![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1403438
¼¼°èÀÇ ¾à¹° ¸ðµ¨¸µ ¼ÒÇÁÆ®¿þ¾î ½ÃÀå ¿¹Ãø(-2030³â) : ±¸¼º ¿ä¼Òº°, ¹èÆ÷, ¿î¿µ üÁ¦º°, ±â¾÷ ±Ô¸ðº°, ±¸¸Å ¸ðµ¨º°, ¿ëµµº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®Drug Modeling Software Market Forecasts to 2030 - Global Analysis By Component, By Deployment, Operating System, Enterprise Size, Purchasing Model, Application, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é, ¼¼°è ¾à¹° ¸ðµ¨¸µ ¼ÒÇÁÆ®¿þ¾î ½ÃÀåÀº 2023³â 77¾ï ´Þ·¯·Î ÃßÁ¤µÇ¸ç, ¿¹Ãø ±â°£ µ¿¾È 10.5%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÏ¿© 2030³â 155¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¾à¹° ¸ðµ¨¸µ ¼ÒÇÁÆ®¿þ¾î´Â ½Å¾à °³¹ß ¹× ¾à¹° °³¹ßÀÇ Ãø¸éÀ» ¿¹Ãø, ºÐ¼® ¹× ÃÖÀûÈÇϱâ À§ÇØ ¾Ë°í¸®Áò°ú ½Ã¹Ä·¹À̼ÇÀ» äÅÃÇÑ °è»ê µµ±¸¸¦ ¸»ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ÇÁ·Î±×·¥Àº ºÐÀÚ °£ »óÈ£ ÀÛ¿ë, ¾àµ¿ÇÐ, ¾à¹°°ú Ç¥ÀûÀÇ »óÈ£ ÀÛ¿ë¿¡ ´ëÇÑ ÀÌÇØ¸¦ ÃËÁøÇÕ´Ï´Ù. »ý¹°ÇÐÀû ½Ã½ºÅÛ, ÈÇÐ ±¸Á¶, ¾à¹°ÀÇ °Åµ¿À» ½Ã¹Ä·¹À̼ÇÇÏ°í ¸ðµ¨¸µÇÏ¿© ÀáÀçÀûÀÎ ÀǾàǰ Èĺ¸¹°ÁúÀÇ ¼³°è, ½ºÅ©¸®´×, ÃÖÀûȸ¦ Áö¿øÇÏ¿© ÀǾàǰ ¿¬±¸°³¹ß °úÁ¤ÀÇ È¿À²¼º°ú ¼º°ø·üÀ» ³ôÀÔ´Ï´Ù.
¹Ì±¹¿¬±¸Á¦¾à»ê¾÷Çùȸ¿¡ µû¸£¸é, ¼º°øÀûÀÎ ÀǾàǰ ¿¬±¸°³¹ß¿¡´Â Æò±Õ 26¾ï ´Þ·¯°¡ ¼Ò¿äµË´Ï´Ù.
»õ·Î¿î Ä¡·á¹ý¿¡ ´ëÇÑ ¿ä±¸ Áõ°¡
º¹ÀâÇÑ Áúº´ÀÌ È®»êµÇ°í Ä¡·á ¿ä±¸»çÇ×ÀÌ ÁøÈÇÔ¿¡ µû¶ó Çõ½ÅÀûÀ̰í È¿°úÀûÀÎ Ä¡·á¹ý¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¾à¹° ¸ðµ¨¸µ ¼ÒÇÁÆ®¿þ¾î´Â ´Ù¾çÇÑ ºÐÀÚ ±¸Á¶ÀÇ Å½»ö°ú ¿¹Ãø ½Ã¹Ä·¹À̼ÇÀ» ÅëÇØ ÀáÀçÀûÀÎ ¾à¹° Èĺ¸¹°ÁúÀÇ ½Äº°°ú ÃÖÀûȸ¦ ÃËÁøÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Áß½ÉÀÇ Á¢±Ù ¹æ½ÄÀº ½Å¾à °³¹ß ÇÁ·Î¼¼½º¸¦ °¡¼ÓÈÇÒ »Ó¸¸ ¾Æ´Ï¶ó ¸ÂÃãÇü Ä¡·á¹ý ¼³°è¸¦ Áö¿øÇÏ¿© º¸´Ù Á¤¹ÐÇϰí Ç¥Àûȵǰí È¿°úÀûÀÎ Ä¡·á¹ý¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃæÁ·½ÃÄÑ ÀÇ·á Çõ½ÅÀ» ÃËÁøÇÏ´Â µ¥ ÀÖ¾î ¼ÒÇÁÆ®¿þ¾îÀÇ Á߿伺°ú º¸±ÞÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
°ËÁõ ¹× Á¤È®µµ ¹®Á¦
¿¹Ãø ¸ðµ¨ÀÇ Á¤È®¼º°ú ½Å·Ú¼ºÀ» È®º¸Çϱâ À§Çؼ´Â ½ÇÇè µ¥ÀÌÅÍ¿¡ ´ëÇÑ ±¤¹üÀ§ÇÑ °ËÁõÀÌ ÇÊ¿äÇϸç, ÀÌ´Â ¸¹Àº ½Ã°£°ú ÀÚ¿øÀ» ÇÊ¿ä·Î ÇÏ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ¶ÇÇÑ, º¹ÀâÇÑ »ý¹°ÇÐÀû ½Ã½ºÅÛ°ú ¾à¹°°ú Ç¥Àû °£ÀÇ ´Ù¾çÇÑ »óÈ£ ÀÛ¿ëÀº ¼ÒÇÁÆ®¿þ¾îÀÇ ¿¹Ãø ´É·Â¿¡ ¿µÇâÀ» ¹ÌÃÄ Á¤È®µµ ¹®Á¦¸¦ ¾ß±âÇÕ´Ï´Ù. Çö½Ç ¼¼°èÀÇ º¹À⼺À» Á¤È®ÇÏ°Ô ÀçÇöÇÏ´Â µ¥ ÇѰ谡 Àֱ⠶§¹®¿¡ ¼ÒÇÁÆ®¿þ¾îÀÇ È¿°ú¸¦ ¹æÇØÇϰí Áö¼ÓÀûÀÎ °³¼±°ú °ËÁõ ³ë·ÂÀÌ ÇÊ¿äÇÕ´Ï´Ù.
Ŭ¶ó¿ìµå ±â¹Ý ºÐ¼® ¹× µ¥ÀÌÅÍ Ã³¸®¿¡ ´ëÇÑ °ü½É Áõ°¡
Ŭ¶ó¿ìµå Ç÷§ÆûÀº ¹æ´ëÇÑ µ¥ÀÌÅÍ ¼¼Æ®¿Í º¹ÀâÇÑ °è»êÀ» ó¸®ÇÒ ¼ö ÀÖ´Â È®Àå °¡´ÉÇÏ°í ºñ¿ë È¿À²ÀûÀÎ ÀÎÇÁ¶ó¸¦ Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ º¯È·Î ÀÎÇØ Çù¾÷ÀÌ °ÈµÇ°í, ó¸® ¼Óµµ°¡ »¡¶óÁö¸ç, °í±Þ ¸ðµ¨¸µ µµ±¸¿¡ ´ëÇÑ Á¢±Ù¼ºÀÌ Çâ»óµË´Ï´Ù. ¶ÇÇÑ, Ŭ¶ó¿ìµå ±â¹Ý ¼Ö·ç¼ÇÀº ´Ù¸¥ ¿ëµµ°úÀÇ ¿øÈ°ÇÑ ÅëÇÕÀ» ¿ëÀÌÇÏ°Ô Çϰí, Àü ¼¼°è ¿¬±¸ÀÚµé °£ÀÇ ½Ç½Ã°£ µ¥ÀÌÅÍ °øÀ¯¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Æ®·»µå¸¦ µµÀÔÇÏ¸é ¿öÅ©Ç÷ο츦 È¿À²ÈÇÒ »Ó¸¸ ¾Æ´Ï¶ó Çõ½ÅÀ» ÃËÁøÇϰí, Á¶Á÷ÀÌ ÃÖ÷´Ü ±â¼úÀ» Ȱ¿ëÇÏ°í ºñ¿ë°ú ÀÚ¿ø Ȱ¿ëÀ» ÃÖÀûÈÇÏ¸é¼ ½Å¾à °³¹ßÀÇ Áøº¸¸¦ ÃËÁøÇÒ ¼ö ÀÖ½À´Ï´Ù.
µ¥ÀÌÅÍÀÇ ÇÁ¶óÀ̹ö½Ã ¹× º¸¾È¿¡ ´ëÇÑ ¿ì·Á
µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¹× º¸¾È¿¡ ´ëÇÑ ¿ì·Á´Â ¾à¹° ¸ðµ¨¸µ ¼ÒÇÁÆ®¿þ¾î ½ÃÀå¿¡ Å« À§ÇùÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀǾàǰ °³¹ß¿¡¼ ȯÀÚ µ¥ÀÌÅÍ¿Í µ¶Á¡ Á¤º¸´Â ±â¹Ð¼ºÀÌ ³ô±â ¶§¹®¿¡ ÀáÀçÀûÀÎ Ä§ÇØ, ¹«´Ü ¾×¼¼½º ¹× µ¥ÀÌÅÍ ¾Ç¿ë¿¡ ´ëÇÑ ¿ì·Á°¡ ÀÖ½À´Ï´Ù. º¸¾ÈÀÌ Ãë¾àÇÏ¸é ½Å·Ú°¡ ¶³¾îÁö°í, äÅ÷ü¿¡ ¿µÇâÀ» ¹ÌÄ¡¸ç, Á¦¾àȸ»ç¿Í ¼ÒÇÁÆ®¿þ¾î °ø±Þ¾÷ü °£ÀÇ Çù·Â °ü°è¸¦ ÀúÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, GDPRÀ̳ª HIPAA¿Í °°Àº ¾ö°ÝÇÑ ±ÔÁ¦´Â ÀÇ·á µ¥ÀÌÅÍ Ãë±Þ¿¡ ¾ö°ÝÇÑ ±âÁØÀ» Àû¿ëÇϰí ÀÖÀ¸¸ç, ¼ÒÇÁÆ®¿þ¾î °³¹ßÀÚ¿¡°Ô ÄÄÇöóÀ̾𽺸¦ ÁؼöÇϵµ·Ï ¾Ð·ÂÀ» °¡Çϰí ÀÖ½À´Ï´Ù.
Äڷγª19ÀÇ ÆÒµ¥¹ÍÀº ¾à¹° ¸ðµ¨¸µ ¼ÒÇÁÆ®¿þ¾îÀÇ Ã¤ÅÃÀ» °¡¼ÓÈÇÏ°í ¿ø°Ý ¾à¹° °³¹ß ¹× °¡»ó ÀÓ»ó½ÃÇè¿¡¼ ±× ¿ªÇÒÀ» °ÈÇß½À´Ï´Ù. ÀÌ´Â ½Å¼ÓÇÑ ¾à¹° ¼³°è ¹× Àç»ç¿ëÀ» À§ÇÑ ¿¹Ãø ºÐ¼® ¹× °è»ê ±â¹ý¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³ô¿© »õ·Î¿î °Ç° À§±â¿¡ ´ëÇÑ ½Å¼ÓÇÑ ´ëÀÀÀ» ÃËÁøÇß½À´Ï´Ù. ±×·¯³ª ¿¬±¸ ¹× ÀÓ»ó Ȱµ¿ÀÇ Áß´ÜÀº ÀϽÃÀûÀ¸·Î ½ÃÀå ¼ºÀå¿¡ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ±×·¯³ª ÆÒµ¥¹ÍÀ¸·Î ÀÎÇØ ¼ÒÇÁÆ®¿þ¾îÀÇ Á߿伺ÀÌ ºÎ°¢µÇ°í ±â¼ú Çõ½ÅÀÌ °¡¼ÓȵǾúÀ¸¸ç, ¸ð¹ÙÀÏ ¹× ¿ø°Ý ÀǾàǰ °³¹ß °úÁ¤¿¡¼ ¼ÒÇÁÆ®¿þ¾îÀÇ ¿ªÇÒÀÌ ´õ¿í Áß¿äÇØÁ³½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È º´¿ø ¹× ÀÇ·á ¼ºñ½º Á¦°ø¾÷ü ºÐ¾ß°¡ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
º´¿ø ¹× ÀÇ·á ¼ºñ½º Á¦°ø¾÷ü ºÐ¾ß´Â °³ÀÎ ¸ÂÃãÇü Ä¡·á Àü·«, ¾àÈ¿ ¿¹Ãø ¹× Ä¡·á ÃÖÀûȸ¦ À§ÇØ Ã·´Ü ¼ÒÇÁÆ®¿þ¾î¸¦ Ȱ¿ëÇÏ´Â °æÇâÀÌ ³ô¾ÆÁö¸é¼ ¾à¹° ¸ðµ¨¸µ ¼ÒÇÁÆ®¿þ¾î ½ÃÀåÀ» ÁÖµµÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Á¤¹ÐÀǷḦ Áß½ÃÇÏ´Â º´¿ø°ú ÀÇ·á ¼ºñ½º Á¦°ø¾÷üµéÀº ¾à¹° ¸ðµ¨¸µ ¼ÒÇÁÆ®¿þ¾î¸¦ ÀÓ»ó ÀÇ»ç°áÁ¤ Áö¿ø¿¡ Ȱ¿ëÇÏ¿© ȯÀÚ Ä¡·á °á°ú¸¦ °³¼±Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ µµ±¸¸¦ ÀüÀÚ ÀÇ·á ±â·Ï¿¡ ÅëÇÕÇÏ¿© ¿øÈ°ÇÑ µµÀÔÀ» ¿ëÀÌÇÏ°Ô ÇÔÀ¸·Î½á ÀÌ ºÎ¹®ÀÇ ¿ìÀ§¸¦ Á¡ÇÏ´Â µ¥ ±â¿©Çϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ½Å¾à°³¹ß ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
½Å¾à °³¹ß ºÐ¾ß´Â »õ·Î¿î Ä¡·áÁ¦¿¡ ´ëÇÑ ¼ö¿ä°¡ Áö¼ÓÀûÀ¸·Î Áõ°¡ÇÔ¿¡ µû¶ó Å« ¼ºÀåÀÌ ¿¹»óµÇ°í ÀÖ½À´Ï´Ù. Á¦¾à °³¹ßÀÚµéÀº ÀáÀçÀûÀÎ ½Å¾à Èĺ¸¹°ÁúÀ» ½Å¼ÓÇÏ°Ô ½Äº°, ¼³°è ¹× ÃÖÀûÈÇϱâ À§ÇØ °í±Þ ¸ðµ¨¸µ ¼ÒÇÁÆ®¿þ¾î¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀΰøÁö´É°ú ¸Ó½Å·¯´×ÀÇ ÅëÇÕÀº È¿À²¼ºÀ» ´õ¿í Çâ»ó½ÃÄÑ ¾à¹° ¸ðµ¨¸µ ¼ÒÇÁÆ®¿þ¾î ½ÃÀå¿¡¼ ÀÌ ºÐ¾ßÀÇ Å« ¼ºÀå Àü¸ÁÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.
ºÏ¹Ì´Â Á¦¾à ¹× »ý¸í°øÇÐ ºÎ¹®ÀÇ °ß°íÇÑ ¼ºÀåÀ¸·Î ÀÎÇØ ¾à¹° ¸ðµ¨¸µ ¼ÒÇÁÆ®¿þ¾î ½ÃÀåÀ» ÁÖµµÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ Áö¿ªÀº ¸·´ëÇÑ R&D ÅõÀÚ, ÷´Ü ÀÇ·á ÀÎÇÁ¶ó, ÁÖ¿ä »ê¾÷ ±â¾÷ÀÇ Á¸Àç°¨À» ÀÚ¶ûÇÕ´Ï´Ù. ¶ÇÇÑ, ÀÌ Áö¿ª¿¡¼´Â ±â¼ú Çõ½Å°ú ±â¼ú µµÀÔÀÌ °Á¶µÇ°í ÀÖÀ¸¸ç, °³ÀÎ ¸ÂÃãÇü ÀÇ·á ¹× °íÁ¤¹Ð ÀǾàǰ °³¹ß¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô¾Æ ÷´Ü ¸ðµ¨¸µ ¼ÒÇÁÆ®¿þ¾îÀÇ »ç¿ëÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀΰú ´õºÒ¾î Áö¿øÀûÀÎ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©¿Í »õ·Î¿î ±â¼úÀ» Á¶±â¿¡ µµÀÔÇÏ´Â ¹®È´Â ºÏ¹Ì°¡ ¾à¹° ¸ðµ¨¸µ ¼ÒÇÁÆ®¿þ¾î ½ÃÀå¿¡¼ Áö¹èÀûÀÎ À§Ä¡¸¦ Â÷ÁöÇϰí ÀÖ½À´Ï´Ù.
¾ÆÅÂÁö¿ªÀº Á¦¾à ¹× »ý¸í°øÇÐ »ê¾÷ÀÇ ±Þ¼ÓÇÑ ¼ºÀå°ú R&D ÅõÀÚ Áõ°¡·Î ÀÎÇØ ¾à¹° ¸ðµ¨¸µ ¼ÒÇÁÆ®¿þ¾î ½ÃÀåÀÌ Å©°Ô ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ, ÀÓ»ó½ÃÇèÀ» À§ÇÑ ¹æ´ëÇÑ È¯ÀÚ Ç®ÀÇ Á¸Àç¿Í Á¤¹ÐÀÇ·á¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼ ¾à¹° ¸ðµ¨¸µ ¼ÒÇÁÆ®¿þ¾îÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÇ·á ÀÎÇÁ¶óÀÇ È®Àå, ±â¼ú ¹ßÀü, Á¤ºÎ Áö¿øÃ¥ÀÌ ÀÌ Áö¿ªÀÇ ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Drug Modeling Software Market is accounted for $7.7 billion in 2023 and is expected to reach $15.5 billion by 2030 growing at a CAGR of 10.5% during the forecast period Drug Modeling Software refers to computational tools employing algorithms and simulations to predict, analyze and optimize aspects of drug discovery and development. These programs facilitate the understanding of molecular interactions, pharmacokinetics and drug-target interactions. By simulating and modeling biological systems, chemical structures and drug behavior, they aid in designing, screening and optimizing potential drug candidates, enhancing the efficiency and success rates of pharmaceutical research and development processes.
According to the Pharmaceutical Research and Manufacturers of America, a successful drug's research and development cost an average of US$2.6 BN.
With an increasing prevalence of complex diseases and evolving therapeutic requirements, there's a pressing need for innovative and effective treatments. Drug modeling software enables the exploration of diverse molecular structures and predictive simulations, expediting the identification and optimization of potential drug candidates. This technology-driven approach not only accelerates the discovery process but also aids in designing tailored therapies, meeting the demand for more precise, targeted and efficacious treatments, consequently propelling the software's significance and adoption in advancing healthcare innovation.
Ensuring the accuracy and reliability of predictive models requires extensive validation against experimental data, often demanding substantial time and resources. Additionally, complex biological systems and the diverse interactions between drugs and targets contribute to precision challenges, impacting the software's predictive capabilities. The limitations of accurately replicating real-world complexities hinder the software's effectiveness, necessitating continuous refinement and validation efforts.
Cloud platforms offer scalable, cost-effective infrastructure capable of handling vast datasets and complex computations. This shift allows for enhanced collaboration, faster processing speeds and greater accessibility to sophisticated modeling tools. Moreover, cloud-based solutions facilitate seamless integration with other applications and enable real-time data sharing among researchers globally. Embracing this trend not only streamlines workflows but also fosters innovation, empowering organizations to leverage cutting-edge technologies and drive advancements in drug discovery and development while optimizing costs and resource utilization.
Data privacy and security concerns pose a significant threat to the drug modeling software market. The sensitive nature of patient data and proprietary information in drug development raises apprehensions about potential breaches, unauthorized access or data misuse. Instances of security lapses could erode trust, impact adoption rates, and hinder collaboration between pharmaceutical entities and software providers. Moreover, stringent regulations like GDPR and HIPAA impose rigorous standards for handling healthcare data, augmenting the pressure on software developers to ensure compliance.
The COVID-19 pandemic accelerated the adoption of drug modeling software, intensifying its role in remote drug development and virtual clinical trials. It prompted a heightened reliance on predictive analytics and computational methods for rapid drug design and repurposing, facilitating faster responses to emerging health crises. However, disruptions in research and clinical activities temporarily affected market growth. Yet, the pandemic underscored the software's criticality, spurring innovation and reinforcing its pivotal role in agile and remote drug development processes.
The hospitals and healthcare providers segment is anticipated to lead the drug modeling software market due to its increasing leverage of advanced software for personalized treatment strategies, drug efficacy predictions and treatment optimization. With a focus on precision medicine, hospitals and healthcare providers utilize drug modeling software for clinical decision support, enhancing patient care outcomes. Additionally, the integration of these tools into electronic health records facilitates seamless implementation, contributing to the segment's dominance.
The drug discovery and development segment is poised for significant growth owing to the continuous surge in demand for novel therapeutics. Drug developers increasingly rely on advanced modeling software to expedite the identification, design and optimization of potential drug candidates. Additionally, the integration of artificial intelligence and machine learning further enhances efficiency, driving the substantial anticipated growth of this segment within the drug modeling software market.
North America is anticipated to lead the drug modeling software market due to its robust pharmaceutical and biotech sectors. The region boasts significant R&D investments, advanced healthcare infrastructure and a strong presence of major industry players. Moreover, the region's emphasis on innovation and technology adoption, coupled with a high demand for personalized medicine and precision drug development, drives the use of sophisticated modeling software. These factors, combined with supportive regulatory frameworks and a culture of early adoption of novel technologies, position North America to dominate the drug modeling software market.
Asia Pacific is poised for substantial growth in the drug modeling software market due to the region's burgeoning pharmaceutical and biotech industries, coupled with increasing R&D investments. Additionally, the presence of a vast patient pool for clinical trials and a growing emphasis on precision medicine foster the adoption of drug modeling software. Moreover, expanding healthcare infrastructure, technological advancements and supportive government initiatives propel growth in this region.
Some of the key players in drug modeling software market include Acellera, Biovia, Certara, Chemical Computing Group, Collaborative Drug Discovery, Inc., Cresset, Genedata AG, Insilico Medicine, Instinctools GmbH, Leadscope, Inc., Molecular Networks GmbH, Nimbus Therapeutics, Numerate, Inc., OpenEye Scientific Software, Optibrium Ltd., Pharmacelera, Physiomics plc, Schrodinger, Inc. and Simulations Plus, Inc.
In May 2023, Cresset announced the latest release of molecular modeling platform that delivers improved efficiencies for small molecule discovery therefore Flare V7. This helps the organisation developing more revenue.
In May 2023, Fujitsu launched the Biodrug Design Accelerator platform to increase peptide drug discovery research. This platform helps peptide drug discovery scientists in pharmaceutical industries to speed up and increases the efficiency of peptide drug development, especially through the cycles "design, make, test, analyze" (DMTA), ultimately allowing faster and informed design of peptide drug candidates and effective communication among scientists about synthesis and testing.
In February 2023, Accenture has made a strategic investment, through Accenture Ventures, in Ocean Genomics, a technology and AI company that has developed advanced computational platforms to assist biopharma companies to discover and develop more effective diagnostics and therapeutics.