½ÃÀ庸°í¼­
»óǰÄÚµå
1423574

À¯ÀüÀÚ ¿¹Ãø Åø ½ÃÀå ¿¹Ãø(-2030³â) : ±¸¼º¿ä¼Òº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ºÐ¼®

Gene Prediction Tools Market Forecasts to 2030 - Global Analysis By Component (Software and Service), Application, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é, ¼¼°è À¯ÀüÀÚ ¿¹Ãø Åø ½ÃÀåÀº 2023³â 1,273¾ï ´Þ·¯·Î ¿¹Ãø ±â°£ µ¿¾È 20.3%ÀÇ CAGR·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 4,641¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

À¯ÀüÀÚ ¿¹Ãø ÅøÀº DNA ¼­¿­¿¡¼­ ÀáÀçÀûÀÎ ´Ü¹éÁú ÄÚµù ¿µ¿ªÀ» ½Äº°Çϰí ÁÖ¼®À» ´Þ±â À§ÇØ »ç¿ëµÇ´Â °è»ê ¾Ë°í¸®ÁòÀÔ´Ï´Ù. ÀÌ·¯ÇÑ µµ±¸´Â Åë°è ¸ðµ¨, ¼û°ÜÁø ¸¶¸£ÄÚÇÁ ¸ðµ¨ ¶Ç´Â ±â°è ÇнÀ ±â¼úÀ» »ç¿ëÇÏ¿© À¯ÀüÀÚ ¼­¿­À» ºÐ¼®ÇÏ¿© À¯ÀüÀÚ, ÄÚµù ¿µ¿ª, ¿¢¼Õ-ÀÎÆ®·Ð °æ°è ¹× Á¦¾î ¿ä¼ÒÀÇ À§Ä¡¸¦ ¿¹ÃøÇÕ´Ï´Ù. ÀÌ·¯ÇÑ µµ±¸´Â À¯ÀüÀÚ ±¸Á¶¿¡ ´ëÇÑ ÀÌÇØ¸¦ µ½°í ´Ù¾çÇÑ »ý¹°ÀÇ À¯ÀüÀÚ ÁÖ¼®, ±â´É ºÐ¼® ¹× °Ô³ð ÁÖ¼®È­¸¦ ¿ëÀÌÇÏ°Ô ÇÏ¿© À¯ÀüüÇÐ ¹× ºÐÀÚ»ý¹°ÇÐ ¿¬±¸¿¡ Å©°Ô ±â¿©Çϰí ÀÖ½À´Ï´Ù.

2021³â Briefings in Bioinformatics¿¡ µû¸£¸é, TSSFinder¶ó´Â ÇÁ·Î±×·¥ÀÌ ÁøÇÙ »ý¹° Á¾ÀÇ ÇÁ·Î¸ðÅÍ ¼­¿­À» ¼³¸íÇÏ´Â µ¥ »ç¿ëµÇ¾ú´Ù°í ÇÕ´Ï´Ù. TSSFinder´Â ¼±Çü ¿¬¼â Á¶°ÇºÎ È®·üÀå(LCCRF)¿¡ ±â¹ÝÇÑ È®·ü·ÐÀû ¸ðµ¨À» ÀÌ¿ëÇÑ Àü»ç ½ÃÀÛÁ¡(TSS) ¿¹Ãø Á¢±Ù¹ýÀÌ TSSFinderÀ̸ç, óÀ½¿¡´Â ¹®Çå¿¡ °ø°³µÇ¾î ÀÖ¾ú½À´Ï´Ù.

°³º°È­ ÀÇ·á¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡

°³ÀθÂÃãÇü ÀÇ·á¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â À¯ÀüÀÚ ¿¹Ãø ÅøÀÇ ¹ßÀüÀÇ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µµ±¸´Â À¯ÀüÀÚ Á¤º¸¸¦ Ȱ¿ëÇÏ¿© °³ÀÎÀÌ Æ¯Á¤ Áúº´¿¡ °É¸± °¡´É¼º, ƯÁ¤ ¾à¹°¿¡ ´ëÇÑ ¹ÝÀÀ¼º, ÀáÀçÀûÀÎ ºÎÀÛ¿ëÀ» ¿¹ÃøÇÕ´Ï´Ù. À¯ÀüÀÚ ¿¹Ãø ÅøÀº °³ÀÎÀÇ À¯ÀüÀÚ µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ¿© Áúº´ ¹× ¾à¹° ´ë»ç¿Í °ü·ÃµÈ µ¹¿¬º¯À̸¦ ½Äº°ÇÏ¿© Ä¡·á °èȹÀ» ¸ÂÃãÈ­ÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù.

µ¥ÀÌÅÍÀÇ Ç°Áú°ú º¹À⼺

À¯ÀüÀÚ ¿¹Ãø ÅøÀº À¯Àüü ¼­¿­ÀÇ ÆíÂ÷·Î ÀÎÇÑ µ¥ÀÌÅÍ Ç°Áú ¹®Á¦¿¡ Á÷¸éÇÏ¿© ¿¹Ãø¿¡ ¿ÀÂ÷°¡ ¹ß»ýÇÕ´Ï´Ù. ´ëü Á¢ÇÕ ¹× Áߺ¹ À¯ÀüÀÚ¸¦ Æ÷ÇÔÇÑ À¯ÀüÀÚ ±¸Á¶ÀÇ º¹À⼺Àº Á¤È®µµ¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â º¹À⼺À» Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, »ç¿ë °¡´ÉÇÑ °Ô³ð µ¥ÀÌÅÍÀÇ ¾çÀÌ ¹æ´ëÇϱ⠶§¹®¿¡ ´Ù¾çÇÑ °Ô³ð Ư¼ºÀ» ó¸®ÇÒ ¼ö ÀÖ´Â °­·ÂÇÑ ¾Ë°í¸®ÁòÀÌ ÇÊ¿äÇϸç, ÀÌ´Â °è»ê»óÀÇ ¹®Á¦¸¦ ¾ß±âÇÕ´Ï´Ù. °á°úÀûÀ¸·Î µ¥ÀÌÅÍ Ç°ÁúÀÇ ÇѰè¿Í º¹À⼺Àº Á¤È®ÇÑ À¯ÀüÀÚ ¿¹ÃøÀ» ¹æÇØÇϰí, »ý¹°ÇÐÀû ÇØ¼®°ú ´Ù¿î½ºÆ®¸² ºÐ¼®¿¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù.

¹ÙÀÌ¿ÀÀÎÆ÷¸Åƽ½º µµÀÔ È®´ë

¹ÙÀÌ¿ÀÀÎÆ÷¸Åƽ½º´Â À¯ÀüÀÚ ¿¹Ãø ÅøÀÇ ¹ßÀü¿¡ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖÀ¸¸ç, ±× º¸±ÞÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. °è»ê ¾Ë°í¸®Áò°ú »ý¹°ÇÐÀû µ¥ÀÌÅ͸¦ Ȱ¿ëÇÏ´Â »ý¹°Á¤º¸ÇÐÀº Á¤È®ÇÑ À¯ÀüÀÚ ½Äº°, ÁÖ¼® ¹× ±â´É ºÐ¼®À» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¿¹Ãø ¸ðµ¨À» ÃÖÀûÈ­Çϰí À¯ÀüÀÚ Äڵ带 ÇØµ¶Çϱâ À§ÇØ ½ÃÄö½Ì, ±â°è ÇнÀ, Åë°èÀû ¹æ¹ýÀ» ÅëÇÕÇÏ¿© À¯Àüü Äڵ带 ÇØµ¶ÇÒ ¼ö ÀÖ½À´Ï´Ù. »ý¹°Á¤º¸Çп¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁü¿¡ µû¶ó ´Ù¾çÇÑ »ý¹°ÇÐÀû ¿¬±¸ ºÐ¾ß¿¡¼­ À¯ÀüÀÚ ¿¹Ãø ÅøÀÇ Á¤È®¼º, È®À强 ¹× Á¢±Ù¼ºÀÌ Çâ»óµÇ°í ÀÖ½À´Ï´Ù.

¾ö°ÝÇÑ ±ÔÁ¦ ½ÂÀÎ ÇÁ·Î¼¼½º

À¯ÀüÀÚ ¿¹Ãø ÅøÀÇ ¾ö°ÝÇÑ ±ÔÁ¦ ½ÂÀÎ °úÁ¤¿¡´Â ¸î °¡Áö ´ÜÁ¡ÀÌ ÀÖ½À´Ï´Ù. Á¾Á¾ °³¹ß ±â°£ÀÌ ±æ¾îÁö°í À¯ÀüÀÚ ¿¬±¸ ¹× ÀÓ»ó ÀÀ¿ë ºÐ¾ß¿¡¼­ Áß¿äÇÑ ±â¼ú Çõ½ÅÀ» Áö¿¬½ÃŰ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ³ôÀº ±ÔÁ¦ À庮À¸·Î ÀÎÇØ Á¢±Ù¼º°ú ±¸¸Å ¿ëÀ̼ºÀÌ Á¦ÇÑµÇ¾î ¼Ò±Ô¸ð ¿¬±¸ ±×·ì°ú ±â¾÷ÀÌ »õ·Î¿î ¼Ö·ç¼ÇÀ» Á¦°øÇÏ´Â µ¥ ¹æÇذ¡ µË´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ ±î´Ù·Î¿î ÀýÂ÷´Â ±âÁ¸ µµ±¸¸¦ ¿ì´ëÇÔÀ¸·Î½á ±â¼ú Çõ½ÅÀ» ¾ïÁ¦ÇÏ°í ´õ È¿°úÀûÀ̰í ȹ±âÀûÀÎ ±â¼úÀÇ ÃâÇöÀ» ¹æÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ:

À¯ÀüÀÚ ¿¹Ãø ÅøÀº ¹ÙÀÌ·¯½º À¯ÀüÀÚ, µ¹¿¬º¯ÀÌ ¹× ±â´ÉÀû ±¸¼º¿ä¼Ò¸¦ ½Äº°ÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çß½À´Ï´Ù. ÀÌ·¯ÇÑ µµ±¸´Â ¿¬±¸ÀÚµéÀÌ ÀáÀçÀûÀÎ ¹é½Å È常¦ ½Äº°ÇÒ »Ó¸¸ ¾Æ´Ï¶ó ±× ¾ÈÀü¼º°ú È¿´ÉÀ» Æò°¡Çϱâ À§ÇØ »ç¿ëµÇ¾ú½À´Ï´Ù. ±×·¯³ª COVID-19°¡ È®»êµÊ¿¡ µû¶ó COVID-19¿Í °ü·ÃÀÌ ¾ø´Â ¼ö¸¹Àº ¿¬±¸ ÇÁ·ÎÁ§Æ®°¡ ÀÚ¿ø ÀçºÐ¹è, ºÀ¼â, ¿¬±¸ Ȱµ¿ Áß´ÜÀ¸·Î ÀÎÇØ Áߴܵǰųª ¿¬±âµÇ¾ú½À´Ï´Ù. ±× °á°ú, COVID-19 ÀÌ¿ÜÀÇ ¿¬±¸ ºÐ¾ß¿¡¼­ À¯ÀüÀÚ ¿¹Ãø ±â±âÀÇ ¼ö¿ë°ú Àû¿ëÀÌ µÐÈ­µÇ¾ú½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¼ÒÇÁÆ®¿þ¾î ºÎ¹®ÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»ó

¿¹Ãø ±â°£ µ¿¾È ¼ÒÇÁÆ®¿þ¾î ºÎ¹®ÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ µµ±¸´Â Á¤±³ÇÑ ¾Ë°í¸®ÁòÀ» »ç¿ëÇÏ¿© À¯Àüü µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ¿© À¯ÀüÀÚÀÇ À§Ä¡, ±¸Á¶ ¹× ±â´ÉÀ» Á¤È®ÇÏ°Ô ¿¹ÃøÇÕ´Ï´Ù. ÀÌ ½ÃÀåÀÇ ÁÖ¿ä ¾÷üµéÀº »ç¿ëÀÚ Ä£È­ÀûÀÎ ÀÎÅÍÆäÀ̽º¸¦ Á¦°øÇÏ¿© ¿¬±¸ÀÚ¿Í ÀÓ»óÀÇÀÇ Á¢±Ù¼ºÀ» º¸ÀåÇϰí ÀÖ½À´Ï´Ù. À¯ÀüÀÚ ¿¹ÃøÀÇ Á¤È®µµ¸¦ ³ôÀÌ´Â ¼ÒÇÁÆ®¿þ¾îÀÇ ´É·ÂÀº À¯Àüü ¿¬±¸¿Í °³ÀÎ ¸ÂÃãÇü ÀÇ·áÀÇ ¹ßÀü¿¡ Å©°Ô ±â¿©ÇÏ¸ç ½ÃÀå È®´ë¸¦ ÁÖµµÇϰí ÀÖ½À´Ï´Ù. À¯Àüü µ¥ÀÌÅͰ¡ Áö¼ÓÀûÀ¸·Î Áõ°¡ÇÔ¿¡ µû¶ó È¿À²ÀûÀÌ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â À¯ÀüÀÚ ¿¹Ãø Åø¿¡ ´ëÇÑ ¼ö¿ä´Â ½ÃÀå ¼ºÀåÀ» ´õ¿í ÃËÁøÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

Áø´Ü ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»ó

Áø´Ü ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ µµ±¸´Â Áúº´°ú °ü·ÃµÈ À¯ÀüÀû µ¹¿¬º¯À̸¦ ½Äº°ÇÏ°í ¸ÂÃã ÀǷḦ Áö¿øÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. Á¤È®Çϰí È¿À²ÀûÀÎ Áø´Ü ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ À¯ÀüÀÚ ¿¹Ãø ÅøÀÇ ±â¼ú Çõ½ÅÀ» ÃËÁøÇÏ°í °æÀïÀûÀÎ ½ÃÀå ȯ°æÀ» Á¶¼ºÇϰí ÀÖ½À´Ï´Ù. ÁÖ¿ä ¾÷üµéÀº Áø´Ü Á¤È®µµ Çâ»ó, ¾ÖÇø®ÄÉÀÌ¼Ç È®Àå, »ç¿ëÀÚ Ä£È­ÀûÀÎ ÀÎÅÍÆäÀ̽º °­È­¿¡ ÁÖ·ÂÇϰí ÀÖÀ¸¸ç, ÀÌ´Â Àüü ½ÃÀåÀÇ ¼ºÀå°ú ¹ßÀü¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì Áö¿ªÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À¯ÀüÀÚ ¿¬±¸, ƯÈ÷ ¸ÂÃã ÀÇ·á, ¾Ï ¿¬±¸, ³ó¾÷ µîÀÇ ºÐ¾ß¿¡ ´ëÇÑ °ü½É°ú ÅõÀÚ°¡ Áõ°¡ÇÔ¿¡ µû¶ó Á¤±³ÇÑ À¯ÀüÀÚ ¿¹Ãø Åø¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ »ý¸í°øÇÐ ¹× Á¦¾à ±â¾÷µéÀº À¯ÀüÀÚ ÆíÁý, Ä¡·áÁ¦ ¹× Áø´Ü °ü·Ã ¿¬±¸°³¹ß¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖÀ¸¸ç, ÀÌ´Â ½ÃÀå ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª:

¾Æ½Ã¾ÆÅÂÆò¾çÀº ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» À¯ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ¼ºÀå¿¡´Â °Ô³ð ¿¬±¸ ¹× °³¹ß Ȱµ¿ÀÇ Áõ°¡, »ý¸í°øÇÐ ¹× Á¦¾à ºÎ¹®¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡, °³ÀÎ ¸ÂÃãÇü ÀÇ·á¿¡ ´ëÇÑ ÀÎ½Ä Áõ°¡ µî ¿©·¯ °¡Áö ¿äÀÎÀÌ ±â¿©Çϰí ÀÖ½À´Ï´Ù. °¢±¹Àº »ý¸í°úÇÐ ¿¬±¸¿¡ ´ëÇÑ ¸·´ëÇÑ ÅõÀÚ¸¦ ÅëÇØ ÀÌ ½ÃÀå¿¡ Å©°Ô ±â¿©Çϰí ÀÖ½À´Ï´Ù. ÀÌµé ±¹°¡´Â Ȱ¹ßÇÑ »ý¸í°øÇÐ »ê¾÷°ú ±¤¹üÀ§ÇÑ °Ô³ð ¿¬±¸¸¦ ¼öÇàÇÏ´Â Çмú ±â°üÀ» º¸À¯Çϰí ÀÖ½À´Ï´Ù.

¹«·á ¸ÂÃãÇü ¼­ºñ½º:

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù:

  • ȸ»ç ÇÁ·ÎÇÊ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀûÀÎ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ SWOT ºÐ¼®(ÃÖ´ë 3°³»ç)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤Ä¡, ¿¹Ãø, CAGR(ÁÖ: Ÿ´ç¼º °ËÅä¿¡ µû¸¥)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù¹ý
  • Á¶»ç ¼Ò½º
    • 1Â÷ Á¶»ç ¼Ò½º
    • 2Â÷ Á¶»ç ¼Ò½º
    • °¡Á¤

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • Á¦Ç° ºÐ¼®
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾»ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • ½ÅÁ¾ Äڷγª¹ÙÀÌ·¯½º °¨¿°Áõ(COVID-19)ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ±¸¸ÅÀÚÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü¿©¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷ °£ÀÇ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ À¯ÀüÀÚ ¿¹Ãø Åø ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • ¼ÒÇÁÆ®¿þ¾î
  • ¼­ºñ½º

Á¦6Àå ¼¼°èÀÇ À¯ÀüÀÚ ¿¹Ãø Åø ½ÃÀå : ¿ëµµº°

  • Áø´Ü
  • ÀÇÇÐ Á¶»ç
  • Drug Discovery & Designing
  • ±âŸ ¿ëµµ

Á¦7Àå ¼¼°èÀÇ À¯ÀüÀÚ ¿¹Ãø Åø ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • º´¿ø°ú Ŭ¸®´Ð
  • ¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö ±â¾÷
  • Çмú±â°ü°ú ¿¬±¸ ¼¾ÅÍ
  • »ý¸í°úÇÐ Å×Å©³î·¯Áö º¥´õ
  • ±âŸ ÃÖÁ¾»ç¿ëÀÚ

Á¦8Àå ¼¼°èÀÇ À¯ÀüÀÚ ¿¹Ãø Åø ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦9Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕÀÛÅõÀÚ
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦10Àå ±â¾÷ °³¿ä

  • AZoLifeSciences
  • Illumina, Inc.
  • BGI Genomics
  • Geneious
  • Thermo Fisher Scientific, Inc.
  • Genscript
  • Exiqon
  • Softberry Technologies
  • Qiagen NV
  • National Human Genome Research Institute
  • New England Biolabs
  • ERS Genomics
  • Horizon Discovery Ltd.
  • Sangamo Therapeutics
  • Takara Bio Inc.
  • Merck KGaA
ksm 24.02.20

According to Stratistics MRC, the Global Gene Prediction Tools Market is accounted for $127.3 billion in 2023 and is expected to reach $464.1 billion by 2030 growing at a CAGR of 20.3% during the forecast period. Gene prediction tools are computational algorithms used to identify and annotate potential protein-coding regions within DNA sequences. They analyze genetic sequences, employing statistical models, hidden Markov models, or machine learning techniques to predict the locations of genes, coding regions, exon-intron boundaries, and regulatory elements. These tools aid in understanding genetic structures, facilitating gene annotation, functional analysis, and genome annotation in various organisms, contributing significantly to genomics and molecular biology research.

According to Briefings in Bioinformatics in 2021, a program called TSSFinder was used to describe the promoter sequences from Eukaryotic species. The initial transcription start site (TSS) prediction approach that uses a probabilistic model based on linear chain conditional random fields (LCCRFs) is TSSFinder, which was originally disclosed in the literature.

Market Dynamics:

Driver:

Rising demand for personalized medicines

The increasing demand for personalized medicine has been a driving force in the advancement of gene prediction tools. These tools utilize genetic information to predict an individual's likelihood of developing certain diseases, their response to particular medications, and potential adverse reactions. Gene prediction tools analyze an individual's genetic data to identify variations associated with diseases or drug metabolism, aiding in customizing treatment plans.

Restraint:

Data quality and complexity

Gene prediction tools face challenges with data quality due to variations in genome sequences, leading to errors in predictions. The complexity of gene structures, including alternative splicing and overlapping genes, adds intricacy, affecting accuracy. Moreover, the vast amount of available genomic data poses computational challenges, requiring robust algorithms to handle diverse genomic features. Consequently, limitations in data quality and complexities hinder precise gene predictions, impacting biological interpretations and downstream analyses.

Opportunity:

Growing adoption of bioinformatics

Bioinformatics plays a pivotal role in advancing gene prediction tools, driving their widespread adoption. Leveraging computational algorithms and biological data, bioinformatics enables accurate gene identification, annotation, and functional analysis. Its integration optimizes predictive models, employing sequence analysis, machine learning, and statistical methods to decipher genetic codes. The growing reliance on bioinformatics ensures enhanced precision, scalability, and accessibility of Gene Prediction Tools in various biological research domains.

Threat:

Stringent regulatory approval process

The stringent regulatory approval process for gene prediction tools poses several disadvantages. It often leads to prolonged development timelines, delaying crucial innovations in genetic research and clinical applications. High regulatory barriers limit accessibility and affordability, impeding smaller research groups or companies from contributing novel solutions. Additionally, these stringent processes may stifle innovation by favouring established tools, hindering the emergence of potentially more effective or groundbreaking technologies.

Covid-19 Impact:

Gene prediction tools played a crucial role in identifying viral genes, mutations, and functional components. These tools were used by researchers to evaluate the safety and efficacy of possible vaccine candidates in addition to identifying them. However, as the epidemic spread, numerous research projects unrelated to COVID-19 had to be cancelled or postponed due to resource reallocation, lockdowns, and disruptions in research activity. Consequently, there was a deceleration in the acceptance and application of gene prediction instruments in research domains other than COVID-19.

The software segment is expected to be the largest during the forecast period

The software segment is expected to be the largest during the forecast period. These tools utilize sophisticated algorithms to analyze genomic data, accurately predicting gene locations, structures, and functions. Key players in this market offer user-friendly interfaces, ensuring accessibility for researchers and clinicians. The software's ability to enhance precision in gene prediction significantly contributes to advancements in genomics research and personalized medicine, driving the market's expansion. As genomic data continues to grow, the demand for efficient and reliable gene prediction tools is expected to further propel market growth.

The diagnostics segment is expected to have the highest CAGR during the forecast period

The diagnostics segment is expected to have the highest CAGR during the forecast period. These tools play a crucial role in identifying genetic variations associated with diseases, aiding in personalized medicine. The demand for accurate and efficient diagnostic solutions has spurred innovation in gene prediction tools, creating a competitive market landscape. Key players are focusing on improving diagnostic accuracy, expanding applications, and enhancing user-friendly interfaces, contributing to the overall growth and evolution of the market.

Region with largest share:

North America is projected to hold the largest market share during the forecast period. Growing interest and investment in genetic research, particularly in fields like personalized medicine, cancer research, and agriculture, have increased the demand for sophisticated gene prediction tools. Biotech and pharmaceutical companies in the region are investing heavily in research and development related to gene editing, therapeutics, and diagnostics, further propelling the market growth.

Region with highest CAGR:

Asia Pacific is projected to hold the highest CAGR over the forecast period. Several factors were contributing to this expansion, including increased research and development activities in genomics, rising investments in biotechnology and pharmaceutical sectors, and growing awareness about personalized medicine. Countries were key contributors to this market due to their substantial investments in life sciences research. These nations had vibrant biotechnology industries and academic institutions conducting extensive genomic research.

Key players in the market

Some of the key players in Gene Prediction Tools market include AZoLifeSciences, Illumina, Inc., BGI Genomics, Geneious, Thermo Fisher Scientific, Inc., Genscript, Exiqon, Softberry Technologies, Qiagen NV, National Human Genome Research Institute, New England Biolabs, ERS Genomics, Horizon Discovery Ltd., Sangamo Therapeutics, Takara Bio Inc. and Merck KGaA.

Key Developments:

In June 2023, Illumina, Inc. disclosed the AI software for predicting disease-causing genetic mutations in patients. Through this, the company has enhanced its product portfolio and revenue growth.

In March 2022, Illumina, Inc. announced the launch of TruSigh Oncology (TSO) Comprehensive (EU). It is an examination that assesses various tumor of a patient's malignancy.

Components Covered:

  • Software
  • Service

Applications Covered:

  • Diagnostics
  • Medical Research
  • Drug Discovery & Designing
  • Other Applications

End Users Covered:

  • Hospitals & Clinics
  • Biotechnology Companies
  • Academic Institutes & Research Centers
  • Life Science Technology Vendors
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2021, 2022, 2023, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Product Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Gene Prediction Tools Market, By Component

  • 5.1 Introduction
  • 5.2 Software
  • 5.3 Service

6 Global Gene Prediction Tools Market, By Application

  • 6.1 Introduction
  • 6.2 Diagnostics
  • 6.3 Medical Research
  • 6.4 Drug Discovery & Designing
  • 6.5 Other Applications

7 Global Gene Prediction Tools Market, By End User

  • 7.1 Introduction
  • 7.2 Hospitals & Clinics
  • 7.3 Biotechnology Companies
  • 7.4 Academic Institutes & Research Centers
  • 7.5 Life Science Technology Vendors
  • 7.7 Other End Users

8 Global Gene Prediction Tools Market, By Geography

  • 8.1 Introduction
  • 8.2 North America
    • 8.2.1 US
    • 8.2.2 Canada
    • 8.2.3 Mexico
  • 8.3 Europe
    • 8.3.1 Germany
    • 8.3.2 UK
    • 8.3.3 Italy
    • 8.3.4 France
    • 8.3.5 Spain
    • 8.3.6 Rest of Europe
  • 8.4 Asia Pacific
    • 8.4.1 Japan
    • 8.4.2 China
    • 8.4.3 India
    • 8.4.4 Australia
    • 8.4.5 New Zealand
    • 8.4.6 South Korea
    • 8.4.7 Rest of Asia Pacific
  • 8.5 South America
    • 8.5.1 Argentina
    • 8.5.2 Brazil
    • 8.5.3 Chile
    • 8.5.4 Rest of South America
  • 8.6 Middle East & Africa
    • 8.6.1 Saudi Arabia
    • 8.6.2 UAE
    • 8.6.3 Qatar
    • 8.6.4 South Africa
    • 8.6.5 Rest of Middle East & Africa

9 Key Developments

  • 9.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 9.2 Acquisitions & Mergers
  • 9.3 New Product Launch
  • 9.4 Expansions
  • 9.5 Other Key Strategies

10 Company Profiling

  • 10.1 AZoLifeSciences
  • 10.2 Illumina, Inc.
  • 10.3 BGI Genomics
  • 10.4 Geneious
  • 10.5 Thermo Fisher Scientific, Inc.
  • 10.6 Genscript
  • 10.7 Exiqon
  • 10.8 Softberry Technologies
  • 10.9 Qiagen NV
  • 10.10 National Human Genome Research Institute
  • 10.11 New England Biolabs
  • 10.12 ERS Genomics
  • 10.13 Horizon Discovery Ltd.
  • 10.14 Sangamo Therapeutics
  • 10.15 Takara Bio Inc.
  • 10.16 Merck KGaA
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦