![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1423671
¼¼°èÀÇ ÀÇ·á¿ë ¹æ»ç¼± °ËÃâ±â ½ÃÀå ¿¹Ãø(-2030³â) : Á¦Ç°, °ËÃâ±â À¯Çü, ¾ÈÀü À¯Çü, ¿ëµµ, ÃÖÁ¾»ç¿ëÀÚ, Áö¿ªº° ºÐ¼®Medical Radiation Detection Market Forecasts to 2030 - Global Analysis By Product, By Detector Type, Safety Type, Application, End User and By Geography |
¼¼°è ÀÇ·á¿ë ¹æ»ç¼± °ËÃâ±â ½ÃÀå ±Ô¸ð´Â 2023³â 10¾ï 3,424¸¸ ´Þ·¯·Î ¿¹Ãø ±â°£ µ¿¾È CAGR 9.5%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 19¾ï 5,219¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÇ·á¿ë ¹æ»ç¼± °ËÃâ±â¿¡´Â ÀÇ·á ÇöÀå¿¡¼ ÀÌ¿ÂÈ ¹æ»ç¼± ¼öÁØÀ» ¸ð´ÏÅ͸µ, ÃøÁ¤ ¹× °¨ÁöÇϴ Ư¼ö Àåºñ°¡ Æ÷ÇԵ˴ϴÙ.
ÀÌ·¯ÇÑ Àåºñ´Â ¿¢½º·¹ÀÌ, CT ½ºÄµ, ¹æ»ç¼± Ä¡·á¿Í °°Àº Ä¡·á Áß ¹æ»ç¼± ³ëÃâÀ» ÃßÀûÇÏ°í ¼±·®À» Æò°¡ÇÏ¿© ȯÀÚ¿Í ÀÇ·áÁøÀ» ¹æ»ç¼± °ú´Ù ³ëÃâ °¡´É¼ºÀ¸·ÎºÎÅÍ º¸È£ÇÏ¿© ¾ÈÀüÀ» º¸ÀåÇÕ´Ï´Ù.
NHS England¿¡ µû¸£¸é, 2018³â 3¿ù ¿µ±¹¿¡¼ µî·ÏµÈ ¿µ»ó °Ë»ç´Â 4,270¸¸ °ÇÀ¸·Î 2017³â 4,210¸¸ °Ç¿¡ ºñÇØ 1.4% Áõ°¡Çß´Ù°í ÇÕ´Ï´Ù.
ÇÙÀÇÇÐ ¹× ¹æ»ç¼± Ä¡·áÀÇ ÀÌ¿ë È®´ë
´Ù¾çÇÑ ÀÇÇÐÀû »óÅÂÀÇ Áø´Ü ¹× Ä¡·á¿¡ ÇÙÀÇÇÐ ¹× ¹æ»ç¼± Ä¡·áÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÔ¿¡ µû¶ó PET ½ºÄµ, SPECT ½ºÄµ ¹× ¹æ»ç¼± Ä¡·á¿Í °°Àº °í±Þ ÀÇ·á¿ë ¹æ»ç¼± °ËÃâ±â ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, ÀÌ·¯ÇÑ ¾ç½ÄÀº ÀÌ¿ÂÈ ¹æ»ç¼±¿¡ ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹æ»ç¼± »ç¿ëÀÌ È®´ëµÊ¿¡ µû¶ó ¹æ»ç¼±·®À» ¸ð´ÏÅ͸µÇϰí Á¤È®ÇÑ ¼±·®À» º¸ÀåÇϸç ȯÀÚ¿Í ÀÇ·áÁøÀÇ ¾ÈÀüÀ» º¸ÀåÇϱâ À§ÇØ Á¤¹ÐÇÏ°í ¹Î°¨ÇÑ °¨Áö ½Ã½ºÅÛÀÌ µ¿½Ã¿¡ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±Þ°ÝÇÑ Áõ°¡´Â º¸´Ù È¿À²ÀûÀÌ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â °ËÃâ ¼Ö·ç¼ÇÀ» ã´Â ÀÇ·á¿ë ¹æ»ç¼± °ËÃâ±â ½ÃÀåÀÇ Çõ½Å°ú ÅõÀÚ¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
ÀåºñÀÇ ³ôÀº ºñ¿ë
÷´Ü ±â¼ú°ú ¾ö°ÝÇÑ ±ÔÁ¦ ±âÁØÀº ¹æ»ç¼± °ËÃâ±âÀÇ °³¹ß, Á¦Á¶ ¹× À¯Áöº¸¼ö¿Í °ü·ÃµÈ ºñ¿ëÀ» Áõ°¡½Ãŵ´Ï´Ù. ÀÌ·¯ÇÑ ºñ¿ëÀº ÀÇ·á ½Ã¼³¿¡ Àü°¡µÇ´Â °æ¿ì°¡ ¸¹±â ¶§¹®¿¡ ¼Ò±Ô¸ð Ŭ¸®´ÐÀ̳ª ÀÚ¿øÀÌ ºÎÁ·ÇÑ È¯°æ¿¡¼´Â ÃÖ÷´Ü ŽÁö ½Ã½ºÅÛÀ» ±¸ÀÔÇϱ⠾î·Á¿î °æ¿ì°¡ ¸¹½À´Ï´Ù. ÀÌ·¯ÇÑ °æÁ¦Àû À庮Àº ÃÖ÷´Ü ¹æ»ç¼± °ËÃâ ±â¼ú¿¡ ´ëÇÑ Á¢±ÙÀ» ¹æÇØÇϰí, ÀÇ·á ÇöÀå¿¡¼ÀÇ ¹æ»ç¼± ¾ÈÀü Á¶Ä¡ÀÇ Àü¹ÝÀûÀÎ È¿°ú¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù.
¿ø°ÝÀÇ·áÀÇ È®»ê
¿ø°Ý ÀÇ·á´Â ¿ø°Ý Áø´Ü ¹× ¿ø°Ý Ä¡·á¿Í ÅëÇյǾî ÀÇ·á¿ë ¹æ»ç¼± °ËÃâ±â ½ÃÀå¿¡ ±âȸ¸¦ °¡Á®´Ù ÁÙ °ÍÀÔ´Ï´Ù. ¿ø°Ý ÀÇ·á°¡ È®´ëµÊ¿¡ µû¶ó Á¤È®ÇÑ ¹æ»ç¼± ¸ð´ÏÅ͸µ µµ±¸°¡ ÇÊ¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Àåºñ´Â ¿µ»ó Áø´Ü ¹× ¹æ»ç¼± Ä¡·á¿Í °ü·ÃµÈ ¿ø°Ý ÀÇ·á ¼¼¼Ç Áß ¹æ»ç¼± ³ëÃâÀ» ¿ø°ÝÀ¸·Î Æò°¡ÇÏ¿© ȯÀÚÀÇ ¾ÈÀüÀ» º¸ÀåÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ¿ø°Ý ÀǷḦ À§ÇÑ ¹æ»ç¼± °ËÃâ ±â¼úÀÇ Çõ½ÅÀº ÈÞ´ë¿ë, »ç¿ëÇϱ⠽±°í Á¤È®ÇÑ °ËÃâ±â¸¦ °³¹ßÇÏ¿© ÀÌ ½ÅÈï ½ÃÀå ¼ö¿ä¸¦ °³Ã´ÇÒ ¼ö ÀÖ´Â ±âȸÀÔ´Ï´Ù.
½ÅÈï±¹¿¡¼ÀÇ ÀÎ½Ä ºÎÁ·
±³À°°ú ÀÚ¿øÀÌ Á¦ÇѵǾî ÀÖ¾î ÀûÀýÇÑ ¹æ»ç¼± ¾ÈÀü Á¶Ä¡ÀÇ µµÀÔ°ú ŽÁö ±â¼ú¿¡ ´ëÇÑ ÀÌÇØ¸¦ ÀúÇØÇϰí ÀÖ½À´Ï´Ù. ÀÌ·Î ÀÎÇØ ȯÀÚ¿Í ÀÇ·áÁøÀÇ ¹æ»ç¼± °ú´Ù ³ëÃâ À§ÇèÀÌ ³ô¾ÆÁ® °Ç°¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¾ö°ÝÇÑ ±ÔÁ¦ÀÇ ºÎÀç¿Í ÀÎÇÁ¶ó ÅõÀÚ ºÎÁ·Àº ÀÌ ¹®Á¦¸¦ ´õ¿í ¾ÇȽÃÄÑ ¹æ»ç¼± °ü·Ã °Ç° ÇÕº´Áõ ¹ß»ý·üÀÌ ³ô¾ÆÁú ¼ö ÀÖÀ¸¸ç, °í±Þ ŽÁö ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ ¾ø¾î ½ÃÀå ¼ºÀåÀ» ÀúÇØÇϰí ÀÖ½À´Ï´Ù.
COVID-19 ÆÒµ¥¹ÍÀº ÀÇ·á ¹× ¼ºñ½º¸¦ ¹æÇØÇÏ°í ºÒÇÊ¿äÇÑ Ä¡·á¸¦ Áö¿¬½ÃÅ´À¸·Î½á ÀÇ·á¿ë ¹æ»ç¼± °ËÃâ±â ½ÃÀå¿¡ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. °ø±Þ¸ÁÀÇ È¥¶õÀº °ËÃâ±â ¼ö±Þ¿¡ ¿µÇâÀ» ¹ÌÃÄ ÀáÀçÀûÀÎ °ø±Þ ºÎÁ·À» ÃÊ·¡Çß½À´Ï´Ù. ¶ÇÇÑ ÀÇ·á ¿¹»êÀÇ ÀçÁ¤Àû Á¦¾àÀ¸·Î ÀÎÇØ ÷´Ü ŽÁö ±â¼úÀÇ Ã¤ÅÃÀÌ Áö¿¬µÇ¾ú½À´Ï´Ù. ÆÒµ¥¹Í °ü·Ã ¿ì¼±¼øÀ§°¡ ÁÖ¸ñÀ» ¹ÞÀ¸¸é¼ ¹æ»ç¼± ¾ÈÀü¿¡ ´ëÇÑ °ü½ÉÀº ¸Ö¾îÁ³°í, À§±â ±â°£ µ¿¾È ½ÃÀå ¿ªÇÐ ¹× ¼ºÀå¿¡ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È °¡½º ĸ½¶Çü °ËÃâ±â ºÎ¹®ÀÌ °¡Àå Å« ½ÃÀåÀ¸·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»ó
°¡½º ³»ÀåÇü °ËÃâ±â´Â °í°¨µµ, °í½Å·Ú¼º, ´Ù¾çÇÑ Á¾·ùÀÇ ¹æ»ç¼±À» °¨ÁöÇÒ ¼ö ÀÖ´Â ¹ü¿ë¼ºÀ¸·Î ÀÎÇØ ÀÇ·á¿ë ¹æ»ç¼± °ËÃâ±â ½ÃÀåÀ» µ¶Á¡ÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ¿¢½º·¹ÀÌ, ÇÙÀÇÇÐ µî ´Ù¾çÇÑ ÀÇ·á ÇàÀ§¿¡¼ ¹æ»ç¼±·®À» ½Ç½Ã°£À¸·Î Á¤È®ÇÏ°Ô ÃøÁ¤ÇÒ ¼ö ÀÖ´Ù´Â Á¡ÀÌ ³Î¸® äÅõǴ ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ³Î¸® äÅõǰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °¡½º ³»ÀåÇü °ËÃâ±â ±â¼úÀÇ ¹ßÀüÀ¸·Î ¹æ»ç¼± °ËÃâÀÇ È¿À²¼º°ú Á¤È®¼ºÀÌ Çâ»óµÇ°í ºñ¿ë È¿À²¼ºÀÌ È®º¸µÊ¿¡ µû¶ó, °¡½º ³»ÀåÇü °ËÃâ±â´Â ½ÃÀå ¼ºÀå ±Ëµµ¿¡¼ ÁÖ¿ä ºÎ¹®À¸·Î È®°íÈ÷ ÀÚ¸®¸Å±èÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµÇ´Â Àü½Å º¸È£ ºÐ¾ß
ÀÇ·á ÇàÀ§¿¡¼ ¹æ»ç¼± ³ëÃâ¿¡ ´ëÇÑ ¿ì·Á°¡ ³ô¾ÆÁü¿¡ µû¶ó Àü½Å º¸È£ ºÎ¹®Àº °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¹æ»ç¼±ÀÇ Àå±âÀûÀÎ À§Çè¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁü¿¡ µû¶ó ÀÇ·á Á¾»çÀÚµé »çÀÌ¿¡¼ Á¾ÇÕÀûÀÎ º¸È£ Àåºñ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¾ÈÀü ÇÁ·ÎÅäÄÝÀÌ ´õ¿í ¾ö°ÝÇØÁü¿¡ µû¶ó Â÷Æó ÀÇ·ù ¹× Àåºñ¸¦ Æ÷ÇÔÇÑ °í±Þ Àü½Å º¸È£ Àåºñ¿¡ ´ëÇÑ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. µû¶ó¼ ¹æ»ç¼± ³ëÃâÀ» ÃÖ¼ÒÈÇϱâ À§ÇÑ °·ÂÇÑ ¹æ»ç¼± Â÷Æó ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇÏ¸é¼ ÀÌ ºÎ¹®ÀÇ ±Þ°ÝÇÑ ¼ºÀåÀ» °ßÀÎÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
ºÏ¹Ì Áö¿ªÀº ¼±ÁøÈµÈ ÀÇ·á ÀÎÇÁ¶ó, ³ôÀº ÷´Ü ±â¼ú äÅ÷ü, ¾ö°ÝÇÑ ¾ÈÀü ±ÔÁ¤À¸·Î ÀÎÇØ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ Áö¿ªÀÇ È®¸³µÈ ÀÇ·á ½Ã½ºÅÛÀº ¹æ»ç¼± ¾ÈÀü ÇÁ·ÎÅäÄÝÀ» Áß½ÃÇϰí ÀÖÀ¸¸ç, À̴ ÷´Ü ŽÁö Àåºñ¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÁÖ¿ä ½ÃÀå ±â¾÷ÀÇ Á¸Àç¿Í Áö¼ÓÀûÀÎ ¿¬±¸ °³¹ßÀÌ ºÏ¹Ì Áö¿ªÀÇ ¿ìÀ§¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.
¾Æ½Ã¾ÆÅÂÆò¾çÀº ±Þ¼ÓÇÑ ±â¼ú ¹ßÀü, ÀÇ·á ½ÃÀå °³Ã´ Áõ°¡, ¹æ»ç¼± ¾ÈÀü¿¡ ´ëÇÑ ÀÎ½Ä Áõ°¡°¡ ½ÃÀå È®´ëÀÇ ¿øµ¿·ÂÀÌ µÇ°í ÀÖÀ¸¸ç, ½ÃÀå ±Ô¸ð°¡ Å©°Ô ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ, ¹æ»ç¼±À» ÀÌ¿ëÇÑ Áø´Ü ¹× Ä¡·á¸¦ ÇÊ¿ä·Î ÇÏ´Â ¸¸¼º ÁúȯÀÇ À¯º´·ü Áõ°¡°¡ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÇ·á Çö´ëÈ ¹× ÷´Ü ÀÇ·á ±â¼ú µµÀÔ¿¡ ÃÊÁ¡À» ¸ÂÃá Á¤ºÎÀÇ ³ë·ÂÀº ½ÃÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Medical Radiation Detection Market is accounted for $1034.24 million in 2023 and is expected to reach $1952.19 million by 2030 growing at a CAGR of 9.5% during the forecast period. Medical radiation detection involves the use of specialised devices to monitor, measure and detect ionising radiation levels in medical settings. These instruments ensure safety by tracking radiation exposure, assessing dosage during treatments like X-rays, CT scans, or radiation therapy and safeguarding both patients and healthcare professionals from potential overexposure to radiation.
According to NHS England, 42.7 million imaging tests were registered in England in March 2018, compared to 42.1 million in 2017, an increase of 1.4%.
Growing usage of nuclear medicine and radiation therapy
The increasing adoption of nuclear medicine and radiation therapy in diagnosing and treating various medical conditions has fueled the demand for advanced medical radiation detection technologies. These modalities, such as PET scans, SPECT scans, and radiation therapy, rely on ionising radiation. As their usage grows, there's a parallel need for precise and sensitive detection systems to monitor radiation levels, ensure accurate dosage delivery, and guarantee the safety of patients and healthcare workers. This surge propels innovation and investment in the medical radiation detection market for more efficient and reliable detection solutions.
High cost of equipment
Advanced technology and stringent regulatory standards drive up the expenses associated with developing, manufacturing, and maintaining radiation detection devices. These costs often trickle down to healthcare facilities, making it challenging for smaller clinics or resource-limited settings to afford cutting-edge detection systems. This financial barrier limits widespread adoption, hindering accessibility to state-of-the-art detection technology and potentially impacting the overall effectiveness of radiation safety measures in medical settings.
Growing adoption of telehealth
The growing adoption of telehealth presents an opportunity in the medical radiation detection market due to its integration with remote diagnostics and treatments. As telehealth expands, there is a need for accurate radiation monitoring tools. These devices become crucial in ensuring patient safety by remotely assessing radiation exposure during telemedicine sessions involving imaging or radiation therapies. Innovations in radiation detection technologies catering to telehealth settings offer a chance for companies to develop portable, user-friendly, and precise detectors, thereby tapping into this evolving market demand.
Lack of awareness in developing countries
Limited education and resources hinder the adoption of proper radiation safety measures and the understanding of detection technologies. This can lead to increased risks of overexposure to radiation for both patients and healthcare workers, impacting their health. Additionally, the absence of stringent regulations and insufficient infrastructure investment further exacerbate this issue, potentially resulting in higher incidences of radiation-related health complications and impeding the market's growth due to a lack of demand for advanced detection solutions.
The COVID-19 pandemic has impacted the medical radiation detection market by disrupting healthcare services and delaying non-essential procedures. Supply chain disruptions affected the availability of detection devices, leading to potential shortages. Additionally, financial constraints on healthcare budgets slowed down the adoption of advanced detection technologies. The focus on pandemic-related priorities shifted attention away from radiation safety concerns, influencing market dynamics and growth during the crisis period.
The gas-filled detectors segment is expected to be the largest during the forecast period
Gas-filled detectors are projected to dominate the medical radiation detection market due to their high sensitivity, reliability and versatility in detecting various types of radiation. Their ability to precisely measure radiation levels in real-time across different medical procedures, such as X-rays and nuclear medicine, contributes to their widespread adoption. Additionally, advancements in gas-filled detector technology, offering improved efficiency and accuracy in radiation detection while ensuring cost-effectiveness, further solidify their position as the leading segment in the market's forecasted growth trajectory.
The full-body protection segment is expected to have the highest CAGR during the forecast period
The full-body protection segment is anticipated to demonstrate the highest CAGR due to escalating concerns regarding radiation exposure across medical procedures. Heightened awareness about the long-term risks of radiation has amplified the demand for comprehensive protective gear among healthcare professionals. As safety protocols become more stringent, the need for advanced, full-body protection, encompassing shielding garments and equipment, is increasing. This surge in demand for robust radiation shielding solutions, aimed at minimising radiation exposure, is projected to drive the segment's rapid growth.
North America is poised to claim the largest market share, owing to its advanced healthcare infrastructure, high adoption of cutting-edge technologies and stringent safety regulations. The region's well-established healthcare systems emphasise radiation safety protocols, propelling the demand for sophisticated detection devices. Additionally, the presence of key market players and continuous research and development activities contribute to the dominance of North America.
The Asia-Pacific region is poised for substantial growth in the market due to rapid technological advancements, increasing healthcare infrastructure development and rising awareness about radiation safety measures, which are driving market expansion. Additionally, the growing prevalence of chronic diseases requiring radiation-based diagnostic and therapeutic procedures fuels demand. Moreover, governmental initiatives focusing on healthcare modernization and the adoption of advanced medical technologies further propel the market.
Key players in the market
Some of the key players in Medical Radiation Detection Market include AmRay Medical, Anritsu Infivis, Arrow-Tech, Inc., Berthold Technologies, Biodex Medical Systems, Eckert & Ziegler, Fluke Biomedical, IBA Dosimetry, Landauer, Inc., Ludlum Measurements, Inc., Mirion Technologies Inc, Polimaster, Radiation Detection Company, S.E. International, Inc., Saphymo, Sun Nuclear Corporation and Thermo Fisher Scientific.
In November 2023, Mirion, announced that it will debut the new Instadose®VUE personal dosimeter, from its Dosimetry Services brand, at the 2023 Radiological Society of North America (RSNA) Meeting starting Sunday in Chicago, Illinois. Mirion Dosimetry Services joins Sun Nuclear, Capintec, and Biodex medical imaging brands in the Mirion Medical booth (#6328) at RSNA, which will feature products and services for occupational dosimetry, diagnostic imaging QA, nuclear medicine, and medical imaging tables and accessories.
In November 2023, Thermo Fisher Scientific Inc., the world leader in serving science, and Flagship Pioneering, the bioplatform innovation company, today announced the formation of a strategic partnership to develop and commercially scale multiproduct platforms on an accelerated basis.
In October 2023, Thermo Fisher Scientific Inc. ("Thermo Fisher"), the world leader in serving science, and Olink Holding AB (publ) ("Olink"), a leading provider of next-generation proteomics solutions, today announced that their respective boards of directors have approved Thermo Fisher's proposal to acquire Olink for $26.00 per common share in cash, representing $26.00 per American Depositary Share (ADS) in cash. The transaction values Olink at approximately $3.1 billion which includes net cash of approximately $143 million.