![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1438084
¼¼°è ÇÕ¼º µ¥ÀÌÅÍ »ý¼º ½ÃÀå ¿¹Ãø(-2030³â) : ÄÄÆ÷³ÍÆ®º°, Àü°³ ¸ðµåº°, Á¦°øº°, ¸ðµ¨¸µ À¯Çüº°, µ¥ÀÌÅÍ À¯Çüº°, ¿ëµµº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®Synthetic Data Generation Market Forecasts to 2030 - Global Analysis By Component, Deployment Mode, Offering, Modeling Type, Data Type, Application, End User and by Geography |
Stratistics MRC¿¡ µû¸£¸é ¼¼°è ÇÕ¼º µ¥ÀÌÅÍ »ý¼º ½ÃÀåÀº 2023³â¿¡ 3¾ï 7,245¸¸ ´Þ·¯¸¦ Â÷ÁöÇϰí, 2030³â¿¡´Â 22¾ï 2,616¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ¿¹Ãø ±â°£ Áß CAGRÀº 29.1%ÀÔ´Ï´Ù.
½Ç¼¼°è µ¥ÀÌÅÍÀÇ Åë°èÀû Ư¡°ú ÆÐÅϰú ´àÀº °³ÀÎÀ» ƯÁ¤ÇÒ ¼ö ÀÖ´Â Á¤º¸¸¦ ÀüÇô Æ÷ÇÔÇÏÁö ¾Ê´Â Àΰø µ¥ÀÌÅÍ ¼¼Æ®¸¦ ÀÛ¼ºÇÏ´Â ÇÁ·Î¼¼½º´Â ÇÕ¼º µ¥ÀÌÅÍ »ý¼ºÀ¸·Î ¾Ë·ÁÁ® ÀÖ½À´Ï´Ù. ÀÌ ÀýÂ÷´Â ¸Ó½Å·¯´×°ú °°Àº ´Ù¾çÇÑ ¿µ¿ª¿¡¼ ƯÈ÷ À¯¿ëÇÏ¸ç ´ë±Ô¸ðÀÇ ´Ù¾çÇÑ µ¥ÀÌÅÍ ¼¼Æ®¿¡ ´ëÇÑ ¾×¼¼½º°¡ ¸ðµ¨ Å×½ºÆ® ¹× ±³À°¿¡ ÇʼöÀûÀÔ´Ï´Ù.
¹Ì±¹ ÀÇ»çȸ¿¡ µû¸£¸é, Á¾ÇÕÀûÀÎ °Ç° °ü¸® Á¤Ã¥À» ½ÃÇàÇÏ´Â °ÍÀº °íǰÁúÀÇ ÀÇ·á ¼ºñ½º¿¡ ´ëÇÑ °øÁ¤ÇÑ Á¢±ÙÀ» º¸ÀåÇÏ°í ´Ù¾çÇÑ Àα¸ Áý´Ü¿¡ °ÉÄ£ ȯÀÚÀÇ ´Ù¾çÇÑ ¿ä±¸¸¦ ÃæÁ·½ÃŰ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù.
´Ù¾çÇÑ ±³À° µ¥ÀÌÅÍ ¼¼Æ®¿¡ ´ëÇÑ Áõ°¡ ¿ä±¸
¾÷°è Àü¹Ý¿¡¼ ¸Ó½Å·¯´× ¿ëµµ°¡ ±Þ°ÝÈ÷ Áõ°¡ÇÔ¿¡ µû¶ó ½Å·Ú¼º ÀÖ°í Á¤È®ÇÑ ¸ðµ¨À» ÇнÀÇϱâ À§ÇÑ ±¤¹üÀ§ÇÏ°í ´Ù¾çÇÑ µ¥ÀÌÅÍ ¼¼Æ®¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ ¿ä±¸´Â ´Ù¾çÇÑ µ¥ÀÌÅÍ ¼¼Æ®¸¦ »ý¼ºÇÏ´Â È®Àå °¡´ÉÇÑ ¹æ¹ýÀ» Á¦°øÇÏ´Â ÇÕ¼º µ¥ÀÌÅÍ »ý¼º¿¡ ÀÇÇØ ÃæÁ·µÇ¾î ¸Ó½Å ·¯´× ¾Ë°í¸®ÁòÀÇ Æ®·¹ÀÌ´× ÀýÂ÷¸¦ º¸´Ù ¼º°øÀûÀ¸·Î È¿À²ÈÇÏ´Â °ÍÀ» ¿ëÀÌÇÏ°Ô ÇÕ´Ï´Ù.
Æò°¡ ÁöÇ¥ ¹× Ç¥ÁØ ºÎÁ·
ÇÕ¼º µ¥ÀÌÅ͸¦ ÀÛ¼ºÇÏ°í ºÐ¼®Çϱâ À§ÇÑ È®¸³µÈ ÀýÂ÷°¡ ¾ø±â ¶§¹®¿¡ ÀΰøÀûÀ¸·Î ÀÛ¼ºµÈ µ¥ÀÌÅÍ ¼¼Æ®ÀÇ Å¸´ç¼º°ú ǰÁúÀ» °áÁ¤ÇϱⰡ ¾î·Æ½À´Ï´Ù. °Ô´Ù°¡, ÇÕ¼º µ¥ÀÌÅÍÀÇ È¿´É°ú ½Å·Ú¼ºÀ» Æò°¡ÇÏ°í ´Ù¾çÇÑ »ê¾÷°ú ¿ëµµ¿¡ °ÉÃÄ Åõ¸íÇÏ°í ±ÕÀÏÇÑ °üÇàÀ» º¸ÀåÇϱâ À§Çؼ´Â º¸ÆíÀûÀ¸·Î ÀνĵǴ Æò°¡ ±âÁØÀ» ¼ö¸³ÇÏ´Â °ÍÀÌ ÇʼöÀûÀÔ´Ï´Ù.
ƯÁ¤ ÀÌ¿ë »ç·Ê¿¡ ´ëÇÑ °³ÀÎÈ
ƯÁ¤ ÀÌ¿ë »ç·Ê¿¡ ´ëÇÑ ÇÕ¼º µ¥ÀÌÅÍ »ý¼ºÀ» »ç¿ëÀÚ Á¤ÀÇÇÏ´Â °ÍÀº Áß¿äÇÑ ±âȸÀÔ´Ï´Ù. ÇÕ¼º µ¥ÀÌÅÍ ¼¼Æ®°¡ ƯÁ¤ »ê¾÷, ¿ëµµ ¶Ç´Â ¿¬±¸ µµ¸ÞÀΰú ¸Å¿ì À¯»çÇϵµ·Ï ¼³°èµÈ °æ¿ì, ¸Ó½Å·¯´× ¸ðµ¨ÀÇ ±³À° ¹× Å×½ºÆ®¸¦ º¸´Ù È¿À²ÀûÀ¸·Î ¼öÇàÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, À̰ÍÀº ½Ç¼¼°è µ¥ÀÌÅ͸¸À¸·Î´Â ´Þ¼ºÇϱ⠾î·Á¿î ¼öÁØÀÇ Æ¯À̼ºÀ» Á¦°øÇÕ´Ï´Ù.
ºÒÃæºÐÇÑ ´ëÇ¥¼º°ú ¹ÙÀ̾ ÁõÆø
½ÇÁ¦ ¼¼°è µ¥ÀÌÅÍÀÇ ÁøÁ¤ÇÑ ´Ù¾ç¼º°ú º¹À⼺À» Æ÷ÂøÇÒ ¼ö ¾ø´Â °¡´É¼ºÀº ÇÕ¼º µ¥ÀÌÅÍ »ý¼º¿¡ ½É°¢ÇÑ À§ÇùÀ» ÃÊ·¡ÇÕ´Ï´Ù. ÇÕ¼º µ¥ÀÌÅÍ ¼¼Æ®´Â ½ÅÁßÇÏ°Ô ¼³°èµÇÁö ¾ÊÀ¸¸é ¹ÙÀ̾¸¦ µµÀÔÇϰųª ´ë»ó ¿µ¿ª¿¡¼ ¹ß°ßµÇ´Â ƯÁ¤ ´µ¾Ó½º¸¦ Æ÷ÂøÇÏÁö ¸øÇÒ ¼ö ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ±× °á°ú ¸ðµ¨ÀÌ Àß ÀϹÝȵÇÁö ¾Ê°í ±âÁ¸ ¹ÙÀ̾°¡ °ÈµÉ ¼ö ÀÖ½À´Ï´Ù.
COVID-19 ÆÒµ¥¹ÍÀº ¼ö¿ä¿Í ¿î¿µ ¿ªÇп¡ ¹ÌÄ¡´Â ¿µÇâÀ¸·Î ÇÕ¼º µ¥ÀÌÅÍ »ý¼º ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ÇÑÆíÀ¸·Î´Â ¿ø°Ý ¿öÅ©³ª µðÁöÅÐ ÀüȯÀÌ Áß½ÃµÇ°Ô µÇ¾ú±â ¶§¹®¿¡ ¿ø°ÝÁö¿¡¼ÀÇ ¸Ó½Å·¯´× °³¹ßÀ» Áö¿øÇÏ´Â ÇÕ¼º µ¥ÀÌÅÍ µîÀÇ ÃÖ÷´Ü ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ±×·¯³ª ¿¹»êÀÇ Á¦¾àÀ̳ª °æ±â ºÒÅõ¸í°¨À¸·Î ÅõÀÚ¸¦ Àç°ËÅäÇÏ´Â Á¶Á÷µµ ÀÖ°í, ½ÃÀåÀÇ ¼ºÀåÀÌ µÐ鵃 °¡´É¼ºµµ ÀÖ½À´Ï´Ù. ¶ÇÇÑ, À¯Çà¿¡ ÀÇÇÑ ¾÷°èÀÇ È¥¶õÀº ½Ç¼¼°è µ¥ÀÌÅ͸¦ ¾òÀ» ¼ö ¾ø°Å³ª ½Ç¿ëÀûÀÌÁö ¾ÊÀº »óȲ¿¡¼ ÇÕ¼º µ¥ÀÌÅÍÀÇ °¡Ä¡¸¦ ºÎ°¢½Ã۰í ÀÖ½À´Ï´Ù.
¿¹ÃøºÐ¼®ºÐ¾ß´Â ¿¹Ãø±â°£ µ¿¾È ÃÖ´ë°¡ µÉ Àü¸Á
¿¹Ãø ±â°£ µ¿¾È ¿¹Ãø ºÐ¼® ºÐ¾ß°¡ ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Åë°è ¾Ë°í¸®Áò, ¸Ó½Å·¯´× ±â¼ú ¹× °ú°Å ¹× ÇöÀç µ¥ÀÌÅ͸¦ »ç¿ëÇÏ¿© ¿¹Ãø ºÐ¼®Àº ÆÐÅϰú µ¿ÇâÀ» ¹ß°ßÇÔÀ¸·Î½á ±â¾÷ÀÌ ¹Ì·¡ÀÇ À̺¥Æ®¿Í °á°ú¸¦ ¿¹ÃøÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. °Ô´Ù°¡ ÀÌ ½ÃÀåÀº ¸¶ÄÉÆÃ, ÀüÀÚ»ó°Å·¡, ±ÝÀ¶, ÇコÄÉ¾î µî ¸¹Àº ºÐ¾ß¿¡¼ ÀαⰡ ³ô¾ÆÁö°í ÀÖÀ¸¸ç, ±â¾÷ÀÌ µ¥ÀÌÅÍ ÁÖµµÀÇ ÅëÂû¿¡ ±Ù°ÅÇÏ¿© ¾ÕÀ» ¿¹ÃøÇÑ ÀÇ»ç°áÁ¤À» ½Ç½ÃÇÏ´Â ÀÌÁ¡¿¡ ´ëÇÑ Âü°í ÀÚ·á°¡ ´Ã¾î³ª°í ÀÖ½À´Ï´Ù. Àֱ⠶§¹®ÀÔ´Ï´Ù.
BFSI ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È CAGRÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹»ó
¾÷°è¿¡¼ °¡Àå CAGRÀÌ ³ôÀ» °ÍÀ¸·Î ¿¹»óµÇ´Â °ÍÀº BFSI(ÀºÇà/±ÝÀ¶¼ºñ½º/º¸Çè) ºÐ¾ßÀÔ´Ï´Ù. BFSI ¾÷°è¿¡¼´Â Å×½ºÆ® ¹× °³¹ßÀ» À§ÇØ ±â¹Ð¼ºÀÌ ³ôÀº ±ÝÀ¶ µ¥ÀÌÅÍ¿Í °í°´ µ¥ÀÌÅ͸¦ °øÀ¯ÇÏ´Â µ¥ ¾î·Á¿òÀ» °Þ°í Àֱ⠶§¹®¿¡ ÇÕ¼º µ¥ÀÌÅÍ´Â ¸ðµ¨ ±³À° ¹× °ËÁõ¿¡ ÇʼöÀûÀÎ ¼Ö·ç¼ÇÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ BFSIÀÇ ¿ëµµ¿¡´Â À§Çè Æò°¡, »ç±â ŽÁö, ÄÄÇöóÀ̾𽺠Å×½ºÆ® µîÀÌ ÀÖ½À´Ï´Ù. ÇÕ¼º µ¥ÀÌÅÍ´Â µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ±ÔÁ¤ Áؼö¸¦ º¸ÀåÇÏ¸é¼ Çõ½ÅÀ» ÃËÁøÇÕ´Ï´Ù.
ºÏ¹Ì°¡ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÃÖ÷´Ü ±â¼úÀÇ Á¶±â µµÀÔ, ¼±µµÀûÀÎ ¾÷°è ±â¾÷ÀÇ °ß°íÇÑ Á¸Àç°¨, ¸Ó½Å·¯´×°ú ÀΰøÁö´É ¿ëµµÀ» À§ÇÑ °í±Þ »ýÅÂ°è °³¹ß µîÀÌ ÀÌ Áö¿ªÀÇ ¿ìÀ§¼ºÀÇ ¿äÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ±â¼ú, ÇコÄɾî, ±ÝÀ¶, ÀÚµ¿Â÷ µîÀÇ ºÐ¾ß¿¡¼ ¸ðµ¨ÀÇ °³¹ß, Å×½ºÆ®, Æ®·¹À̴׿¡ ÇÕ¼º µ¥ÀÌÅͰ¡ ÀÌ¿ëµÇ°í ÀÖ¾î ÇÕ¼º µ¥ÀÌÅÍ ½ÃÀåÀº ¹Ì±¹¿¡¼ Å©°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù.
ÇÕ¼º µ¥ÀÌÅÍ »ý¼º ½ÃÀå¿¡¼´Â ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ CAGRÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÇÕ¼º µ¥ÀÌÅÍ ¼ö¿äÀÇ °ßÁ¶ÇÑ ¼ºÀåÀº ÀÌ Áö¿ªÀÇ ÀΰøÁö´É¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡, ½Å±â¼úÀÇ ±Þ¼ÓÇÑ Ã¤¿ë, ±â¼ú ÁÖµµÇü »ê¾÷ÀÇ Á¸Àç°¨ÀÇ ³ô¾ÆÁüÀÌ ¿øÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ Áß±¹, Àεµ, ÀϺ», Çѱ¹ µî ±¹°¡¿¡¼´Â ÀÇ·á, ±ÝÀ¶, Á¦Á¶ ¹× ¼Ò¸Å¸¦ Æ÷ÇÔÇÑ »ê¾÷¿¡ ´ëÇÑ ÀÀ¿ëÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç, ÇÕ¼º µ¥ÀÌÅÍ ¼Ö·ç¼ÇÀ» À§ÇÑ ÁÁÀº ȯ°æÀ» âÃâÇϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Synthetic Data Generation Market is accounted for $372.45 million in 2023 and is expected to reach $2226.16 million by 2030 growing at a CAGR of 29.1% during the forecast period. The process of creating artificial datasets devoid of any personally identifiable information that closely resembles the statistical traits and patterns of real-world data is known as synthetic data generation. This procedure is especially helpful in a variety of domains, like machine learning, where having access to sizable and varied datasets is essential for testing and training models.
According to the American Medical Association, implementing comprehensive healthcare policies is essential for ensuring equitable access to quality medical services and addressing the diverse needs of patients across different demographic groups.
Growing requirement for various training datasets
The demand for broad and varied datasets to train reliable and accurate models has increased due to the exponential rise in machine learning applications across industries. Additionally, this need is met by synthetic data generation, which offers a scalable way to produce diverse datasets, facilitating more successful and efficient machine learning algorithm training procedures.
Absence of evaluation metrics and standards
The lack of established procedures for creating and analyzing synthetic data makes it difficult to judge the appropriateness and caliber of datasets that have been created artificially. Furthermore, it is imperative to establish metrics that are universally recognized in order to assess the efficacy and dependability of synthetic data and guarantee transparent and uniform practices across various industries and applications.
Personalization for particular use cases
The customization of synthetic data generation for particular use cases represents a significant opportunity. More efficient training and testing of machine learning models is possible when synthetic datasets are designed to closely resemble specific industries, applications, or research domains. Moreover, this provides a level of specificity that may be difficult to attain with real-world data alone.
Insufficient representativeness and amplification of bias
The potential inadequacy of capturing the true diversity and complexity of real-world data poses a serious threat to the creation of synthetic data. Synthetic datasets can introduce biases or fail to capture particular nuances found in the target domain if they are not carefully designed. Additionally, this can result in models that do not generalize well and can even reinforce preexisting biases.
Due to its impact on demand and operational dynamics, the COVID-19 pandemic has had a major effect on the synthetic data generation market. On the one hand, the demand for cutting-edge technologies, such as synthetic data, to support machine learning development remotely has increased due to the growing emphasis on remote work and digital transformation. However, some organizations have re-evaluated their investments due to budgetary constraints and economic uncertainties, which may slow down market growth. Industry disruptions caused by the pandemic have also highlighted the value of synthetic data in situations where real-world data is either unobtainable or impractical.
The Predictive Analytics segment is expected to be the largest during the forecast period
During the projected period, the predictive analytics segment is expected to hold the largest market share. With the use of statistical algorithms, machine learning techniques, and historical and current data, predictive analytics helps businesses anticipate future events and outcomes by spotting patterns and trends. Furthermore, this market has grown in popularity in a number of sectors, such as marketing, e-commerce, finance, and healthcare, as companies learn more and more about the benefits of making proactive decisions based on data-driven insights.
The BFSI segment is expected to have the highest CAGR during the forecast period
The industry's highest CAGR is anticipated for the BFSI (banking, financial services, and insurance) sector. Synthetic data is becoming a more vital solution for model training and validation as the BFSI industry struggles to share sensitive financial and customer data for testing and development. Additionally, applications in BFSI include risk assessment, fraud detection, and compliance testing. Synthetic data promotes innovation while guaranteeing adherence to data privacy regulations.
It is projected that North America will command the largest market share. The early adoption of cutting-edge technologies, the robust presence of major industry players, and the development of an advanced ecosystem for machine learning and artificial intelligence applications are all factors contributing to the region's dominance. Moreover, in large part due to the use of synthetic data for model development, testing, and training by sectors including technology, healthcare, finance, and automotive, the synthetic data market has grown significantly in the United States.
In the market for synthetic data generation, Asia-Pacific is anticipated to have the highest CAGR. The robust growth in demand for synthetic data is partly explained by the region's increasing investments in artificial intelligence, rapid adoption of emerging technologies, and growing presence of tech-driven industries. Furthermore, applications in industries including healthcare, finance, manufacturing, and retail are increasing in nations like China, India, Japan, and South Korea, creating a good environment for synthetic data solutions.
Key players in the market
Some of the key players in Synthetic Data Generation market include IBM, Google, AWS, TonicAI, Inc, Hazy Limited, Microsoft, Gretel Labs, Inc, Replica Analytics Ltd, Datagen, Informatica, GenRocket, Inc, YData Labs Inc, TCS and Replica Analytics Ltd.
In January 2024, Google India Digital Services and NPCI International Payments (NIPL), a wholly-owned subsidiary of the National Payments Corporation of India (NPCI) have signed a Memorandum of Understanding (MoU) to enable UPI transactions outside India. The MoU seeks to broaden the use of UPI payments for Indian travellers to make transactions abroad. It also aims to establish UPI-like digital payment systems in other countries, providing a model for seamless financial transactions.
In January 2024, Amazon Web Services (AWS) looks set to make more money on three multi-million pound government contracts that went live on the same day in December 2023 than it has previously amassed through its decade-long involvement with the G-Cloud procurement framework. The public cloud giant signed three 36-month contracts with several different major government departments that all went live on 1 December 2023, including one valued at £350m with HM Revenue and Customs and another worth £94m with the Department for Work and Pensions.
In January 2024, Microsoft and Vodafone announced a significant 10-year strategic partnership aimed at driving digital transformation for businesses and consumers across Europe and Africa, leveraging their combined strengths in technology and connectivity. The collaboration will focus on enhancing Vodafone's customer experience through Microsoft's AI, expanding Vodafone's managed IoT connectivity platform, developing new digital and financial services for SMEs, and revamping Vodafone's global data center strategy.