½ÃÀ庸°í¼­
»óǰÄÚµå
1403535

¼¼°è ºñ¾ÈÁ¤ ¸ÖƼ ¹ÙÀ̺극ÀÌÅÍ ½ÃÀå ¿¹Ãø(-2030³â) : À¯Çüº°, ¿ëµµº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®

Astable Multivibrator Market Forecasts to 2030 - Global Analysis By Type, Application, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é 2023³â 13¾ï 5,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇÏ´Â ºñ¾ÈÁ¤ ¸ÖƼ ¹ÙÀ̺극ÀÌÅÍ ¼¼°è ½ÃÀåÀº ¿¹Ãø ±â°£ µ¿¾È ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)ÀÌ 9.4%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 25¾ï 9,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ºñ¾ÈÁ¤ ¸ÖƼ¹ÙÀ̺극ÀÌÅÍ´Â ¿¬¼Ó ±¸ÇüÆÄ Ãâ·ÂÀ» »ý¼ºÇÏ´Â ÀüÀÚ ¹ßÁø ȸ·ÎÀÔ´Ï´Ù. 2°³ÀÇ ÁõÆø ¼ÒÀÚ(ÀϹÝÀûÀ¸·Î Æ®·£Áö½ºÅÍ)·Î ±¸¼ºµÇ¸ç ¿ÜºÎ ÀÔ·Â ¾øÀÌ ÇÏÀÌ »óÅÂ¿Í ·Î¿ì »óŸ¦ ¿¬¼ÓÀûÀ¸·Î ÀüȯÇÕ´Ï´Ù. ÁÖ±âÀûÀÎ ÆÄÇüÀ» »ý¼ºÇÒ ¼ö Àֱ⠶§¹®¿¡ ½ÅÈ£ ó¸®, ŸÀÌ¹Ö È¸·Î, Á¦¾î ½Ã½ºÅÛ¿¡ ¸Å¿ì À¯¿ëÇÏ¸ç ±³À°, »ê¾÷, Ãë¹Ì ºÐ¾ß¿¡¼­ ³Î¸® ä¿ëµÇ°í ÀÖ½À´Ï´Ù.

µ¶ÀÏ ÀºÇà Çùȸ¿¡ ÀÇÇÏ¸é µ¶ÀÏ¿¡¼­ÀÇ ºñ¾ÈÁ¤ ¸ÖƼ ¹ÙÀ̺극ÀÌÅÍÀÇ Á¦Á¶¡¤ÆÇ¸Å´Â 2021³â¿¡ 10%ÀÇ ´ëÆøÀûÀÎ ¼ºÀåÀ» ±â·ÏÇß½À´Ï´Ù.

Ä¿½ºÅÒ ÀÏ·ºÆ®·Î´Ð½º ÇÁ·ÎÁ§Æ® Áõ°¡

Ä¿½ºÅÒ ÀÏ·ºÆ®·Î´Ð½º ÇÁ·ÎÁ§Æ®ÀÇ µ¿Çâ°ú DIY ¾ÖÈ£°¡ Ä¿¹Â´ÏƼÀÇ È®´ë´Â ºñ¾ÈÁ¤ ¸ÖƼ ¹ÙÀ̺극ÀÌÅÍÀÇ Å« ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀüÀÚ °¡Á¦Æ®, Ãë¹Ì ¿ëµµ, ½ÇÇè ÇÁ·ÎÁ§Æ® °³¹ß¿¡ Èû¾²´Â °³ÀÎÀÌ ´Ã¾î³²¿¡ µû¶ó ºñ¾ÈÁ¤ ¸ÖƼ ¹ÙÀ̺극ÀÌÅÍ¿Í °°Àº ´Ù¸ñÀûÀÌ°í ºñ¿ë È¿À²ÀûÀÎ ±¸¼º ¿ä¼Ò¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ±¸ÇüÆÄ ½ÅÈ£¸¦ »ý¼ºÇÏ´Â ÀÌ·¯ÇÑ È¸·Î´Â ´Ü¼ø¼º°ú À¯¿ë¼ºÀ¸·Î ¾Ë·ÁÁ® ÀÖÀ¸¸ç ÇÁ·ÎÁ§Æ®ÀÇ ±âº» ±¸¼º ¿ä¼Ò¸¦ Ãß±¸ÇÏ´Â DIY ÀüÀÚ ¾ÖÈ£°¡¿¡°Ô È£¼ÒÇÕ´Ï´Ù. ÀüÀÚ °øÀÛÀÇ Ä¿½ºÅ͸¶ÀÌ¡°ú °³ÀÎÈ­ÀÇ µ¿ÇâÀº ºñ¾ÈÁ¤ ¸ÖƼ ¹ÙÀ̺극ÀÌÅÍ ½ÃÀåÀ» ´õ¿í ¹Ð¾î ¿Ã·Á Ä¿½ºÅÒ ÀÏ·ºÆ®·Î´Ð½ºÀÇ È°¹ßÇÑ ¿¡ÄڽýºÅÛ¿¡¼­ Áß¿äÇÑ ±â¾÷ÀÌ µÇ°í ÀÖ½À´Ï´Ù.

ÅëÇÕ °úÁ¦

ºñ¾ÈÁ¤ ¸ÖƼ ¹ÙÀ̺극ÀÌÅÍ È¸·Î¸¦ º¹ÀâÇÑ ÀüÀÚ ½Ã½ºÅÛ¿¡ ÅëÇÕÇÏ·Á¸é ´Ù¾çÇÑ ºÎǰ ¹× ±â¼ú°ú ¿øÈ°ÇÏ°Ô ÅëÇÕÇØ¾ß ÇÕ´Ï´Ù. µð¹ÙÀ̽º°¡ ¼ÒÇüÈ­µÇ°í ¿¡³ÊÁö È¿À²ÀÌ Çâ»óµÊ¿¡ µû¶ó, ¼ÒÇüÈ­¿Í ȣȯ¼ºÀÇ Çʿ伺ÀÌ ¸Å¿ì Áß¿äÇØÁö°í, ºñ¾ÈÁ¤ ¸ÖƼ ¹ÙÀ̺극ÀÌÅÍÀÇ ÅëÇÕ¿¡ Àå¾Ö¹°ÀÌ ¹ß»ýÇϰí ÀÖ½À´Ï´Ù. ÃÖÀûÀÇ ¼º´É, ¾ÈÁ¤¼º ¹× ´Ù¸¥ ȸ·Î¿ÍÀÇ µ¿±âÈ­¸¦ º¸ÀåÇÏ´Â °ÍÀº ¾î·Á¿ì¸ç, ÃֽŠÀüÀÚ ÀåÄ¡¿¡ ºñ¾ÈÁ¤ ¸ÖƼ ¹ÙÀ̺극ÀÌÅ͸¦ ¿øÈ°ÇÏ°Ô ÅëÇÕÇÏ´Â °ÍÀ» ¹æÇØÇÕ´Ï´Ù.

¼ºÀåÇÏ´Â ÀÇ·á¿ë ÀüÀÚ ºÐ¾ß

ÀÇ·á±â±âÀÇ ÀüÀÚºÎǰ¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁö´Â °¡¿îµ¥, ºñ¾ÈÁ¤ ¸ÖƼ¹ÙÀ̺극ÀÌÅÍ´Â ÆÞ½º ¹ß»ýÀ̳ª ŸÀÌ¹Ö È¸·Î µîÀÇ ¿ëµµ¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ÀÇ·á±â±â´Â Á¤È®ÇÏ°í ½Å·ÚÇÒ ¼ö Àִ ŸÀÌ¹Ö ½ÅÈ£¸¦ ÇÊ¿ä·Î ÇϹǷΠȯÀÚ ¸ð´ÏÅÍ, Áø´Ü ÀåÄ¡, Ä¡·á ÀåÄ¡ µîÀÇ ±â±â¿¡ ÀÌ·¯ÇÑ È¸·ÎÀÇ Æ´»õ°¡ Çü¼ºµË´Ï´Ù. ÀÇ·á ±â¼úÀÇ Áøº¸°¡ ÁøÇàµÊ¿¡ µû¶ó µ¿±âÈ­ ¹× ŸÀÌ¹Ö ±â´ÉÀ» À§ÇÑ ºñ¾ÈÁ¤ ¸ÖƼ ¹ÙÀ̺극ÀÌÅÍÀÇ Çʿ伺ÀÌ ³ô¾ÆÁú °ÍÀÔ´Ï´Ù. ÀÇ·á¿ë ÀüÀÚ ºÐ¾ß¿¡¼­´Â Á¤È®¼º°ú È¿À²¼ºÀÌ Áß¿äÇϹǷΠºñ¾ÈÁ¤ ¸ÖƼ ¹ÙÀ̺극ÀÌÅÍ´Â Çʼö ±¸¼º ¿ä¼Ò·Î ÀÚ¸®¸Å±èÇÏ¿© Çõ½ÅÀûÀÎ °Ç°­ °ü¸® ¼Ö·ç¼ÇÀ¸·ÎÀÇ ÅëÇÕÀ» ÃËÁøÇÕ´Ï´Ù.

»çÀ̹ö º¸¾È¿¡ ´ëÇÑ ¿ì·Á

ºñ¾ÈÁ¤ ¸ÖƼ ¹ÙÀ̺극ÀÌÅͰ¡ IoT ÀåÄ¡, ÀÚµ¿È­ ¹× »óÈ£ ¿¬°á ½Ã½ºÅÛ¿¡ ÇʼöÀûÀ̸鼭 »çÀ̹ö °ø°ÝÀÇ ´ë»óÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿À½Ç·¹ÀÌÅʹ ŸÀְ̹ú µ¿±âÈ­¿¡¼­ ±âº»ÀûÀÎ ¿ªÇÒÀ» Çϱ⠶§¹®¿¡ ±× ¼³°è³ª ±¸Çö¿¡ Ãë¾à¼ºÀÌ ÀÖÀ¸¸é ¾ÇÀÇÀûÀÎ ÇàÀ§ÀÚ¿¡°Ô ¾Ç¿ëµÉ °¡´É¼ºÀÌ ÀÖ½À´Ï´Ù. »óÈ£ ¿¬°áµÈ ÀåÄ¡°¡ È®»êµÊ¿¡ µû¶ó ÀüÀÚ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¹«´Ü ¾×¼¼½º, µ¥ÀÌÅÍ Á¶ÀÛ ¹× È¥¶õ°ú °°Àº »çÀ̹ö À§ÇùÀÇ °¡´É¼ºÀÌ Ä¿Áö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ È¸·Î¿¡ ´ëÇÑ ¹«´Ü ¾×¼¼½º, º¯Á¶ ¹× ÆÄ±«´Â ´Ù¾çÇÑ ¿ëµµ¿¡¼­ Áß¿äÇÑ ±â´ÉÀ» ¼Õ»ó½Ãų ¼ö ÀÖÀ¸¹Ç·Î ½ÃÀå ¼ºÀåÀ» ¹æÇØÇÕ´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

COVID-19ÀÇ À¯ÇàÀº ºñ¾ÈÁ¤ ¸ÖƼ¹ÙÀ̺극ÀÌÅÍ ½ÃÀå¿¡ ´Ù¾çÇÑ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. óÀ½¿¡´Â ¼¼°è °ø±Þ¸ÁÀÇ È¥¶õÀÌ ºÎǰÀÇ °¡¿ë¼º¿¡ ¿µÇâÀ» ÁÖ¾úÁö¸¸, Æó¼â ¹× ¿ø°ÝÁö¿¡¼­ ÀÛ¾÷ÇÒ ¶§ ÀüÀÚ±â±â ¹× ±â¼ú ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÑ °ÍÀ¸·Î ½ÃÀåÀ» ¹Ð¾î ¿Ã·È½À´Ï´Ù. Ȩ ±â¹Ý DIY ÇÁ·ÎÁ§Æ®¿Í ¿Â¶óÀÎ ÇнÀ Ȱµ¿ÀÇ ±ÞÁõµµ ºñ¾ÈÁ¤ ¸ÖƼ ¹ÙÀ̺극ÀÌÅÍ ¼ö¿ä¿¡ ±â¿©Çß½À´Ï´Ù. ¾÷°èÀÇ ÀûÀÀ¼º°ú Àá±Ý ÈÄ Á¦Á¶ Ȱµ¿ÀÇ È¸º¹Àº ½ÃÀåÀ» Á¡Â÷ ¾ÈÁ¤È­½Ã۰í ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ·¹ÀÌ´õ ½Ã½ºÅÛ ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ Àü¸Á

·¹ÀÌ´õ ½Ã½ºÅÛ ºÐ¾ß´Â À¯¸®ÇÑ ¼ºÀåÀÌ ¿¹»óµË´Ï´Ù. ·¹ÀÌ´õ ½Ã½ºÅÛÀº Áß¿äÇÑ Å¸ÀÌ¹Ö ±â´É°ú Æ®¸®°Å ±â´ÉÀ» À§ÇØ ºñ¾ÈÁ¤ ¸ÖƼ ¹ÙÀ̺극ÀÌÅ͸¦ »ç¿ëÇÕ´Ï´Ù. ºñ¾ÈÁ¤ ¸ÖƼ¹ÙÀ̺극ÀÌÅÍ´Â ¿¬¼Ó ±¸ÇüÆÄ ½ÅÈ£¸¦ »ý¼ºÇÏ¿© ·¹ÀÌ´õ ¿ëµµ¿¡ ÇʼöÀûÀÎ Á¤È®ÇÑ Å¸ÀÌ¹Ö ÆÞ½º »ý¼ºÀ» Áö¿øÇÕ´Ï´Ù. ÀÌ È¸·Î´Â ·¹ÀÌ´õ ½Ã½ºÅÛÀÇ µ¿±âÈ­¿¡ ±â¿©ÇÏ¿© Á¤È®ÇÑ °Å¸® ÃøÁ¤, Ÿ°Ù °¨Áö ¹× ½ÅÈ£ 󸮸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ºñ¾ÈÁ¤ ¸ÖƼ ¹ÙÀ̺극ÀÌÅÍÀÇ ½Å·Ú¼º°ú °£Æí¼ºÀº ·¹ÀÌ´õ ±â¼ú¿¡¼­ ±ÍÁßÇÑ ÄÄÆ÷³ÍÆ®°¡ µÇ¾î ±º»ç, Ç×°ø¿ìÁÖ, ´Ù¾çÇÑ ¹Î°£ ¿ëµµÀÇ ·¹ÀÌ´õ ½Ã½ºÅÛÀÇ È¿À²¼º°ú ±â´É¼ºÀ» È®º¸Çϴµ¥ À־ Áß¿äÇÑ ¿ªÇÒÀ» ¿¬ÁÖÇÕ´Ï´Ù.

ÀÇ·á±â±â ºÐ¾ß´Â ¿¹Ãø±â°£ Áß °¡Àå ³ôÀº CAGRÀÌ ¿¹»óµÈ´Ù.

ÀÇ·á±â±â ºÐ¾ß´Â Á¤È®ÇÑ Å¸Àְ̹ú ½ÅÈ£ »ý¼ºÀ» ÅëÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGR ¼ºÀåÀÌ ¿¹»óµË´Ï´Ù. ÀÌ ÀüÀÚ È¸·Î´Â ÆÞ½º ¹ß»ý±â, ŸÀÌ¸Ó ¹× ½ÅÈ£ ¹ß»ý±â¿Í °°Àº ÀÇ·á±â±â¿¡ Àû¿ëµË´Ï´Ù. ÇコÄÉ¾î ¾÷°è¿¡¼­ ºñ¾ÈÁ¤ ¸ÖƼ ¹ÙÀ̺극ÀÌÅÍ´Â °øÁ¤ÀÇ Á¤È®ÇÑ Å¸À̹Ö, ÀÇ·á±â±â µ¿±âÈ­, Áø´Ü ¹× ¸ð´ÏÅ͸µ ¸ñÀû¿¡ ÇʼöÀûÀÎ ½ÅÈ£ »ý¼º¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ±× ½Å·Ú¼º°ú ´Ù¾ç¼ºÀº ´Ù¾çÇÑ ÀÇ·á¿ë ÀüÀÚ ±â±â¿¡ ÇʼöÀûÀÎ ±¸¼º ¿ä¼Ò·Î, Áø´Ü, Ä¡·á ¹× ȯÀÚ °ü¸®¿¡ »ç¿ëµÇ´Â ÀåºñÀÇ ÀûÀýÇÑ ±â´ÉÀ» º¸ÀåÇÕ´Ï´Ù.

ÃÖ´ë Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

¾Æ½Ã¾ÆÅÂÆò¾çÀº ÀüÀÚ±â±â Á¦Á¶ÀÇ ±Þ¼ÓÇÑ È®´ë¿Í ±â¼ú ¹ßÀüÀ¸·Î ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Áß±¹, ÀϺ», Çѱ¹, Àεµ µîÀÇ ±¹°¡µéÀÌ ÀÌ ±Þ¼ºÀåÀÇ ÃÖÀü¼±¿¡ ÀÖ¾î ´Ù¾çÇÑ »ê¾÷¿¡¼­ ÀüÀÚºÎǰ ¼ö¿ä Áõ°¡¸¦ ¸ñ°ÝÇϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ ±Þ¼ºÀåÇÏ´Â ¼ÒºñÀÚ¿ë ÀüÀÚ±â±â ½ÃÀåÀº ÀÚµ¿È­¿Í IoT ¿ëµµ Áõ°¡¿Í ÇÔ²² ºñ¾ÈÁ¤ ¸ÖƼ ¹ÙÀ̺극ÀÌÅÍÀÇ ¿ä±¸¸¦ ºÎÃß±â°í ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ½º¸¶Æ® ÀÎÇÁ¶ó, ÀÚµ¿Â÷ ÀüÀÚ Á¦Ç° ¹× ÀüÀÚ ÀåÄ¡ÀÇ Áö¼ÓÀûÀÎ Çõ½Å¿¡ ÃÊÁ¡À» ¸ÂÃß¸é ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª:

ºÏ¹Ì´Â ÀüÀÚÁ¦Ç°ÀÇ Áøº¸, ÀÚµ¿È­ÀÇ µµÀÔ È®´ë, °ßÁ¶ÇÑ ±â¼ú ÁÖµµÇü °æÁ¦¿¡ ÀÇÇØ ¿¹Ãø ±â°£ Áß¿¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀº Çõ½ÅÀ» À̾°í Àֱ⠶§¹®¿¡ Åë½Å, ÀÚµ¿Â÷, ÇコÄÉ¾î µîÀÇ ºÐ¾ß¿¡¼­ ºñ¾ÈÁ¤ ¸ÖƼ ¹ÙÀ̺극ÀÌÅÍ¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. IoT ¿ëµµÀÇ È®´ë, Ä¿½ºÅÒ ÀÏ·ºÆ®·Î´Ð½º ÇÁ·ÎÁ§Æ®ÀÇ ±ÞÁõ, ¿¬±¸ °³¹ßÀÇ Á߽ð¡ ½ÃÀåÀÇ ±â¼¼¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ÀÌ Áö¿ª¿¡¼­´Â ¹ÝµµÃ¼ »ê¾÷ÀÌ È®¸³µÇ¾î Àç»ý °¡´É ¿¡³ÊÁö ±â¼ú¿¡ ´ëÇÑ ÁÖ¸ñÀÌ ³ô¾ÆÁö°í ÀÖ´Â °Íµµ ºñ¾ÈÁ¤ ¸ÖƼ ¹ÙÀ̺극ÀÌÅÍ ¼ö¿ä¸¦ ÇÑÃþ ´õ ³ôÀ̰í ÀÖ½À´Ï´Ù.

¹«·á ¸ÂÃãÇü ¼­ºñ½º

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀû ÇÁ·ÎÆÄÀϸµ(3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ ÀÀÇÑ ÁÖ¿ä±¹ ½ÃÀå Ãß°è, ¿¹Ãø, CAGR(ÁÖ: Ÿ´ç¼º È®Àο¡ µû¸§)
  • °æÀï º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû Á¸Àç, Àü·«Àû Á¦ÈÞ¿¡ ±â¹ÝÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç ¼Ò½º
    • 1Â÷ Á¶»ç ¼Ò½º
    • 2Â÷ Á¶»ç ¼Ò½º
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾ »ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
  • ±¸¸ÅÀÚÀÇ Çù»ó·Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü°¡¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ºñ¾ÈÁ¤ ¸ÖƼ ¹ÙÀ̺극ÀÌÅÍ ½ÃÀå : À¯Çüº°

  • Æ®·£Áö½ºÅÍ ±â¹ÝÀÇ ºñ¾ÈÁ¤ ¸ÖƼ ¹ÙÀ̺극ÀÌÅÍ
  • ¿¬»ê ÁõÆø±â(Op-Amp) ºñ¾ÈÁ¤ ¸ÖƼ ¹ÙÀ̺극ÀÌÅÍ
  • ÀúÇ× Ä¿ÆÐ½ÃÅÍ(RC) À§»ó ½ÃÇÁÆ® ¹ßÁø±â
  • À̹ÌÅÍ °áÇÕ ºñ¾ÈÁ¤ ¸ÖƼ ¹ÙÀ̺극ÀÌÅÍ
  • Çø³ ÇÃ·Ó ºñ¾ÈÁ¤ ¸ÖƼ ¹ÙÀ̺극ÀÌÅÍ
  • µðÁöÅÐ ºñ¾ÈÁ¤ ¸ÖƼ ¹ÙÀ̺극ÀÌÅÍ
  • ÁýÀû ȸ·Î(IC) ºñ¾ÈÁ¤ ¸ÖƼ ¹ÙÀ̺극ÀÌÅÍ
  • ¼öÁ¤ ¹ßÁø±â ±â¹Ý ºñ¾ÈÁ¤ ¸ÖƼ ¹ÙÀ̺극ÀÌÅÍ
  • ±Ý¼Ó »êÈ­¸· ¹ÝµµÃ¼ Àü°è È¿°ú Æ®·£Áö½ºÅÍ(MOSFET) ºñ¾ÈÁ¤ ¸ÖƼ ¹ÙÀ̺극ÀÌÅÍ
  • ±âŸ À¯Çü

Á¦6Àå ¼¼°èÀÇ ºñ¾ÈÁ¤ ¸ÖƼ ¹ÙÀ̺극ÀÌÅÍ ½ÃÀå : ¿ëµµº°

  • Ŭ·Ï ¹ß»ý±â
  • ÆÞ½º ¹ß»ý±â
  • Á֯ļö º¯Á¶
  • LED Ç÷¯¼Å
  • Åæ Á¦³Ê·¹ÀÌÅÍ
  • ·¹ÀÌ´õ ½Ã½ºÅÛ
  • ÃÊÀ½ÆÄ ½ÅÈ£ »ý¼º
  • ½ÅÈ£ Á¶Á¤
  • ½ÇÇè ¹× ±³À° ȸ·Î
  • ÆÞ½º Æø º¯Á¶(PWM) ÄÁÆ®·Ñ·¯
  • ±âŸ ¿ëµµ

Á¦7Àå ¼¼°èÀÇ ºñ¾ÈÁ¤ ¸ÖƼ ¹ÙÀ̺극ÀÌÅÍ ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • ÀÏ·ºÆ®·Î´Ð½º »ê¾÷
  • Åë½Å ¹× Àü±âÅë½Å
  • ÀÚµ¿Â÷»ê¾÷
  • ÀÇ·á±â±â
  • Ç×°ø¿ìÁÖ ¹× ¹æÀ§
  • ±³À° ¹× ¿¬±¸±â°ü
  • ±âŸ ÃÖÁ¾ »ç¿ëÀÚ

Á¦8Àå ¼¼°èÀÇ ºñ¾ÈÁ¤ ¸ÖƼ ¹ÙÀ̺극ÀÌÅÍ ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦9Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕÀÛ ÅõÀÚ
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦10Àå ±â¾÷ ÇÁ·ÎÆÄÀÏ

  • Toshiba
  • STMicroelectronics
  • Microchip Technology Inc
  • Renesas Electronics Corporation
  • Analog Devices Inc
  • Texas Instruments Incorporated
  • ON Semiconductor
  • NXP Semiconductors
  • Infineon Technologies AG
  • Maxim Integrated
  • Fairchild Semiconductor
  • Visionics Sweden HB
  • Nexperia
  • Mouser Electronics
  • SES Instruments Private Limited
JHS 24.01.23

According to Stratistics MRC, the Global Astable Multivibrator Market is accounted for $1.35 billion in 2023 and is expected to reach $2.59 billion by 2030 growing at a CAGR of 9.4% during the forecast period. An astable multivibrator is an electronic oscillator circuit that generates a continuous square wave output. Comprising two amplifying devices, typically transistors, it continuously switches between high and low states without external input. Its ability to produce periodic waveforms makes it invaluable in signal processing, timing circuits, and control systems, contributing to its widespread adoption in educational, industrial, and hobbyist settings.

According to the Association of German Banks, the manufacturing and sales of astable multivibrator in Germany observed a significant growth of 10% in 2021.

Market Dynamics:

Driver:

Rising custom electronics projects

The growing trend of custom electronics projects and the expanding community of DIY enthusiasts act as a significant driver for the astable multivibrators. As more individuals engage in creating electronic gadgets, hobbyist applications, and experimental projects, the demand for versatile and cost-effective components like astable multivibrators rises. These circuits, known for their simplicity and usefulness in generating square wave signals, appeal to DIY electronics enthusiasts seeking fundamental building blocks for their projects. The trend towards customization and personalization in electronic creations further boosts the market for astable multivibrators, making them a key player in the thriving ecosystem of custom electronics.

Restraint:

Integration challenges

Incorporating astable multivibrator circuits into complex electronic systems requires seamless integration with various components and technologies. As devices become more compact and energy-efficient, the need for miniaturization and compatibility becomes crucial, creating hurdles for the integration of astable multivibrators. Ensuring optimal performance, stability, and synchronization with other circuitry can be challenging, hindering the seamless incorporation of astable multivibrators in modern electronics.

Opportunity:

Growing medical electronics sector

With increasing reliance on electronic components in medical devices, astable multivibrators play a crucial role in applications like pulse generation and timing circuits. The demand for precise and reliable timing signals in medical equipment creates a niche for these circuits in devices such as patient monitors, diagnostic equipment, and therapeutic devices. As advancements in medical technology continue, the need for astable multivibrators for synchronization and timing functions is likely to grow. The medical electronics sector's emphasis on accuracy and efficiency positions astable multivibrators as essential components, fostering their integration into innovative healthcare solutions.

Threat:

Cybersecurity concerns

As astable multivibrators become integral to IoT devices, automation, and interconnected systems, they may become targets for cyber attacks. As these oscillators play a fundamental role in timing and synchronization, any vulnerabilities in their design or implementation could be exploited by malicious actors. With the proliferation of interconnected devices, the potential for cyber threats such as unauthorized access, data manipulation, or disruption of electronic systems grows. Unauthorized access, tampering, or disruption of these circuits could compromise critical functions in various applications and thereby hampers the market growth.

COVID-19 Impact

The COVID-19 pandemic has had a mixed impact on the Astable Multivibrator market. While disruptions in the global supply chain initially affected component availability, the increased demand for electronics and technology solutions during lockdowns and remote work bolstered the market. The surge in home-based DIY projects and online learning activities also contributed to the demand for astable multivibrators. The industry's adaptability and the recovery of manufacturing activities post-lockdowns have gradually stabilized the market.

The radar systems segment is expected to be the largest during the forecast period

The radar systems segment is estimated to have a lucrative growth. Radar systems utilize astable multivibrators for crucial timing and triggering functions. Astable multivibrators generate continuous square wave signals, aiding in the creation of precise timing pulses essential for radar applications. These circuits contribute to the synchronization of radar systems, enabling accurate distance measurement, target detection, and signal processing. The reliability and simplicity of astable multivibrators make them valuable components in radar technology, playing a vital role in ensuring the efficiency and functionality of radar systems across military, aerospace, and various civilian applications.

The medical devices segment is expected to have the highest CAGR during the forecast period

The medical devices segment is anticipated to witness the highest CAGR growth during the forecast period, due to its precise timing and signal generation. These electronic circuits find application in medical equipment such as pulse generators, timers, and signal generators. In the healthcare industry, astable multivibrators contribute to the accurate timing of processes, synchronization of medical instruments, and generation of essential signals for diagnostic and monitoring purposes. Their reliability and versatility make them integral components in various medical electronics, ensuring the proper functioning of devices used in diagnostics, treatment, and patient care.

Region with largest share:

Asia Pacific is projected to hold the largest market share during the forecast period owing to the rapid expansion of electronic manufacturing and technological advancements. Countries like China, Japan, South Korea, and India are at the forefront of this surge, witnessing increased demand for electronic components across various industries. The region's burgeoning consumer electronics market, coupled with the rise in automation and IoT applications, fuels the need for astable multivibrators. Additionally, the focus on smart infrastructure, automotive electronics, and continuous innovation in electronic devices further propels market growth.

Region with highest CAGR:

North America is projected to have the highest CAGR over the forecast period, owing to the advancements in electronics, increased adoption of automation, and a robust tech-driven economy. As the region continues to lead in technological innovation, the demand for astable multivibrators has risen across sectors such as telecommunications, automotive, and healthcare. The expansion of IoT applications, a surge in custom electronics projects, and a strong emphasis on research and development contribute to the market's momentum. Moreover, the region's well-established semiconductor industry and a growing focus on renewable energy technologies further bolster the demand for astable multivibrators.

Key players in the market:

Some of the key players profiled in the Astable Multivibrator Market include Toshiba, STMicroelectronics, Microchip Technology Inc, Renesas Electronics Corporation, Analog Devices Inc, Texas Instruments Incorporated, ON Semiconductor, NXP Semiconductors, Infineon Technologies AG, Maxim Integrated, Fairchild Semiconductor, Visionics Sweden HB, Nexperia, Mouser Electronics and SES Instruments Private Limited.

Key Developments:

In December 2023, Nexperia launched the new 74HC2G14-Q100 astable multivibrator. It is a dual inverter with Schmitt trigger inputs. This enables the use of current limiting resistors to interface inputs to voltages in excess of VCC. Schmitt trigger inputs transform slowly changing input signals into sharply defined jitter-free output signals.

Types Covered:

  • Transistor-Based Astable Multivibrators
  • Operational Amplifier (Op-Amp) Astable Multivibrators
  • Resistor-Capacitor (RC) Phase Shift Oscillators
  • Emitter-Coupled Astable Multivibrators
  • Flip-Flop Astable Multivibrators
  • Digital Astable Multivibrators
  • Integrated Circuit (IC) Astable Multivibrators
  • Crystal Oscillator-Based Astable Multivibrators
  • Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) Astable Multivibrators
  • Other Types

Applications Covered:

  • Clock Generators
  • Pulse Generators
  • Frequency Modulation
  • LED Flashers
  • Tone Generators
  • Radar Systems
  • Ultrasonic Signal Generation
  • Signal Conditioning
  • Experimental & Educational Circuits
  • Pulse Width Modulation (PWM) Controllers
  • Other Applications

End Users Covered:

  • Electronics Industry
  • Communications & Telecommunications
  • Automotive Industry
  • Medical Devices
  • Aerospace & Defense
  • Education & Research Institutions
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2021, 2022, 2023, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Astable Multivibrator Market, By Type

  • 5.1 Introduction
  • 5.2 Transistor-Based Astable Multivibrators
  • 5.3 Operational Amplifier (Op-Amp) Astable Multivibrators
  • 5.4 Resistor-Capacitor (RC) Phase Shift Oscillators
  • 5.5 Emitter-Coupled Astable Multivibrators
  • 5.6 Flip-Flop Astable Multivibrators
  • 5.7 Digital Astable Multivibrators
  • 5.8 Integrated Circuit (IC) Astable Multivibrators
  • 5.9 Crystal Oscillator-Based Astable Multivibrators
  • 5.10 Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) Astable Multivibrators
  • 5.11 Other Types

6 Global Astable Multivibrator Market, By Application

  • 6.1 Introduction
  • 6.2 Clock Generators
  • 6.3 Pulse Generators
  • 6.4 Frequency Modulation
  • 6.5 LED Flashers
  • 6.6 Tone Generators
  • 6.7 Radar Systems
  • 6.8 Ultrasonic Signal Generation
  • 6.9 Signal Conditioning
  • 6.10 Experimental & Educational Circuits
  • 6.11 Pulse Width Modulation (PWM) Controllers
  • 6.12 Other Applications

7 Global Astable Multivibrator Market, By End User

  • 7.1 Introduction
  • 7.2 Electronics Industry
  • 7.3 Communications & Telecommunications
  • 7.4 Automotive Industry
  • 7.5 Medical Devices
  • 7.6 Aerospace & Defense
  • 7.7 Education & Research Institutions
  • 7.8 Other End Users

8 Global Astable Multivibrator Market, By Geography

  • 8.1 Introduction
  • 8.2 North America
    • 8.2.1 US
    • 8.2.2 Canada
    • 8.2.3 Mexico
  • 8.3 Europe
    • 8.3.1 Germany
    • 8.3.2 UK
    • 8.3.3 Italy
    • 8.3.4 France
    • 8.3.5 Spain
    • 8.3.6 Rest of Europe
  • 8.4 Asia Pacific
    • 8.4.1 Japan
    • 8.4.2 China
    • 8.4.3 India
    • 8.4.4 Australia
    • 8.4.5 New Zealand
    • 8.4.6 South Korea
    • 8.4.7 Rest of Asia Pacific
  • 8.5 South America
    • 8.5.1 Argentina
    • 8.5.2 Brazil
    • 8.5.3 Chile
    • 8.5.4 Rest of South America
  • 8.6 Middle East & Africa
    • 8.6.1 Saudi Arabia
    • 8.6.2 UAE
    • 8.6.3 Qatar
    • 8.6.4 South Africa
    • 8.6.5 Rest of Middle East & Africa

9 Key Developments

  • 9.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 9.2 Acquisitions & Mergers
  • 9.3 New Product Launch
  • 9.4 Expansions
  • 9.5 Other Key Strategies

10 Company Profiling

  • 10.1 Toshiba
  • 10.2 STMicroelectronics
  • 10.3 Microchip Technology Inc
  • 10.4 Renesas Electronics Corporation
  • 10.5 Analog Devices Inc
  • 10.6 Texas Instruments Incorporated
  • 10.7 ON Semiconductor
  • 10.8 NXP Semiconductors
  • 10.9 Infineon Technologies AG
  • 10.10 Maxim Integrated
  • 10.11 Fairchild Semiconductor
  • 10.12 Visionics Sweden HB
  • 10.13 Nexperia
  • 10.14 Mouser Electronics
  • 10.15 SES Instruments Private Limited
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦