½ÃÀ庸°í¼­
»óǰÄÚµå
1438054

¼¼°èÀÇ ¿­ ¾ÈÁ¤¼º ½ÃÇè±â ½ÃÀå ¿¹Ãø(-2030³â) : À¯Çüº°, ÀÚµ¿È­ ¼öÁغ°, ¿Âµµ ¹üÀ§º°, ±â¼úº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®

Thermal Stability Tester Market Forecasts to 2030 - Global Analysis By Type, Automation Level, Temperature Range, Technology, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é, ¼¼°è ¿­ ¾ÈÁ¤¼º ½ÃÇè±â ½ÃÀåÀº ¿¹Ãø ±â°£ µ¿¾È CAGR 7.0%¸¦ ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù.

¿­ ¾ÈÁ¤¼º ½ÃÇè±â´Â Àç·áÀÇ ¿­Àû Ư¼ºÀ» ºÐ¼® ¹× ÃøÁ¤ÇÏ´Â µ¥ »ç¿ëµÇ´Â Àü¹® ÀåºñÀÔ´Ï´Ù. ÀÌ ½ÃÇè±â´Â Á¦¾à, È­ÇÐ ¹× Àç·á °úÇаú °°Àº »ê¾÷¿¡¼­ ǰÁú °ü¸®¿¡ ÇʼöÀûÀÔ´Ï´Ù. Àç·á°¡ ÁöÁ¤µÈ Ç¥ÁØÀ» ÃæÁ·Çϰí ÀϰüµÈ ¿­ °Åµ¿À» º¸ÀÌ´ÂÁö È®ÀÎÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù.

³ô¾ÆÁö´Â Á¦Ç° ¾ÈÀü¼º

¿­ ¾ÈÁ¤¼º ½ÃÇè±â´Â ±ØÇÑÀÇ ¿Âµµ Á¶°Ç¿¡¼­ Àç·á¿Í Á¦Ç°ÀÇ °Åµ¿À» Æò°¡ÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Á¦Ç°À» Á¦¾îµÈ ¿Âµµ º¯È­¿¡ ³ëÃâ½ÃÅ´À¸·Î½á ¿­ ÆøÁÖ, ¹ßÈ­, ¿­È­ µî ÀáÀçÀûÀÎ ¾ÈÀü À§ÇèÀ» ½Äº°ÇÒ ¼ö ÀÖ½À´Ï´Ù. À̸¦ ÅëÇØ Á¦Á¶¾÷ü´Â ÀÌ·¯ÇÑ À§ÇèÀ» ÁÙÀ̰í Á¦Ç° ¾ÈÀü¼ºÀ» Çâ»ó½Ã۸ç ÀáÀçÀû À§ÇèÀ» ¹æÁöÇÒ ¼ö ÀÖ½À´Ï´Ù. °á°úÀûÀ¸·Î Á¦Ç° ¾ÈÀü¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ ½ÃÀå ¼ö¿ä¸¦ °¡¼ÓÈ­ÇÏ´Â ÁÖ¿ä ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù.

³ôÀº ºñ¿ë

ÀÌ·¯ÇÑ °Ë»ç Àåºñ´Â ¸¹Àº °æ¿ì ¸·´ëÇÑ Ãʱâ ÅõÀÚ ¹× Áö¼ÓÀûÀÎ À¯Áöº¸¼ö ºñ¿ëÀÌ ¼ö¹ÝµÇ±â ¶§¹®¿¡ ¸¹Àº Á¶Á÷, ƯÈ÷ Áß¼Ò±â¾÷(SME)À̳ª ¿¹»êÀÌ ÇÑÁ¤µÈ ±â¾÷¿¡°Ô´Â ÀçÁ¤ÀûÀ¸·Î ¾î·Á¿î ¹®Á¦ÀÔ´Ï´Ù. ¶ÇÇÑ, ±³Á¤, Á¤±âÀûÀÎ À¯Áöº¸¼ö ¹× ¼ö¸® ¼­ºñ½º ºñ¿ëÀº ¿­ ¾ÈÁ¤¼º ½ÃÇè±â¿Í °ü·ÃµÈ Àüü ºñ¿ëÀ» ´õ¿í Áõ°¡½Ãŵ´Ï´Ù. µû¶ó¼­ ¿­ ¾ÈÁ¤¼º ½ÃÇè±âÀÇ ³ôÀº ºñ¿ëÀº ½ÃÀå È®´ë¸¦ ÀúÇØÇÏ´Â ÁÖ¿ä ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù.

±â¼úÀÇ ¹ßÀü

¼¾¼­ ±â¼ú, ÀÚµ¿È­ ¹× µ¥ÀÌÅÍ ºÐ¼®ÀÇ Áö¼ÓÀûÀÎ ¹ßÀüÀº ¿­ ¾ÈÁ¤¼º Å×½ºÆ®¿¡ Çõ¸íÀ» ÀÏÀ¸ÄÑ º¸´Ù Á¤È®Çϰí È¿À²ÀûÀÎ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ¿­ ¾ÈÁ¤¼º ½ÃÇè±â¿¡ »ç¿ëµÇ´Â ¼¾¼­ÀÇ °¨µµ°¡ Çâ»óµÇ¾î Á¤È®ÇÑ ¿Âµµ ÃøÁ¤°ú ¿­ º¯È­¸¦ °¨ÁöÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ Á¤È®µµ Çâ»óÀ¸·Î Á¦Á¶¾÷ü´Â ½Å·ÚÇÒ ¼ö ÀÖ°í ÀϰüµÈ Å×½ºÆ® °á°ú¸¦ ¾òÀ» ¼ö ÀÖ¾î Á¦Ç°ÀÇ Ç°Áú°ú ¼º´ÉÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù.

±â¼úÀÇ º¹À⼺

¿­ ¾ÈÁ¤¼º ½ÃÇè±â°¡ Á¡Á¡ ´õ Á¤±³ÇÑ ±â´É°ú ¼º´ÉÀ» °®Ãß°í °íµµÈ­µÊ¿¡ µû¶ó º¹À⼺ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó Á¦Á¶¾÷ü´Â ¾î·Á¿òÀ» °ÞÀ» ¼ö ÀÖ½À´Ï´Ù. »ç¿ëÀÚ´Â Å×½ºÅ͸¦ È¿°úÀûÀ¸·Î Á¶ÀÛÇϰí Á¤È®ÇÑ °á°ú¸¦ ¾ò±â À§ÇØ ±â´É, Á¦¾î ¹× ¼ÒÇÁÆ®¿þ¾î ÀÎÅÍÆäÀ̽º¸¦ ÀÌÇØÇØ¾ß ÇÕ´Ï´Ù. º¹ÀâÇÑ Å×½ºÅÍ¿¡ µû¸¥ ÇнÀ °î¼±Àº ƯÈ÷ ½Å±Ô »ç¿ëÀÚ³ª °æÇèÀÌ ¾ø´Â »ç¿ëÀÚ¿¡°Ô´Â ¾î·Á¿î °úÁ¦ÀÔ´Ï´Ù. µû¶ó¼­ ±â¼úÀû º¹À⼺Àº ½ÃÀå ¼ºÀåÀÇ °É¸²µ¹·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

ÆÒµ¥¹ÍÀº Àü ¼¼°è °ø±Þ¸Á¿¡ È¥¶õÀ» ÀÏÀ¸ÄÑ ¿­ ¾ÈÁ¤¼º Å×½ºÆ® Àåºñ¿¡ ÇʼöÀûÀÎ ºÎǰÀÇ Á¦Á¶ ¹× ¹è¼Û¿¡ Áö¿¬À» ÃÊ·¡Çß½À´Ï´Ù. ¿ø°Ý ±Ù¹«°¡ È®»êµÊ¿¡ µû¶ó ÀÚµ¿È­µÇ°í È¿À²ÀûÀÎ Å×½ºÆ® ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çß½À´Ï´Ù. ¶ÇÇÑ, ÆÒµ¥¹ÍÀ¸·Î ÀÎÇØ Á¦Ç°ÀÇ ¾ÈÀü°ú ¾ÈÁ¤¼ºÀ» º¸ÀåÇϱâ À§ÇÑ ¿­ ¾ÈÁ¤¼º Å×½ºÆ®ÀÇ Á߿伺¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁ³½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È Â÷µ¿ ½ºÄ³´× ¿­·®°è ºÎ¹®ÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

Â÷µ¿ ÁÖ»ç ¿­·®°è ºÎ¹®ÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù. Àç·áÀÇ ¿­Àû Ư¼ºÀ» Æò°¡ÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϸç, Á¦¾à, °íºÐÀÚ, ½Äǰ µîÀÇ »ê¾÷¿¡ ±ÍÁßÇÑ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù. ¿­ ¾ÈÁ¤¼º ½ÃÇè±â¿¡¼­ DSC´Â »óÀüÀÌ ºÐ¼®, ¼øµµ °ËÃâ ¹× ¿­ ¾ÈÁ¤¼º Æò°¡¿¡ ³Î¸® »ç¿ëµË´Ï´Ù. ¶ÇÇÑ À¶Á¡, À¯¸® ÀüÀÌ ¿Âµµ, ¹ÝÀÀ ¿£Å»ÇÇ¿Í °°Àº ÁÖ¿ä ÆÄ¶ó¹ÌÅ͸¦ È®ÀÎÇÒ ¼ö ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È Àü·Â º¸»ó DSC ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

Àü·Â º¸»ó DSC ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È À¯¸®ÇÑ ¼ºÀå¼¼¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ ±â¼úÀº °¡¿­ Àü·ÂÀ» µ¿ÀûÀ¸·Î Á¶Á¤ÇÏ¿© »óÀüÀÌ ¹× ¹ÝÀÀ°ú °°Àº ¿­ Çö»óÀ» Á¤È®ÇÏ°Ô ÃøÁ¤ÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. Àü·Â º¸»ó DSC´Â Á¤È®ÇÑ ¿­ Ư¼º °áÁ¤ÀÌ Á¦Ç° °³¹ß ¹× ǰÁú °ü¸®¿¡ ÇʼöÀûÀÎ Á¦¾à ¹× Àç·á °úÇаú °°Àº »ê¾÷¿¡¼­ ƯÈ÷ °¡Ä¡°¡ ³ô½À´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

¾Æ½Ã¾ÆÅÂÆò¾çÀº ±Þ¼ÓÇÑ »ê¾÷È­·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇß½À´Ï´Ù. ƯÈ÷ ¼®À¯È­ÇÐ, Á¦¾à, Àç·á Á¦Á¶ µîÀÇ »ê¾÷¿¡¼­ Á¦Ç° ǰÁú¿¡ ´ëÇÑ Á߿伺ÀÌ ³ô¾ÆÁö¸é¼­ ÀÌ Áö¿ª Àüü¿¡¼­ ÷´Ü Å×½ºÆ® ÀåºñÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¾Æ½Ã¾ÆÅÂÆò¾ç¿¡¼­´Â ¿¬±¸ °³¹ßÀÌ È°¹ßÈ÷ ÁøÇàµÇ¾î Á¤¹Ð Å×½ºÆ® Àåºñ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

ºÏ¹Ì´Â ¿¹Ãø ±â°£ µ¿¾È ¼öÀͼº ÀÖ´Â ¼ºÀåÀ» ÀÌ·ê °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ Áö¿ªÀº ƯÈ÷ È­ÇÐ, Á¦¾à, Àç·á Á¦Á¶ µîÀÇ ºÐ¾ß¿¡¼­ źźÇÑ »ê¾÷ ÀÎÇÁ¶ó¸¦ º¸À¯Çϰí ÀÖÀ¸¸ç, Á¤¹ÐÇÑ ¿­ ¾ÈÁ¤¼º Å×½ºÆ®¸¦ Æ÷ÇÔÇÑ °íµµÀÇ Ç°Áú °ü¸® Á¶Ä¡°¡ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. ¾ö°ÝÇÑ ±ÔÁ¦ ȯ°æ°ú Á¦Ç° ¾ÈÀü ¹× ÄÄÇöóÀ̾𽺿¡ ´ëÇÑ °ü½Éµµ ÀÌ Áö¿ªÀÇ Ã·´Ü Å×½ºÆ® Àåºñ¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. ȯ°æ Áö¼Ó°¡´É¼º°ú ¿¡³ÊÁö È¿À²¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁü¿¡ µû¶ó ºÏ¹Ì¿¡¼­ ¿­ ¾ÈÁ¤¼º Å×½ºÆ®ÀÇ Á߿伺ÀÌ ´õ¿í Ä¿Áö°í ÀÖ½À´Ï´Ù.

¹«·á ¸ÂÃãÇü ¼­ºñ½º :

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.
  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀûÀÎ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(ÃÖ´ë 3°³»ç)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤Ä¡, ¿¹Ãø, CAGR(ÁÖ: Ÿ´ç¼º È®Àο¡ µû¶ó ´Ù¸§)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç ¼Ò½º
    • 1Â÷ Á¶»ç ¼Ò½º
    • 2Â÷ Á¶»ç ¼Ò½º
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ±â¼ú ºÐ¼®
  • ÃÖÁ¾»ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • ½ÅÇü Äڷγª¹ÙÀÌ·¯½º(COVID-19)ÀÇ ¿µÇâ

Á¦4Àå PorterÀÇ Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ¹ÙÀ̾îÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô ÁøÃâ¾÷üÀÇ À§Çù
  • °æÀï»ç°£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ¿­ ¾ÈÁ¤¼º ½ÃÇè±â ½ÃÀå : À¯Çüº°

  • ¿­ ±â°è ºÐ¼®±â
  • ÀÚµ¿ ÁÖ»ç ¿­·® ÃøÁ¤
  • µ¿Àû ±â°è ºÐ¼®±â
  • ±âŸ À¯Çü

Á¦6Àå ¼¼°èÀÇ ¿­ ¾ÈÁ¤¼º ½ÃÇè±â ½ÃÀå : ÀÚµ¿È­ ·¹º§º°

  • ¼öµ¿
  • ¹ÝÀÚµ¿
  • ¿ÏÀüÀÚµ¿

Á¦7Àå ¼¼°èÀÇ ¿­ ¾ÈÁ¤¼º ½ÃÇè±â ½ÃÀå : ¿Âµµ ¹üÀ§º°

  • Àú¿Â
  • °í¿Â

Á¦8Àå ¼¼°èÀÇ ¿­ ¾ÈÁ¤¼º ½ÃÇè±â ½ÃÀå : ±â¼úº°

  • Evolved Gas Analysis
  • Power Compensation DSC
  • Heat Flux DSC
  • ±âŸ ±â¼ú

Á¦9Àå ¼¼°èÀÇ ¿­ ¾ÈÁ¤¼º ½ÃÇè±â ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • ÀüÀÚ±â±â
  • ÀǾàǰ
  • ½Äǰ ¹× À½·á
  • ±âŸ ÃÖÁ¾»ç¿ëÀÚ

Á¦10Àå ¼¼°èÀÇ ¿­ ¾ÈÁ¤¼º ½ÃÇè±â ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦11Àå ÁÖ¿ä ¹ßÀü

  • °è¾à/ÆÄÆ®³Ê½Ê/Çù¾÷/ÇÕÀÛÅõÀÚ(JV)
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦12Àå ±â¾÷ °³¿ä

  • TA Instruments
  • Shimadzu Corporation
  • PerkinElmer, Inc.
  • Mettler-Toledo International, Inc.
  • Rigaku Corporation
  • Anton Paar GmbH
  • IKA Works GmbH & Co. KG
LSH 24.04.09

According to Stratistics MRC, the Global Thermal Stability Tester Market is growing at a CAGR of 7.0% during the forecast period. A thermal stability tester is a specialized instrument used to analyze and measure the thermal properties of materials. These testers are essential for quality control in industries such as pharmaceuticals, chemicals, and materials science. They help ensure that materials meet specified standards and exhibit consistent thermal behavior.

Market Dynamics:

Driver:

Rising focus on product safety

Thermal stability testers play a critical role in assessing the behavior of materials and products under extreme temperature conditions. By subjecting products to controlled temperature variations, these testers help identify potential safety risks such as thermal runaway, ignition, or degradation. This allows manufacturers to mitigate these risks, improve product safety, and prevent potential hazards. As a result, a growing focus on product safety is a significant factor accelerating market demand.

Restraint:

High cost

These testing instruments often involve substantial upfront investment and ongoing maintenance expenses, making them financially challenging for many organizations, particularly small and medium-sized enterprises (SMEs) or businesses with limited budgets. Additionally, the cost of calibration, regular maintenance, and repair services further increases the overall expenses associated with thermal stability testers. Therefore, the high cost of thermal stability testers is a significant restraint hampering market expansion.

Opportunity:

Technological advancements

The continual evolution of sensor technologies, automation, and data analytics has revolutionized thermal stability testing, offering more accurate and efficient solutions. Sensors used in thermal stability testers have become more sensitive, allowing for precise temperature measurements and improved detection of thermal changes. Moreover, this enhanced accuracy ensures that manufacturers can obtain reliable and consistent test results, leading to better product quality and performance.

Threat:

Technological complexity

As thermal stability testers become more advanced with sophisticated features and capabilities, the increased complexity can pose challenges for manufacturers. Users need to understand the functionalities, controls, and software interfaces to effectively operate the testers and obtain accurate results. The learning curve associated with complex testers can be steep, especially for new users or those without prior experience. Therefore, technological complexity is a restraint impacting market growth.

Covid-19 Impact

The pandemic disrupted global supply chains, causing delays in manufacturing and the shipment of components critical to thermal stability testing equipment. As remote work became more prevalent, there was a growing need for automated and efficient testing solutions. Moreover, the pandemic has heightened awareness of the significance of thermal stability testing in ensuring the safety and stability of products.

The differential scanning calorimetry segment is expected to be the largest during the forecast period

The differential scanning calorimetry segment is estimated to hold the largest share. It plays a pivotal role in assessing the thermal properties of materials, providing valuable insights for industries such as pharmaceuticals, polymers, and food. In the thermal stability tester, DSC is widely utilized to analyze phase transitions, detect purity, and evaluate thermal stability. Moreover, it enables the identification of key parameters, including melting points, glass transition temperatures, and reaction enthalpies.

The power compensation DSC segment is expected to have the highest CAGR during the forecast period

The power compensation DSC segment is anticipated to have lucrative growth during the forecast period. This technology ensures accurate measurement of thermal events, such as phase transitions and reactions, by dynamically adjusting the heating power. Power Compensation DSC is particularly valuable in industries like pharmaceuticals and materials science, where precise determination of thermal characteristics is critical for product development and quality control.

Region with largest share:

Asia Pacific commanded the largest market share during the extrapolated period owing to rapid industrialization. The increasing emphasis on product quality, particularly in industries such as petrochemicals, pharmaceuticals, and material manufacturing, is fostering the adoption of advanced testing equipment throughout the region. Moreover, the Asia-Pacific region is witnessing advancements in research and development activities, leading to a higher demand for precise testing equipment.

Region with highest CAGR:

North America is expected to witness profitable growth over the projection period. The region's robust industrial infrastructure, particularly in sectors such as chemicals, pharmaceuticals, and material manufacturing, necessitates advanced quality control measures, including precise thermal stability testing. The stringent regulatory environment and a strong emphasis on product safety and compliance further fuel the demand for sophisticated testing equipment in the region. The increased awareness of environmental sustainability and energy efficiency further amplifies the importance of thermal stability testing in North America.

Key players in the market

Some of the key players in the Thermal Stability Tester Market include TA Instruments, Shimadzu Corporation, PerkinElmer, Inc., Mettler-Toledo International, Inc., Rigaku Corporation, Anton Paar GmbH and IKA Works GmbH & Co. KG.

Key Developments:

In June 2023, Shimadzu Corporation, a global titan in analytical instrumentation, has begun collaboration with Shyld, a forerunner in artificial intelligence and robotics.

In May 2023, Shimadzu Corporation has signed an agreement with Osaka University (OU) with the aim of improving their scientific and technical capabilities, developing human resources, and contributing to society through industry-academia collaboration.

In April 2022, Shimadzu Corporation, and its U.S. subsidiary, Shimadzu Scientific Instruments, Inc., announced a strategic partnership to help pharmaceutical customers dramatically increase the value of their scientific data through Shimadzu's LabSolutions(™) Software and the Tetra R&D Data Cloud

Types Covered:

  • Thermo mechanical Analyzers
  • Differential Scanning Calorimetry
  • Dynamic Mechanical Analyzers
  • Other Types

Automation Levels Covered:

  • Manual
  • Semi-Automated
  • Fully Automated

Temperature Ranges Covered:

  • Low-Temperature
  • High-Temperature

Technologies Covered:

  • Evolved Gas Analysis
  • Power Compensation DSC
  • Heat Flux DSC
  • Other Technologies

End Users Covered:

  • Electronics
  • Pharmaceuticals
  • Food and Beverages
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2021, 2022, 2023, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Thermal Stability Tester Market, By Type

  • 5.1 Introduction
  • 5.2 Thermomechanical Analyzers
  • 5.3 Differential Scanning Calorimetry
  • 5.4 Dynamic Mechanical Analyzers
  • 5.5 Other Types

6 Global Thermal Stability Tester Market, By Automation Level

  • 6.1 Introduction
  • 6.2 Manual
  • 6.3 Semi-Automated
  • 6.4 Fully Automated

7 Global Thermal Stability Tester Market, By Temperature Range

  • 7.1 Introduction
  • 7.2 Low-Temperature
  • 7.3 High-Temperature

8 Global Thermal Stability Tester Market, By Technology

  • 8.1 Introduction
  • 8.2 Evolved Gas Analysis
  • 8.3 Power Compensation DSC
  • 8.4 Heat Flux DSC
  • 8.5 Other Technologies

9 Global Thermal Stability Tester Market, By End User

  • 9.1 Introduction
  • 9.2 Electronics
  • 9.3 Pharmaceuticals
  • 9.4 Food and Beverages
  • 9.5 Other End Users

10 Global Thermal Stability Tester Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 TA Instruments
  • 12.2 Shimadzu Corporation
  • 12.3 PerkinElmer, Inc.
  • 12.4 Mettler-Toledo International, Inc.
  • 12.5 Rigaku Corporation
  • 12.6 Anton Paar GmbH
  • 12.7 IKA Works GmbH & Co. KG
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦