÀåÀº Ä¿¹Â´ÏÄÉÀ̼ÇÀ» °­È­Çϰí ÀÇ·á ¿öÅ©Ç÷ο츦 °£¼ÒÈ­ÇÏ¿© ´õ ¸¹Àº ¹ßÀüÀ» ÀÌ·ê ¼ö ÀÖ´Â ¿©°ÇÀ» °®Ãß°í ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ´Â Á¤ºÎÀÇ Àû±ØÀûÀÎ ³ë·Â°ú Áö¿ø ÇÁ·Î±×·¥ ½ÃÇà¿¡ ±âÀÎÇÕ´Ï´Ù. ¹Ì±¹Àº ¸¹Àº Áö¿ø ÇÁ·Î±×·¥, ¼÷·ÃµÈ Àü¹®°¡, źźÇÑ ÀÎÇÁ¶ó¸¦ °®Ãß°í ÀÖ¾î ºÏ¹Ì ½ÃÀå¿¡¼­ ¼±µÎ¸¦ Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ³ôÀº HCIT µµÀÔ·ü, ȯÀÚ ¾ÈÀü¿¡ ´ëÇÑ ±ÔÁ¦ ¿ä°Ç, ÀÌ Áö¿ªÀÇ ÁÖ¿ä ½ÃÀå ±â¾÷ÀÇ Á¸Àç µîÀÌ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù.

¹«·á ¸ÂÃãÇü ¼­ºñ½º

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÇü ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀûÀÎ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤ ¹× ¿¹Ãø, CAGR(Âü°í: Ÿ´ç¼º È®Àο¡ µû¶ó ´Ù¸§)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç ¼Ò½º
    • 1Â÷ Á¶»ç ¼Ò½º
    • 2Â÷ Á¶»ç ¼Ò½º
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • Á¦Ç° ºÐ¼®
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾»ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • ½ÅÇü Äڷγª¹ÙÀÌ·¯½º(COVID-19)ÀÇ ¿µÇâ

Á¦4Àå PorterÀÇ Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ¹ÙÀ̾îÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô ÁøÃâ¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ÀÇÇпë¾î ¼ÒÇÁÆ®¿þ¾î ½ÃÀå : Á¦Ç°º°

  • ÀÇÇпë¾î °ü¸® ¼ÒÇÁÆ®¿þ¾î
  • ÀÓ»ó ¹®¼­ ÀÛ¼º ¼ÒÇÁÆ®¿þ¾î
  • ÀÇ·á¿ë ½ºÆç¸µ ¼ÒÇÁÆ®¿þ¾î
  • ÀÇÇÐ »çÀü ¼ÒÇÁÆ®¿þ¾î
  • ÀÇ·á ¾ð¾î ¹ø¿ª ¼ÒÇÁÆ®¿þ¾î
  • ÀÓ»ó ÄÚµù ¼ÒÇÁÆ®¿þ¾î
  • ÀÇ·á ¾àĪ ¼ÒÇÁÆ®¿þ¾î
  • ÀǾàǰ Á¤º¸ µ¥ÀÌÅͺ£À̽º
  • ±âŸ Á¦Ç°

Á¦6Àå ¼¼°èÀÇ ÀÇÇпë¾î ¼ÒÇÁÆ®¿þ¾î ½ÃÀå : À¯Çüº°

  • ÀÓ»ó ¿ë¾î ¼ÒÇÁÆ®¿þ¾î
  • ÇàÁ¤ ÀÇÇпë¾î ¼ÒÇÁÆ®¿þ¾î

Á¦7Àå ¼¼°èÀÇ ÀÇÇпë¾î ¼ÒÇÁÆ®¿þ¾î ½ÃÀå : ¿ëµµº°

  • ǰÁú º¸°í
  • ÀÓ»ó °¡À̵å¶óÀÎ
  • µ¥ÀÌÅÍ Áý¾à
  • »óȯ
  • ÀüÀڰǰ­±â·Ï(EHR)
  • ÀÓ»ó½ÃÇè
  • ÇコÄɾî Á¤º¸±³È¯(HIE)
  • °øÁßÀ§»ý °¨½Ã
  • ÀÇ»ç°áÁ¤ Áö¿ø
  • ±âŸ ¿ëµµ

Á¦8Àå ¼¼°èÀÇ ÀÇÇпë¾î ¼ÒÇÁÆ®¿þ¾î ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • º´¿ø
  • Ŭ¸®´Ð
  • ¿¬±¸±â°ü
  • ±âŸ ÃÖÁ¾»ç¿ëÀÚ

Á¦9Àå ¼¼°èÀÇ ÀÇÇпë¾î ¼ÒÇÁÆ®¿þ¾î ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦10Àå ÁÖ¿ä ¹ßÀü

  • °è¾à/ÆÄÆ®³Ê½Ê/Çù¾÷/ÇÕÀÛÅõÀÚ(JV)
  • ÀμöÇÕº´(M&A)
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦11Àå ±â¾÷ °³¿ä

  • The 3M Company
  • Amazon Web Services
  • BiTAC
  • Wolters Kluwer N.V.
  • CareCom
  • Clinical Architecture LLC
  • Apelon Inc.
  • BT Clinical Computing
  • HiveWorx
  • West Coast Informatics LLC
  • B2i Healthcare
  • Spellex Corporation
  • QA Healthcare Pte Ltd
  • Medocomp Systems
  • TermSolution Gmbh
  • Rhapsody
  • SNOMED International
  • Intelligent Medical Objects Inc.
LSH 24.01.12

According to Stratistics MRC, the Global Medical Terminology Software Market is accounted for $1.25 billion in 2023 and is expected to reach $2.74 billion by 2030 growing at a CAGR of 20.3% during the forecast period. Medical terminology software is a specialized tool designed to assist healthcare professionals in understanding and using medical terms accurately. It typically includes comprehensive databases of medical terminology, anatomical illustrations, and clinical information. This software aids in medical coding, documentation, and communication among healthcare professionals. By facilitating precise communication in the medical field, medical terminology software contributes to improved patient care, streamlined workflows, and enhanced accuracy in medical documentation and coding processes.

According to a John Hopkins study, in the U.S., more than 250,000 deaths are caused by clinical errors each year, making it the third leading cause of death after heart disease and cancer.

Market Dynamics:

Driver:

Increasing adoption of electronic health records (EHR)

As healthcare providers transition towards digitized systems, the demand for advanced medical terminology software rises. These solutions play a crucial role in managing and interpreting complex healthcare data within electronic records, enhancing efficiency, accuracy, and interoperability. The increasing reliance on EHR systems propels the market for specialized software that facilitates seamless communication and analysis of medical terminology in the evolving landscape of healthcare information technology.

Restraint:

Data security concerns

The sensitive nature of healthcare data, including patient records and medical information, raises apprehensions about potential breaches and unauthorized access. As healthcare organizations increasingly adopt digital solutions, ensuring robust security measures becomes crucial to safeguarding patient confidentiality and complying with privacy regulations. Therefore, this data security concerns pose a significant restraint in the medical terminology software market.

Opportunity:

Growing emphasis on personalized & precision medicine

As the healthcare industry increasingly adopts a patient-centric approach, the integration of personalized and precision medicine concepts into medical terminology software becomes essential for optimizing patient care and outcomes. This trend is driven by advancements in healthcare technology, genomics, and data analytics. The demand for software solutions that can efficiently manage and analyze personalized patient data is on the rise, facilitating more targeted and individualized medical treatments. Thereby, this growing emphasis is experiencing lucrative market growth.

Threat:

High implementation & maintenance costs

Medical terminology software incurs high implementation and maintenance costs due to its specialized nature, necessitating comprehensive integration with existing healthcare systems. Customization to accommodate diverse medical fields and compliance with evolving standards contribute to development expenses. Ongoing maintenance involves updates to reflect changing medical terminology and ensure regulatory compliance. This intricate nature of medical terminology software requires substantial investment, impacting budgetary considerations and potentially limiting the widespread adoption.

COVID-19 Impact

The COVID-19 pandemic has significantly impacted the medical terminology software market as healthcare providers increasingly rely on digital solutions. The demand for efficient communication and documentation tools surged, driving the adoption of advanced medical terminology software. This trend is expected to persist as the industry continues to prioritize streamlined workflows and accurate data management. The pandemic has accelerated the digitization of healthcare, emphasizing the importance of robust medical terminology software in enhancing communication, documentation, and overall efficiency within the medical field.

The drug information databases segment is expected to be the largest during the forecast period

The drug information databases segment is estimated to have a lucrative growth. Medical terminology software often utilizes drug information databases to provide comprehensive details about pharmaceuticals. These databases contain crucial data such as drug names, classifications, dosages, interactions, and side effects. Integration of these databases enhances healthcare professionals' ability to make informed decisions regarding patient treatment, ensuring accurate prescription management and minimizing potential risks.

The clinical trials segment is expected to have the highest CAGR during the forecast period

The clinical trials segment is anticipated to witness the highest CAGR growth during the forecast period, due to its precise communication and data accuracy. This specialized application streamlines terminology management, ensuring consistency in medical language across trial phases. It enhances communication among researchers, reducing errors and misinterpretations. The software facilitates standardized reporting, aiding regulatory compliance. By providing a unified language framework, it promotes efficiency in data analysis and collaboration among diverse stakeholders. Overall, this tool is indispensable in maintaining clarity, accuracy, and cohesion in the complex landscape of clinical trials.

Region with largest share:

Asia Pacific is projected to hold the largest market share during the forecast period owing to the presence of emerging economies, the rising number of hospitals, and increasing investments in public health surveillance. The Asia Pacific is also witnessing increasing healthcare digitization. Key players are focusing on innovative solutions to meet the evolving needs of healthcare professionals. The Asia Pacific Medical Terminology Software market is poised for further advancements, offering enhanced communication and streamlined healthcare workflows.

Region with highest CAGR:

North America is projected to have the highest CAGR over the forecast period, owing to the implementation of favourable government initiatives and support programs. The United States tops the North America market with numerous support programmes, skilled professionals and robust infrastructure. Further factors such as high adoption rate of HCIT adoption, regulatory requirements regarding patient safety, presence of leading market players in the region are propelling the market growth.

Key players in the market:

Some of the key players profiled in the Medical Terminology Software Market include The 3M Company, Amazon Web Services, BiTAC, Wolters Kluwer N.V., CareCom, Clinical Architecture LLC, Apelon Inc., BT Clinical Computing, HiveWorx, West Coast Informatics LLC, B2i Healthcare, Spellex Corporation, QA Healthcare Pte Ltd, Medocomp Systems, TermSolution Gmbh, Rhapsody, SNOMED International and Intelligent Medical Objects Inc.

Key Developments:

In July 2023, Amazon Web Services (AWS) announced the launch of HealthScribe, deepening its commitment to augmenting healthcare delivery and innovating cutting-edge industry solutions. HealthScribe is a new service that will enable healthcare software developers and providers to create clinical applications that use speech recognition, artificial intelligence capabilities, and advanced machine learning algorithms to help generate clinical documentation and thereby, enrich provider workflows.

In April 2023, 3M Health Information Systems (HIS) announces a collaboration with Amazon Web Services (AWS) to accelerate the innovation and advancement of 3M M*Modal ambient intelligence. The platform supports cloud-based solutions like 3MTM M*Modal Fluency Direct for real time speech recognition compatible with more than 250 electronic health records (EHRs) and 3MTM M*Modal Fluency Align for ambient clinical documentation.

Products Covered:

  • Medical Vocabulary Management Software
  • Clinical Documentation Software
  • Medical Spell Check Software
  • Medical Dictionary Software
  • Medical Language Translation Software
  • Clinical Coding Software
  • Medical Abbreviation Software
  • Drug Information Databases
  • Other Products

Types Covered:

  • Clinical Terminology Software
  • Administrative Medical Terminology Software

Applications Covered:

  • Quality Reporting
  • Clinical Guidelines
  • Data Aggregation
  • Reimbursement
  • Electronic Health Records (EHR)
  • Clinical Trials
  • Healthcare Information Exchange (HIE)
  • Public Health Surveillance
  • Decision Support
  • Other Applications

End Users Covered:

  • Hospitals
  • Clinics
  • Research Institutes
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2021, 2022, 2023, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Product Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Medical Terminology Software Market, By Product

  • 5.1 Introduction
  • 5.2 Medical Vocabulary Management Software
  • 5.3 Clinical Documentation Software
  • 5.4 Medical Spell Check Software
  • 5.5 Medical Dictionary Software
  • 5.6 Medical Language Translation Software
  • 5.7 Clinical Coding Software
  • 5.8 Medical Abbreviation Software
  • 5.9 Drug Information Databases
  • 5.10 Other Products

6 Global Medical Terminology Software Market, By Type

  • 6.1 Introduction
  • 6.2 Clinical Terminology Software
  • 6.3 Administrative Medical Terminology Software

7 Global Medical Terminology Software Market, By Application

  • 7.1 Introduction
  • 7.2 Quality Reporting
  • 7.3 Clinical Guidelines
  • 7.4 Data Aggregation
  • 7.5 Reimbursement
  • 7.6 Electronic Health Records (EHR)
  • 7.7 Clinical Trials
  • 7.8 Healthcare Information Exchange (HIE)
  • 7.9 Public Health Surveillance
  • 7.10 Decision Support
  • 7.11 Other Applications

8 Global Medical Terminology Software Market, By End User

  • 8.1 Introduction
  • 8.2 Hospitals
  • 8.3 Clinics
  • 8.4 Research Institutes
  • 8.5 Other End Users

9 Global Medical Terminology Software Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 The 3M Company
  • 11.2 Amazon Web Services
  • 11.3 BiTAC
  • 11.4 Wolters Kluwer N.V.
  • 11.5 CareCom
  • 11.6 Clinical Architecture LLC
  • 11.7 Apelon Inc.
  • 11.8 BT Clinical Computing
  • 11.9 HiveWorx
  • 11.10 West Coast Informatics LLC
  • 11.11 B2i Healthcare
  • 11.12 Spellex Corporation
  • 11.13 QA Healthcare Pte Ltd
  • 11.14 Medocomp Systems
  • 11.15 TermSolution Gmbh
  • 11.16 Rhapsody
  • 11.17 SNOMED International
  • 11.18 Intelligent Medical Objects Inc.
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦