½ÃÀ庸°í¼­
»óǰÄÚµå
1423609

»ý½Äµ¶¼º ½ÃÇè ½ÃÀå ¿¹Ãø(-2030³â) : Á¦Ç°, ¹æ¹ý, ±â¼ú, ÃÖÁ¾»ç¿ëÀÚ, Áö¿ªº° ¼¼°è ºÐ¼®

Reproductive Toxicity Testing Market Forecasts to 2030 - Global Analysis By Product (Consumables, Assays and Equipment), Method (Cellular Assays, In-Silico Models, Biochemical Assays and Ex-Vivo Models), Technology, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é, »ý½Äµ¶¼º ½ÃÇè ¼¼°è ½ÃÀåÀº 2023³â 118¾ï ´Þ·¯·Î ¿¹Ãø ±â°£ µ¿¾È 11.4%ÀÇ CAGR·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 251¾ï 4,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

»ý½Äµ¶¼º½ÃÇèÀº ´Ù¾çÇÑ ¹°ÁúÀÌ Àΰ£°ú µ¿¹°ÀÇ »ý½Ä±â°ü¿¡ ¹ÌÄ¡´Â ÀáÀçÀûÀÎ ¾Ç¿µÇâÀ» Æò°¡ÇÏ´Â °ÍÀ» Æ÷ÇÔÇÕ´Ï´Ù. »ý½Äµ¶¼º Æò°¡¿¡´Â in vivo(µ¿¹°½ÇÇè), in vitro ºÐ¼®, °è»ê ¸ðµ¨, ÇÏÀ̽º·çDz ½ºÅ©¸®´× µî ´Ù¾çÇÑ Á¶»ç¹æ¹ýÀÌ »ç¿ëµË´Ï´Ù. Æò°¡¿¡´Â »ý½Ä´É·Â, ¹è¾Æ ¹ß»ý, ±âÇü À¯¹ß, µ¹¿¬º¯ÀÌ À¯¹ß, È£¸£¸ó Àå¾Ö¿Í °°Àº Á¾¸»Á¡ Æò°¡°¡ Æ÷ÇԵǸç, À§Çè Æò°¡ ¹× ±ÔÁ¦ °áÁ¤À» À§ÇÑ Áß¿äÇÑ µ¥ÀÌÅ͸¦ Á¦°øÇÕ´Ï´Ù.

ClinicalTrials.gov¿¡ µû¸£¸é, 2020³â 8¿ù ÇöÀç ÃÑ 281,305°ÇÀÇ ÀÓ»ó½ÃÇèÀÌ µ¥ÀÌÅͺ£À̽º¿¡ µî·ÏµÇ¾î ÀÖ½À´Ï´Ù.

°Ë»ç ±â¼úÀÇ ¹ßÀü

°í󸮷® ½ºÅ©¸®´×, ÷´Ü ü¿Ü ºÐ¼®, ¿¹Ãø °è»ê ¸ðµ¨ µî ÇöÀç ÁøÇà ÁßÀÎ ±â¼ú Çõ½ÅÀº µ¶¼º ½ÃÇè ºÐ¾ß¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº ½ÃÇèÀÇ Á¤È®¼º, È¿À²¼º ¹× ºñ¿ë È¿À²¼ºÀ» Çâ»ó½ÃÄÑ µ¿¹° ½ÇÇè¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀ̸鼭 »ý½Ä µ¶¼ºÀ» Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ¶ÇÇÑ, º¸´Ù ¹Î°¨ÇÏ°í Æ¯ÀÌÀûÀÎ ½ÃÇè¹ýÀÇ °³¹ß·Î ¹°Áú¿¡ ´ëÇÑ Àΰ£ÀÇ ¹ÝÀÀÀ» º¸´Ù Á¤È®ÇÏ°Ô ¿¹ÃøÇÒ ¼ö ÀÖ°Ô µÇ¾î ÀǾàǰ °³¹ß ¹× Á¦Ç° ¾ÈÀü¼º Æò°¡¿¡¼­ ÀÇ»ç°áÁ¤À» º¸´Ù ½Å¼ÓÇÏ°Ô ³»¸± ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ±× °á°ú, È­ÇÐ, Á¦¾à, ¼ÒºñÀç »ê¾÷¿¡¼­ äÅõǴ ºóµµ°¡ ³ô¾ÆÁ® ½ÃÀå È®´ëÀÇ ¿øµ¿·ÂÀÌ µÉ °ÍÀÔ´Ï´Ù.

ºñ¿ë°ú ½Ã°£ÀÇ ¹®Á¦

Á¾ÇÕÀûÀÎ »ý½Äµ¶¼º ½ÃÇèÀ» ¼öÇàÇÏ·Á¸é ƯÈ÷ Àå±âÀûÀÎ Æò°¡¿Í ±ÔÁ¦ Áؼö¸¦ À§ÇØ ¸¹Àº ºñ¿ë°ú ±ä ½ÃÇè ±â°£ÀÌ ÇÊ¿äÇÕ´Ï´Ù. ƯÈ÷ ¼Ò±Ô¸ð ±â¾÷À̳ª ¿¬±¸ ±â°ü¿¡ ÀÖ¾î ÀÚ¿ø°ú ½Ã°£ ÅõÀÚ´Â ¾öû³­ ºñ¿ëÀÌ ¼Ò¿äµÇ¸ç, ÀÌ´Â ´ë±Ô¸ð ½ÃÇè ¼öÇà ´É·Â¿¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. °æÁ¦Àû ºÎ´ã°ú Àå±âÀûÀÎ ÀÏÁ¤Àº ÀÌ·¯ÇÑ ½ÃÇèÀÇ º¸±ÞÀ» ¹æÇØÇϰí Á¾ÇÕÀûÀÎ »ý½Äµ¶¼º Æò°¡¿¡ ´ëÇÑ Á¢±ÙÀ» Á¦ÇÑÇϸç Á¦Ç° °³¹ß ¹× ±ÔÁ¦ ½ÂÀÎ ÇÁ·Î¼¼½ºÀÇ ¼Óµµ¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù.

È®´ëÇÏ´Â Á¦¾à ¹× È­ÇÐ »ê¾÷

Á¦¾à ¹× È­ÇÐ ºÐ¾ßÀÇ Áö¼ÓÀûÀÎ ¼ºÀå¿¡ µû¶ó ½Å¾à, È­ÇÐÁ¦Ç° ¹× ¼ÒºñÀÚ Á¦Ç°ÀÇ °³¹ßÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¦Ç°µéÀÌ ½ÃÀå¿¡ Ãâ½ÃµÇ±â Àü¿¡ ¾ÈÀü¼º°ú ±ÔÁ¦ Áؼö¸¦ º¸ÀåÇϱâ À§Çؼ­´Â Á¾ÇÕÀûÀÎ »ý½Äµ¶¼º ½ÃÇèÀÌ ÇÊ¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Ã¶ÀúÇÑ ¾ÈÀü¼º Æò°¡¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â ½ÃÇè ¼­ºñ½º Á¦°ø¾÷ü°¡ ½Å·ÚÇÒ ¼ö ÀÖ°í È¿À²ÀûÀÎ ½ÃÇè ¼­ºñ½º¸¦ Á¦°øÇÒ ¼ö ÀÖ´Â ±âȸ·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, È®´ëµÇ´Â »ê¾÷°èÀÇ ¿ä±¸¿¡ ºÎÀÀÇÏ´Â °ÍÀº »ý½Äµ¶¼º ½ÃÇè ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇϰí ÀǾàǰ ¹× È­ÇÐÁ¦Ç°ÀÇ ¾ÈÀü¼º Æò°¡¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃæÁ·½ÃÅ´À¸·Î½á ¼ÒºñÀÚ¿¡°Ô º¸´Ù ¾ÈÀüÇÑ Á¦Ç°À» º¸ÀåÇÒ ¼ö ÀÖ½À´Ï´Ù.

±ÔÁ¦»óÀÇ Àå¾Ö¹°

Áö¿ªº°·Î ´Ù¾çÇÏ°í ¾ö°ÝÇÑ ±ÔÁ¦ ±âÁØÀº ½ÃÇè¼Ò ¹× ¼­ºñ½º Á¦°ø¾÷ü¿¡ ¸¹Àº ¾î·Á¿òÀ» ÁÖ°í ÀÖ½À´Ï´Ù. °¢±â ´Ù¸¥ ±ÔÁ¤ Áؼö ¿ä±¸»çÇ×À¸·Î ÀÎÇØ ÅëÀÏµÈ ½ÃÇè ÇÁ·ÎÅäÄÝÀ» ¼ö¸³ÇÏ´Â °ÍÀÌ º¹ÀâÇØÁ® Á¦Ç° ½ÂÀÎ ¹× ½ÃÀå ÁøÀÔÀÌ Áö¿¬µÉ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ´Ù¾çÇÑ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©¿ÍÀÇ Çù»óÀº º¹À⼺À» ¾ß±âÇÏ°í »ý½Äµ¶¼º ½ÃÇè ¼­ºñ½ºÀÇ È¿À²¼º°ú Á¢±Ù¼º¿¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

COVID-19´Â °ø±Þ¸Á È¥¶õ, ½ÇÇè½Ç Æó¼â, ¿¬±¸ ¿ì¼±¼øÀ§ º¯°æÀ¸·Î ÀÎÇØ »ý½Äµ¶¼º ½ÃÇè ½ÃÀå¿¡ ºÎÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀÎÀ¸·Î ÀÎÇØ »ý½Ä µ¶¼º ½ÃÇèÀÇ ¼öÇàÀÌ ´õ ¾î·Æ°í ½Ã°£ÀÌ ¿À·¡ °É·È½À´Ï´Ù. ÀÌ Ã¹ ¹øÂ° ¿µÇâÀº Àü¿°º´ÀÌ À¯ÇàÇÏ´Â µ¿¾È »ý¸í°øÇÐ ¹× Á¦¾à ºÎ¹®ÀÌ °ÞÀº ´õ Å« ¾î·Á¿òÀ» ¹Ý¿µÇß½À´Ï´Ù. ±×·¯³ª ½Ã°£ÀÌ Áö³ª°í ¼¼°è°¡ Àü¿°º´ÀÇ µµÀü¿¡ ÀûÀÀÇÔ¿¡ µû¶ó ½ÃÀåÀº °ß°íÇϰí Áö¼ÓÀûÀ¸·Î È®ÀåµÇ¾ú½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¼¼Æ÷¹è¾ç ±â¼ú ºÐ¾ß°¡ °¡Àå Ŭ °ÍÀ¸·Î ¿¹»ó

¼¼Æ÷ ¹è¾ç ±â¼ú ºÐ¾ß°¡ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù. ¼¼Æ÷ ¹è¾ç ±â¼úÀº È­ÇÕ¹°À̳ª ÀǾàǰ¿¡ ´ëÇÑ ¼¼Æ÷ÀÇ ¹ÝÀÀÀ» °üÂûÇÏ¿© µ¶¼º, À¯Àüµ¶¼º ¹× ±âŸ »ý½ÄÇÐÀû Æò°¡ ÁöÇ¥¸¦ Æò°¡ÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ¼¼Æ÷ ¹è¾ç ±â¹Ý ºÐ¼®Àº »ý½Ä µ¶¼º¿¡ ´ëÇÑ ±ÍÁßÇÑ ÀλçÀÌÆ®¸¦ Á¦°øÇÏ¿© ÀǾàǰ °³¹ß, ¾ÈÀü¼º Æò°¡ ¹× ±ÔÁ¦ Áؼö¿¡ µµ¿òÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¼¼Æ÷ ¹è¾ç ±â¼úÀÇ ¹ßÀüÀº Á¤È®¼º, È¿À²¼º ¹× ¿¹Ãø ´É·ÂÀ» Çâ»ó½ÃÄÑ »ý½Äµ¶¼º ½ÃÇè ¹æ¹ýÀÇ Àü¸ÁÀ» Çü¼ºÇϰí ÀÌ ½ÃÀå ºÎ¹®ÀÇ ¼ºÀå¿¡ Å©°Ô ±â¿©Çϰí ÀÖ½À´Ï´Ù.

Á¦¾à ¹× »ý¸í°øÇÐ ±â¾÷ ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»ó

Á¦¾à ¹× »ý¸í°øÇÐ ±â¾÷ ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È À¯¸®ÇÑ ¼ºÀå¼¼¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Á¦¾à ¹× »ý¸í°øÇÐ ±â¾÷µéÀº »ý½Ä °Ç°­¿¡ ¹ÌÄ¥ ¼ö ÀÖ´Â ÀáÀçÀûÀÎ ¾Ç¿µÇâÀ» Æò°¡Çϱâ À§ÇØ »ý½Ä µ¶¼º ½ÃÇèÀ» ±¤¹üÀ§ÇÏ°Ô È°¿ëÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Å×½ºÆ®´Â ±ÔÁ¦ ±âÁØ Áؼö¸¦ º¸ÀåÇϰí ÀǾàǰÀÇ ¾ÈÀü¼º ÇÁ·ÎÆÄÀÏÀ» °­È­Çϸç ÀǾàǰ °³¹ß ´Ü°è¿¡¼­ Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç °áÁ¤À» Áö¿øÇÕ´Ï´Ù. ¶ÇÇÑ, ÀÌµé ±â¾÷Àº Æ÷°ýÀûÀ̰í Àü¹®ÀûÀÎ »ý½Äµ¶¼º ½ÃÇè ¼­ºñ½º¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí Àü ¼¼°è ¼ÒºñÀÚ¸¦ À§ÇØ Á¦Ç°ÀÇ ¾ÈÀü¼º°ú È¿´ÉÀ» ¿ì¼±½ÃÇϸ鼭 ½ÃÀåÀ» Çü¼ºÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

¾Æ½Ã¾ÆÅÂÆò¾çÀº ¾ö°ÝÇÑ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©, »ý½Ä °Ç°­¿¡ ´ëÇÑ ÀÎ½Ä Áõ°¡, ½ÃÇè ¹æ¹ýÀÇ ±â¼úÀû ¹ßÀüÀ¸·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇß½À´Ï´Ù. ¶ÇÇÑ, °øµ¿¿¬±¸ÀÇ Áõ°¡¿Í ÀǾàǰ ¾ÈÀü¼º Æò°¡¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ ½ÃÀå ¼ö¿ä¸¦ ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ Á¦¾à »ê¾÷ÀÇ ¹ßÀü°ú Á¤ºÎ Áö¿ø Á¤Ã¥À¸·Î ÀÎÇØ ¾Æ½Ã¾ÆÅÂÆò¾çÀº »ý½Äµ¶¼º ½ÃÇè ¼­ºñ½ºÀÇ Çãºê·Î ÀÚ¸®¸Å±èÇϰí ÀÖÀ¸¸ç, Ä¡¿­ÇÑ °æÀï°ú ±â¼ú Çõ½ÅÀÌ ¾÷°è ȯ°æÀ» Çü¼ºÇϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª:

ºÏ¹Ì Áö¿ªÀº ¾ö°ÝÇÑ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©¿Í ÀǾàǰ ¾ÈÀü¿¡ ´ëÇÑ °ü½É Áõ°¡·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È ¼öÀͼº ³ôÀº ¼ºÀåÀ» ÀÌ·ê °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ Áö¿ª, ƯÈ÷ ¹Ì±¹°ú ij³ª´ÙÀÇ ÅºÅºÇÑ Á¦¾à ¹× »ý¸í°øÇÐ »ê¾÷ÀÌ »ý½Äµ¶¼º ½ÃÇè ¼­ºñ½º ¼ö¿ä¸¦ ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¿¬±¸ ±â°ü°ú ¾÷°è Ç÷¹À̾îÀÇ °øµ¿ ¿¬±¸´Â ½ÃÇè ¹æ¹ýÀÇ ¹ßÀü¿¡ ´õ¿í ±â¿©Çϰí ÀÖÀ¸¸ç, ºÏ¹Ì´Â »ý½Äµ¶¼º ½ÃÇè ¼­ºñ½º ¹× Á¦¾à ºÎ¹®ÀÇ ±â¼ú Çõ½Å¿¡ ÀÖ¾î ¸Å¿ì Áß¿äÇÑ °ÅÁ¡À¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

¹«·á Ä¿½ºÅ͸¶ÀÌ¡ ¼­ºñ½º

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù:

  • ȸ»ç ÇÁ·ÎÇÊ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀûÀÎ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ SWOT ºÐ¼®(ÃÖ´ë 3°³»ç)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤Ä¡, ¿¹Ãø, CAGR(ÁÖ: Ÿ´ç¼º °ËÅä¿¡ µû¸¥)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù¹ý
  • Á¶»ç ¼Ò½º
    • 1Â÷ Á¶»ç ¼Ò½º
    • 2Â÷ Á¶»ç ¼Ò½º
    • °¡Á¤

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • Á¦Ç° ºÐ¼®
  • ±â¼ú ºÐ¼®
  • ÃÖÁ¾»ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • ½ÅÁ¾ Äڷγª¹ÙÀÌ·¯½º °¨¿°Áõ(COVID-19)ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ±¸¸ÅÀÚÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü¿©¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷ °£ÀÇ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ »ý½Äµ¶¼º ½ÃÇè ½ÃÀå : Á¦Ç°º°

  • ¼Ò¸ðǰ
  • ¾î¼¼ÀÌ
    • ¼¼±Õ µ¶¼º ¾î¼¼ÀÌ
    • ¼¼±Õ µ¶¼º ¾î¼¼ÀÌ
    • ¼ö¿ëü °áÇÕ ¾î¼¼ÀÌ
    • ¼¼Æ÷ ±â¹Ý ELISA ¹× ¿þ½ºÅÏ ºí·Ô
    • Á¶Á÷¹è¾ç ¾î¼¼ÀÌ
  • Àåºñ

Á¦6Àå ¼¼°èÀÇ »ý½Äµ¶¼º ½ÃÇè ½ÃÀå : ¹æ¹ýº°

  • ¼¼Æ÷ ¾î¼¼ÀÌ
  • ÀνǸ®ÄÚ ¸ðµ¨
  • »ýÈ­ÇÐÀû ¾î¼¼ÀÌ
  • ü¿Ü ¸ðµ¨

Á¦7Àå ¼¼°èÀÇ »ý½Äµ¶¼º ½ÃÇè ½ÃÀå : ±â¼úº°

  • ¼¼Æ÷¹è¾ç ±â¼ú
  • µ¶¼ºÀ¯ÀüüÇÐ
  • ÇÏÀÌ ½º·çDz ±â¼ú

Á¦8Àå ¼¼°èÀÇ »ý½Äµ¶¼º ½ÃÇè ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • Çмú¿¬±¸±â°ü
  • ¼öŹ¿¬±¸±â°ü
  • Á¦¾àȸ»ç ¹× ¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö ȸ»ç
  • ±âŸ ÃÖÁ¾»ç¿ëÀÚ

Á¦9Àå ¼¼°èÀÇ »ý½Äµ¶¼º ½ÃÇè ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦10Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕÀÛÅõÀÚ
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦11Àå ±â¾÷ °³¿ä

  • Thermo Fisher Scientific
  • Laboratory Corporation of America Holdings
  • Charles River Laboratories International
  • Eurofins Scientific
  • Syngene International Limited
  • Jubilant Life Sciences Limited
  • Gentronix Ltd
  • Creative Bioarray
  • Inotiv Inc
  • MB Research Laboratories
  • Catalent, Inc.
  • Bio-Rad Laboratories
  • Evotec
  • QIAGEN
  • Promega Corporation
ksm 24.02.20

According to Stratistics MRC, the Global Reproductive Toxicity Testing Market is accounted for $11.80 billion in 2023 and is expected to reach $25.14 billion by 2030 growing at a CAGR of 11.4% during the forecast period. Reproductive toxicity testing involves assessing the potential adverse effects of various substances on the reproductive systems of humans or animals. Various testing methodologies, including in vivo (animal testing), in vitro assays, computational models, and high-throughput screening, are employed to assess reproductive toxicity. The assessments encompass evaluating endpoints such as fertility, embryonic development, teratogenicity, mutagenicity, and hormonal disruptions, providing essential data to guide risk assessment and regulatory decisions.

According to the ClinicalTrials.gov, a total of 281,305 studies are registered on their database as of August 2020.

Market Dynamics:

Driver:

Advancements in testing technologies

Ongoing innovations, such as high-throughput screening, sophisticated in vitro assays, and predictive computational models, revolutionise the field of toxicity testing. These advancements enhance testing accuracy, efficiency, and cost-effectiveness, allowing for comprehensive evaluation of reproductive toxicity with reduced reliance on animal testing. Furthermore, the development of more sensitive and specific testing methods enables better prediction of human responses to substances, expediting decision-making in drug development and product safety assessments. Consequently, the chemical, pharmaceutical, and consumer goods industries will employ it more frequently, driving market expansion.

Restraint:

Cost and time intensiveness

Conducting comprehensive reproductive toxicity studies involves substantial expenses and lengthy testing periods, especially for long-term assessments and regulatory compliance. The investment of resources and time can be prohibitive, particularly for smaller companies or research institutions, impacting their ability to conduct extensive testing. The financial burden and extended timelines hinder widespread adoption of these tests, potentially limiting access to comprehensive reproductive toxicity evaluations and affecting the pace of product development and regulatory approval processes.

Opportunity:

Expanding Pharmaceutical and Chemical Industries

With continuous growth in the pharmaceutical and chemical sectors, there's been an increased development of new drugs, chemicals, and consumer products. Ensuring the safety and regulatory compliance of these products before market entry necessitates comprehensive reproductive toxicity testing. This rising demand for thorough safety assessments presents an opportunity for testing service providers to offer reliable and efficient testing services. Moreover, addressing the needs of expanding industries fuels the growth of the reproductive toxicity testing market, catering to the demand for safety evaluations in pharmaceuticals and chemicals, thus ensuring safer products for consumers.

Threat:

Regulatory hurdles

Diverse and stringent regulatory standards across regions pose challenges for testing laboratories and service providers. Varying compliance demands complicate the establishment of uniform testing protocols, potentially delaying product approvals and market entry. Negotiating these diverse regulatory frameworks creates complexity, impacting the efficiency and accessibility of reproductive toxicity testing services.

Covid-19 Impact

The COVID-19 pandemic had a detrimental impact on the market for reproductive toxicity testing due to supply chain disruptions, laboratory closures, and a change in research priorities. These factors made reproductive toxicity testing more difficult and time-consuming to perform. This initial effect was a reflection of the larger difficulties that the biotechnology and pharmaceutical sectors experienced during the epidemic. However, the market demonstrated robustness and sustained expansion as time passed and the world adjusted to the pandemic's challenges.

The cell culture technology segment is expected to be the largest during the forecast period

The cell culture technology segment is estimated to hold the largest share. Cell culture technology allows for the evaluation of toxicity, genotoxicity, and other reproductive endpoints by observing cellular responses to chemical compounds or pharmaceuticals. Cell culture-based assays provide valuable insights into reproductive toxicity, aiding in drug development, safety assessment, and regulatory compliance. Moreover, advancements in cell culture techniques enhance accuracy, efficiency, and predictive capabilities, shaping the landscape of reproductive toxicity testing methodologies and contributing significantly to this market segment's growth.

The pharmaceutical and biotechnology companies segment is expected to have the highest CAGR during the forecast period

The pharmaceutical and biotechnology companies segment is anticipated to have lucrative growth during the forecast period. Pharmaceutical and biotechnology companies extensively utilise reproductive toxicity testing to assess potential adverse effects on reproductive health. Such testing ensures compliance with regulatory standards, enhances drug safety profiles, and aids in making informed decisions during drug development stages. Moreover, these companies drive the demand for comprehensive and specialised reproductive toxicity testing services, playing a critical role in shaping the market while prioritising the safety and efficacy of their products for global consumers.

Region with largest share:

Asia Pacific commanded the largest market share during the extrapolated period owing to its stringent regulatory frameworks, rising awareness of reproductive health, and technological advancements in testing methodologies. Furthermore, growing research collaborations and a burgeoning focus on drug safety assessment further propel market demand. The region's evolving pharmaceutical industry, coupled with supportive government initiatives, positions the Asia-Pacific as a hub for reproductive toxicity testing services, with heightened competition and innovation shaping its landscape.

Region with highest CAGR:

North America is expected to witness profitable growth over the projection period, due to stringent regulatory frameworks and a heightened focus on pharmaceutical safety. The region's robust pharmaceutical and biotechnology industries, particularly in the United States and Canada, drive the demand for reproductive toxicity testing services. Furthermore, collaborations between research institutions and industry players further contribute to advancements in testing methodologies, positioning North America as a pivotal hub for reproductive toxicity testing services and innovations in the pharmaceutical sector.

Key players in the market

Some of the key players in the Reproductive Toxicity Testing Market include Thermo Fisher Scientific, Laboratory Corporation of America Holdings, Charles River Laboratories International, Eurofins Scientific, Syngene International Limited, Jubilant Life Sciences Limited, Gentronix Ltd, Creative Bioarray, Inotiv Inc, MB Research Laboratories, Catalent, Inc., Bio-Rad Laboratories, Evotec, QIAGEN and Promega Corporation.

Key Developments:

In May 2023, Wheeler Bio, a CDMO, collaborated with Charles River Labs to utilize RightSource, a flexible biologic testing lab, at its Oklahoma City facility. This partnership aimed to enhance Wheeler Bio's quality control without the need to establish its own lab, ultimately benefiting its biologic products and potential clients.

In October 2022, Thermo Fisher Scientific Inc. declared that it had expanded its laboratory operations in Highland Heights, Kentucky, to assist customers in delivering personalized medications to patients. The existing facility, which included central laboratory and biomarker operations, provided biopharma customers with high-quality laboratory services to accelerate drug development. This move increased the company's clinical diagnostics business worldwide and enhanced its global presence across the business space.

Products Covered:

  • Consumables
  • Assays
  • Equipment

Methods Covered:

  • Cellular Assays
  • In-Silico Models
  • Biochemical Assays
  • Ex-Vivo Models

Technologies Covered:

  • Cell Culture Technology
  • Toxicogenomics
  • High-Throughput Technology

End Users Covered:

  • Academic and Research Institutes
  • Contract Research Organizations
  • Pharmaceutical and Biotechnology Companies
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2021, 2022, 2023, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Product Analysis
  • 3.7 Technology Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Reproductive Toxicity Testing Market, By Product

  • 5.1 Introduction
  • 5.2 Consumables
  • 5.3 Assays
    • 5.3.1 Bacterial Toxicity Assays
    • 5.3.2 Bacterial Toxicity Assays
    • 5.3.3 Receptor-Binding Assays
    • 5.3.4 Cell-Based ELISA & Western Blot
    • 5.3.5 Tissue Culture Assays
  • 5.4 Equipment

6 Global Reproductive Toxicity Testing Market, By Method

  • 6.1 Introduction
  • 6.2 Cellular Assays
  • 6.3 In-Silico Models
  • 6.4 Biochemical Assays
  • 6.5 Ex-Vivo Models

7 Global Reproductive Toxicity Testing Market, By Technology

  • 7.1 Introduction
  • 7.2 Cell Culture Technology
  • 7.3 Toxicogenomics
  • 7.4 High-Throughput Technology

8 Global Reproductive Toxicity Testing Market, By End User

  • 8.1 Introduction
  • 8.2 Academic and Research Institutes
  • 8.3 Contract Research Organizations
  • 8.4 Pharmaceutical and Biotechnology Companies
  • 8.5 Other End Users

9 Global Reproductive Toxicity Testing Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 Thermo Fisher Scientific
  • 11.2 Laboratory Corporation of America Holdings
  • 11.3 Charles River Laboratories International
  • 11.4 Eurofins Scientific
  • 11.5 Syngene International Limited
  • 11.6 Jubilant Life Sciences Limited
  • 11.7 Gentronix Ltd
  • 11.8 Creative Bioarray
  • 11.9 Inotiv Inc
  • 11.10 MB Research Laboratories
  • 11.11 Catalent, Inc.
  • 11.12 Bio-Rad Laboratories
  • 11.13 Evotec
  • 11.14 QIAGEN
  • 11.15 Promega Corporation
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦