½ÃÀ庸°í¼­
»óǰÄÚµå
1438179

¼¼°èÀÇ µ¥ÀÌÅÍ ·¹ÀÌÅ© ½ÃÀå ¿¹Ãø(-2030³â) : ºÎ¹®º°, Áö¿ªº° ºÐ¼®

Data Lake Market Forecasts to 2030 - Global Analysis By Component (Services and Solutions), Business Function, Deployment Mode, Organization Size, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¼¼°èÀÇ µ¥ÀÌÅÍ ·¹ÀÌÅ©(Data Lake) ½ÃÀåÀº 2023³â 78¾ï ´Þ·¯¸¦ Â÷ÁöÇßÀ¸¸ç, ¿¹Ãø ±â°£ µ¿¾È CAGRÀº 27.3%·Î ÃßÀÌÇÏ¸ç ¼ºÀåÇÏ¿©, 2030³â¿¡´Â 399¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

µ¥ÀÌÅÍ ·¹ÀÌÅ©´Â ¹æ´ëÇÑ ¾çÀÇ Á¤Çü, ¹ÝÁ¤Çü, ºñÁ¤Çü µ¥ÀÌÅ͸¦ ´ë±Ô¸ð·Î ÀúÀåÇÒ ¼ö ÀÖ´Â Áß¾Ó ÁýÁᫎ ¸®Æ÷ÁöÅ丮ÀÔ´Ï´Ù. Á¤Çü µ¥ÀÌÅͰ¡ ÇÊ¿äÇÑ ±âÁ¸ µ¥ÀÌÅͺ£À̽º³ª µ¥ÀÌÅÍ ¿þ¾îÇϿ콺¿Í ´Þ¸®, µ¥ÀÌÅÍ ·¹ÀÌÅ©´Â ºÐ¼®À̳ª 󸮿¡ ÇÊ¿äÇÒ ¶§±îÁö ¿ø½Ã µ¥ÀÌÅ͸¦ ±âº» Çü½ÄÀ¸·Î º¸°üÇÒ ¼ö ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ ·¹ÀÌÅ©´Â ½ºÅ°¸¶¸¦ ¹Ì¸® Àû¿ëÇÏÁö ¾Ê°íµµ ·Î±×, ¼¾¼­ µ¥ÀÌÅÍ, À̹ÌÁö, µ¿¿µ»ó µî ´Ù¾çÇÑ µ¥ÀÌÅÍ À¯ÇüÀ» ÀúÀåÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àεµ Áß¾ÓÀºÇà¿¡ µû¸£¸é 2023 ȸ°è¿¬µµ¿¡ Àεµ Áß¾ÓÀºÇà(RBI)Àº Àεµ Àü¿ª¿¡¼­ 1¸¸ 3,000°Ç ÀÌ»óÀÇ ÀºÇà »ç±â »ç°ÇÀ» º¸°íÇß½À´Ï´Ù. ÀÌ´Â Àü³âµµ¿¡ ºñÇØ Áõ°¡ÇÑ ¼öÄ¡À̸ç Áö³­ 10³â°£ÀÇ Ãß¼¼¸¦ ¹ÝÀü½ÃŲ °ÍÀÔ´Ï´Ù.

È¿À²ÀûÀÎ º¸¾È ´ëÃ¥¿¡ ´ëÇÑ ¿ä±¸ Áõ°¡

½ÃÀåÀº ´Ù¾çÇÑ µ¥ÀÌÅÍÀÇ ¹æ´ëÇÑ ¸®Æ÷ÁöÅ丮¸¦ º¸È£Çϱâ À§ÇÑ °ß°íÇÑ º¸¾È Á¶Ä¡¸¦ ÇÊ¿ä·Î ÇÕ´Ï´Ù. ±â¹Ð Á¤º¸ÀÇ À¯ÀÔ¿¡ ¼ö¹ÝÇØ, ¾Ïȣȭ, ¾×¼¼½º Á¦¾î, ÀÌ»ó ŽÁö°¡ Çʼö°¡ µË´Ï´Ù. °í±Þ ÀÎÁõ ÇÁ·ÎÅäÄݰú AI¸¦ Ȱ¿ëÇÑ ¸ð´ÏÅ͸µÀ» ÅëÇØ Á¤º¸ À¯ÃâÀ» ¹æÁöÇÏ°í ¾ö°ÝÇÑ ±ÔÁ¤ Áؼö¸¦ º¸ÀåÇÕ´Ï´Ù. À§ÇùÀÌ ÁøÈ­ÇÏ´Â µ¿¾È ÀûÀÀ °¡´ÉÇÑ º¸¾È Àü·«Àº ÀÌ·¯ÇÑ ±¤´ëÇÑ µ¥ÀÌÅÍ »ýŰèÀÇ ¹«°á¼ºÀ» °­È­ÇÏ°í ±â¹Ð Á¤º¸ ó¸®ÀÇ ½Å·Ú¼º°ú ½Å·Ú¼ºÀ» ħÅõÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù.

º¹ÀâÈ­¿Í ÅëÇÕ

½ÃÀåÀº ÁøÈ­Çϰí ÀÖÀ¸¸ç º¹À⼺°ú ÅëÇÕ¼ºÀÌ ¸ðµÎ °­Á¶µÇ°í ÀÖ½À´Ï´Ù. Á¶Á÷ÀÌ ¾öû³­ ¾çÀÇ µ¥ÀÌÅ͸¦ Ȱ¿ëÇÏ°Ô µÇ¸é ¼Ö·ç¼ÇÀº ´Ù¾çÇÑ ¼Ò½º¿Í Çü½Ä¿¡ °ÉÄ£ ¿øÈ°ÇÑ ÅëÇÕÀ» ¸ñÇ¥·Î ÇÕ´Ï´Ù. À̸¦ À§Çؼ­´Â ´Ù¾çÇÑ Åø°ú Ç÷§Æû °£ÀÇ »óÈ£ ¿î¿ë¼ºÀ» º¸ÀåÇϸ鼭 º¹ÀâÇÑ µ¥ÀÌÅÍ ±¸Á¶¸¦ °ü¸®ÇØ¾ß ÇÕ´Ï´Ù. ÃÊÁ¡Àº º¹À⼺À» ´Ü¼øÈ­ÇÏ´Â Á¾ÇÕÀûÀÎ ¼Ö·ç¼ÇÀ» Á¦°øÇÔÀ¸·Î½á ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ ·¹ÀÌÅ© dz°æ Àü¹Ý¿¡¼­ È¿À²ÀûÀÎ µ¥ÀÌÅÍ Ã³¸®, ºÐ¼® ¹× ÅëÂûÀ» °¡´ÉÇÏ°Ô ÇÏ´Â °ÍÀÔ´Ï´Ù.

÷´Ü±â¼ú äÅà Ȯ´ë

ÃÖ÷´Ü ±â¼úÀÇ Ã¤ÅÃÀÌ ±ÞÁõÇÏ°í ½ÃÀåÀº ±Þ¼ºÀåÇÕ´Ï´Ù. AI Áß½ÉÀÇ ¾Ö³Î¸®Æ½½º, Ŭ¶ó¿ìµå ÅëÇÕ ¹× È®Àå °¡´ÉÇÑ ½ºÅ丮Áö ¼Ö·ç¼ÇÀÌ µ¥ÀÌÅÍ °ü¸®¸¦ ÀçÁ¤ÀÇÇÕ´Ï´Ù. ±â¾÷Àº ÀÌ·¯ÇÑ Çõ½ÅÀ» Ȱ¿ëÇÏ¿© µ¥ÀÌÅÍ Ã³¸®¸¦ °£¼ÒÈ­Çϰí ÀÇ»ç°áÁ¤À» °­È­ÇÏ¸ç °¡Ä¡ ÀÖ´Â Áö½ÄÀ» ²ø¾î³»°í ÀÖ½À´Ï´Ù. ½ÃÀå È®´ë´Â ´Ù¾çÇÑ µ¥ÀÌÅÍ ¼Ò½º¸¦ ¿øÈ°ÇÏ°Ô ÅëÇÕÇÏ°í ¾öû³­ µ¥ÀÌÅÍ ¼¼Æ®¸¦ ´Ù·ê ¶§ Ź¿ùÇÑ ¹Îø¼º°ú È¿À²¼ºÀ» Á¦°øÇÒ ¼ö ÀÖ´ÂÁö ¿©ºÎ¿¡ ´Þ·Á ÀÖ½À´Ï´Ù.

±â¼ú Àü¹® Áö½Ä ºÎÁ·

ÀÌ ½ÃÀåÀº ±â¼ú Àü¹® Áö½ÄÀÇ ºÎÁ·À¸·Î ÀÎÇÑ ¹®Á¦¿¡ Á÷¸é ÇØ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¾öû³­ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇϰí À¯ÁöÇÏ·Á¸é µ¥ÀÌÅÍ ¾ÆÅ°ÅØÃ³, ÅëÇÕ ¹× °ü¸®¿¡ ´ëÇÑ Àü¹® ±â¼úÀÌ ÇÊ¿äÇÕ´Ï´Ù. ´Ù¾çÇÑ µ¥ÀÌÅÍ Çü½ÄÀÇ Ãë±Þ, º¸¾È È®º¸, È¿°úÀûÀÎ °Å¹ö³Í½º µµÀÔ¿¡ Àͼ÷ÇÑ Àü¹®°¡°¡ ºÎÁ·ÇÏ´Ù´Â °ÍÀº µ¥ÀÌÅÍ ·¹ÀÌÅ© ¼Ö·ç¼ÇÀÇ ÃÖÀû Ȱ¿ë°ú ¼ºÀåÀ» ¹æÇØÇϰí ÀÖ½À´Ï´Ù. Á¶Á÷ÀÌ µ¥ÀÌÅÍ ·¹ÀÌÅ©ÀÇ ÀáÀç·ÂÀ» ÃæºÐÈ÷ Ȱ¿ëÇÏ°í °¡Ä¡ÀÖ´Â ÅëÂû·ÂÀ» ¾òÀ¸·Á¸éÀÌ Àü¹® Áö½ÄÀÇ °ÝÂ÷¸¦ ¸Þ¿ì´Â °ÍÀÌ ¸Å¿ì Áß¿äÇÕ´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

COVID-19ÀÇ À¯ÇàÀº ¿ø°Ý ±Ù¹«°ú µðÁöÅÐ ¾÷¹« Áõ°¡¿¡ ´ëÀÀÇϱâ À§ÇØ Á¶Á÷ÀÌ °ß°íÇÑ µ¥ÀÌÅÍ ½ºÅ丮Áö ¹× ºÐ¼® ¼Ö·ç¼ÇÀ» ¿ä±¸Ç߱⠶§¹®¿¡ µ¥ÀÌÅÍ ·¹ÀÌÅ© ¼ö¿ä¸¦ °¡¼ÓÈ­Çß½À´Ï´Ù. ¿Â¶óÀΠȰµ¿À¸·Î ÀÎÇÑ µ¥ÀÌÅÍ ¾ç Áõ°¡¿Í ¹ÎøÇÑ ÀÇ»ç °áÁ¤À» À§ÇÑ ½Ç½Ã°£ ÅëÂûÀÇ Çʿ伺À¸·Î ÀÎÇØ ½ÃÀåÀº ¼ºÀåÀ» ¸ñ°ÝÇß½À´Ï´Ù. ÀÌ·¯ÇÑ ±ÞÁõÀº ´Ù¾çÇÑ µ¥ÀÌÅÍ ¼Ò½º¸¦ È¿À²ÀûÀ¸·Î °ü¸®Çϱâ À§ÇÑ È®Àå °¡´ÉÇÑ Å¬¶ó¿ìµå ±â¹Ý µ¥ÀÌÅÍ ·¹ÀÌÅ©ÀÇ Á߿伺À» °­Á¶Çϰí ÀÌ ºÐ¾ßÀÇ ±â¼ú Çõ½Å°ú ÅõÀÚ¸¦ ÃËÁøÇß½À´Ï´Ù.

¿¹Ãø±â°£ µ¿¾È ÀÎÀçºÐ¾ß°¡ ÃÖ´ëÈ­µÉ Àü¸Á

¿¹Ãø ±â°£ Áß ÀÎÀç ºÐ¾ß°¡ ÃÖ´ë°¡ µÉ Àü¸ÁÀÔ´Ï´Ù. ÀÌ ½ÃÀåÀÇ Àη ºÎ¼­´Â ÀÎÀç ȹµæ, ³ëµ¿·Â °ü¸® ¹× Á÷¿ø Âü¿©¸¦ ÃÖÀûÈ­Çϱâ À§ÇØ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ ¸®Æ÷ÁöÅ丮¸¦ Ȱ¿ëÇÏ´Â µ¥ ÁÖ·ÂÇϰí ÀÖ½À´Ï´Ù. °íµµ ºÐ¼®, AI ÁÖµµ ÅëÂû, ¿¹Ãø ¸ðµ¨À» äÅÃÇÏ¿© äÅÃÀÇ ÇÕ¸®È­, Á÷¿ø üÇèÀÇ °³ÀÎÈ­, Á¤Âø Àü·«ÀÇ °­È­¸¦ µµ¸ðÇÕ´Ï´Ù. µ¥ÀÌÅÍ ·¹ÀÌÅ©ÀÇ HRÀº ´Ù¾çÇÑ µ¥ÀÌÅÍ ¼Ò½º¸¦ Ȱ¿ëÇÏ¿© Á¤º¸ ±â¹Ý ÀÇ»ç °áÁ¤À» °¡´ÉÇÏ°Ô Çϰí ÀûÀýÇÑ Àη°ú ÀûÀýÇÑ ±âȸ¸¦ È®½ÇÈ÷ ¸ÅĪÇϰí Á¶Á÷ÀÇ ¼ºÀå°ú È¿À²¼ºÀ» ÃËÁøÇÕ´Ï´Ù.

¿¹Ãø±â°£ Áß ±³À°ºÐ¾ßÀÇ CAGRÀÌ °¡Àå ³ô¾ÆÁú Àü¸Á

¿¹Ãø ±â°£ µ¿¾È CAGRÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹»óµÇ´Â °ÍÀº ±³À° ºÐ¾ßÀÔ´Ï´Ù. ±³À° ºÐ¾ß ½ÃÀåÀº ±³À° µ¥ÀÌÅÍÀÇ Á¾ÇÕÀûÀÎ º¸Á¸°ú ºÐ¼®ÀÇ Çʿ伺À¸·Î ºü¸£°Ô È®´ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ ±â¼úÀº ÇÕ¸®ÀûÀÎ µ¥ÀÌÅÍ °ü¸®¸¦ °¡´ÉÇÏ°Ô Çϰí, ±³À°ÀÚ°¡ °³º° ÇнÀ, Çмú ¿¬±¸, °ü¸® ÀÇ»ç°áÁ¤À» À§ÇÑ ±ÍÁßÇÑ ÅëÂû·ÂÀ» µµÃâÇÒ ¼ö ÀÖ´Â ÈûÀ» Á¦°øÇÏ°í ±³À° ÇöÀå¿¡¼­ Çõ½Å°ú È¿À²¼ºÀ» ÃËÁøÇÕ´Ï´Ù.

ÃÖ´ë Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¾öû³­ ¾çÀÇ ´Ù¾çÇÑ µ¥ÀÌÅ͸¦ Ȱ¿ëÇÏ´Â µ¥ ÁßÁ¡À» µÐ ±â¾÷Àº µ¥ÀÌÅÍ ·¹ÀÌÅ© Ç÷§Æû äÅÃÀ» ´Ã¸®°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ±â¾÷Àº ÁøÈ­ÇÏ´Â ºñÁî´Ï½º ¿ä±¸¸¦ ÃæÁ·½Ã۱â À§ÇØ ´Ù¸ñÀû ¾ÆÅ°ÅØÃ³¿Í °í±Þ ºÐ¼® µµ±¸¸¦ Á¦°øÇÏ°í ²÷ÀÓ¾øÀÌ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀº ±â¼ú Áøº¸¿Í Á¾ÇÕÀûÀÎ µ¥ÀÌÅÍ °ü¸® ¼Ö·ç¼ÇÀÇ Çʿ伺¿¡ ÈûÀÔ¾î °ßÁ¶ÇÑ ¼ºÀåÀÌ ¿¹»óµÇ°í ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾Æ ÅÂÆò¾çÀÇ CAGRÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. µ¥ÀÌÅÍ Áß½ÉÀÇ ÀÇ»ç°áÁ¤ÀÌ Áß¿äÇØÁö¸é¼­ ¾Æ½Ã¾Æ ÅÂÆò¾çÀÇ ±â¾÷Àº È®À强°ú À¯¿¬¼ºÀÌ ¶Ù¾î³­ µ¥ÀÌÅÍ ½ºÅ丮Áö ¼Ö·ç¼Ç¿¡ ´ëÇÑ ÅõÀÚ¸¦ ´Ã¸®°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ±â¾÷Àº Ŭ¶ó¿ìµå ±â¹Ý ½ºÅ丮Áö ¹× ¾Ö³Î¸®Æ½½º¸¦ Ȱ¿ëÇÏ¿© ÅëÂû·ÂÀ» ¹ßÈÖÇÏ°í ´Ù¾çÇÑ ¿ä±¸¸¦ ÃæÁ·ÇÏ´Â Á¾ÇÕÀûÀÎ Ç÷§ÆûÀ» Á¦°øÇÕ´Ï´Ù. ½ÃÀåÀº Áö¼ÓÀûÀÎ ¼ºÀåÀ» º¸¿©ÁÖ°í ÀÖÀ¸¸ç ±â¾÷Àº ¿ªµ¿ÀûÀÎ »óȲ¿¡¼­ °æÀï·ÂÀ» À¯ÁöÇϱâ À§ÇØ È¿À²ÀûÀÎ µ¥ÀÌÅÍ °ü¸®¸¦ ¼±È£ÇÕ´Ï´Ù.

¹«·á ¸ÂÃãÇü ¼­ºñ½º

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷ °³¿ä
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀû ÇÁ·ÎÆÄÀϸµ(3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ °ü½É¿¡ ±â¹ÝÇÑ ÁÖ¿ä±¹ ½ÃÀå ÃßÁ¤ ¹× ¿¹Ãø¡¤CAGR(ÁÖ : Ÿ´ç¼º È®Àο¡ µû¸§)
  • °æÀï º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû Á¸Àç, Àü·«Àû Á¦ÈÞ¿¡ ±â¹ÝÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç ¼Ò½º
    • 1Â÷ Á¶»ç ¼Ò½º
    • 2Â÷ Á¶»ç ¼Ò½º
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø ¿äÀÎ
  • ¾ïÁ¦ ¿äÀÎ
  • ±âȸ
  • À§Çù
  • ÃÖÁ¾ »ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
  • ±¸¸ÅÀÚÀÇ Çù»ó·Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü°¡¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ µ¥ÀÌÅÍ ·¹ÀÌÅ© ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • ¼­ºñ½º
    • Àü¹® ¼­ºñ½º
    • ÄÁ¼³ÆÃ
    • ¸Å´ÏÁöµå ¼­ºñ½º
    • Áö¿ø ¹× À¯Áö º¸¼ö
    • ½Ã½ºÅÛ ÅëÇÕ ¹× ¹èÆ÷
  • ¼Ö·ç¼Ç
    • µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸®
    • µ¥ÀÌÅÍ ÅëÇÕ ¹× °ü¸®
    • µ¥ÀÌÅÍ ·¹ÀÌÅ© ºÐ¼®
    • µ¥ÀÌÅÍ ½Ã°¢È­

Á¦6Àå ¼¼°èÀÇ µ¥ÀÌÅÍ ·¹ÀÌÅ© ½ÃÀå : ºñÁî´Ï½º ±â´Éº°

  • Àλç
  • ¸¶ÄÉÆÃ
  • ÆÇ¸Å
  • ±ÝÀ¶
  • ¿ÀÆÛ·¹À̼Ç

Á¦7Àå ¼¼°èÀÇ µ¥ÀÌÅÍ ·¹ÀÌÅ© ½ÃÀå : Àü°³ ¸ðµåº°

  • Ŭ¶ó¿ìµå
  • ¿ÂÇÁ·¹¹Ì½º

Á¦8Àå ¼¼°èÀÇ µ¥ÀÌÅÍ ·¹ÀÌÅ© ½ÃÀå : Á¶Á÷ ±Ô¸ðº°

  • Áß¼Ò±â¾÷
  • ´ë±â¾÷

Á¦9Àå ¼¼°èÀÇ µ¥ÀÌÅÍ ·¹ÀÌÅ© ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • ¿î¼Û ¹× ¹°·ù
  • ±³À°
  • ÀºÇà/±ÝÀ¶¼­ºñ½º/º¸Çè
  • Åë½Å ¹× Á¤º¸ ±â¼ú
  • ¼Ò¸Å ¹× ÀüÀÚ»ó°Å·¡
  • ÇコÄÉ¾î ¹× »ý¸í°úÇÐ
  • Á¦Á¶¾÷
  • ¿¡³ÊÁö ¹× À¯Æ¿¸®Æ¼
  • ¹Ìµð¾î ¹× ¿£ÅÍÅ×ÀÎ¸ÕÆ®
  • Á¤ºÎ
  • ¿©Çà°ú Á¢°´
  • ±âŸ ÃÖÁ¾ »ç¿ëÀÚ

Á¦10Àå ¼¼°èÀÇ µ¥ÀÌÅÍ ·¹ÀÌÅ© ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾Æ ÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾Æ ÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦11Àå ÁÖ¿ä ¹ßÀü

  • °è¾à/ÆÄÆ®³Ê½Ê/Çù¾÷/ÇÕÀÛÅõÀÚ(JV)
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦12Àå ±â¾÷ °³¿ä

  • Atos SE
  • Google LLC
  • IBM Corporation
  • Microsoft Corporation
  • Oracle Corporation
  • SAS Institute Inc.
  • Amazon Web Services Inc
  • Snowflake Inc.
  • Cloudera Inc.
  • Teradata Corporation
  • BigStep
  • Koverse, Inc.
  • Dremio
  • Temenos Headquarters SA
  • Atos SE
  • Cazena, Inc.
  • Oracle
LYJ 24.03.28

According to Stratistics MRC, the Global Data Lake Market is accounted for $7.8 billion in 2023 and is expected to reach $39.9 billion by 2030 growing at a CAGR of 27.3% during the forecast period. A data lake is a centralized repository that allows you to store vast amounts of structured, semi-structured, and unstructured data at scale. Unlike traditional databases or data warehouses that require structured data, a data lake can hold raw data in its native format until it's needed for analysis or processing. It allows for the storage of diverse data types-such as logs, sensor data, images, videos, and more-without enforcing a schema upfront.

According to the Reserve Bank of India, In the financial year 2023, the Reserve Bank of India (RBI) reported more than 13 thousand bank fraud cases across India. This was an increase compared to the previous year and turned around the last decade's trend.

Market Dynamics:

Driver:

Growing need for efficient security measures

The market demands robust security measures to safeguard vast repositories of diverse data. With an influx of sensitive information, encryption, access controls, and anomaly detection become imperative. Advanced authentication protocols and AI-driven monitoring fortify against breaches and ensure compliance with stringent regulations. As threats evolve, adaptive security strategies are pivotal to fortify the integrity of these expansive data ecosystems, instilling trust and reliability in handling sensitive information.

Restraint:

Complexity and Integration

The market is evolving, emphasizing both complexity and integration. As organizations harness vast data volumes, solutions aim for seamless integration across diverse sources and formats. This entails managing intricate data structures while ensuring interoperability among various tools and platforms. The focus lies in offering comprehensive solutions that simplify complexities, enabling efficient data processing, analysis, and insights across the expansive data lake landscape.

Opportunity:

Mounting adoption of advanced technologies

The market experiences rapid growth due to soaring adoption of cutting-edge technologies. AI-driven analytics, cloud integration, and scalable storage solutions redefine data management. Organizations leverage these innovations to streamline data processing, enhance decision-making, and extract valuable insights. The market's expansion hinges on the seamless integration of diverse data sources, offering unparalleled agility and efficiency in handling vast datasets.

Threat:

Lack of technical expertise

The market faces challenges due to a shortage of technical expertise. Building and maintaining these expansive repositories demands specialized skills in data architecture, integration, and management. The scarcity of professionals proficient in handling diverse data formats, ensuring security, and implementing effective governance hampers the optimal utilization and growth of data lake solutions. Bridging this expertise gap is crucial for organizations to fully harness the potential of data lakes and derive valuable insights.

Covid-19 Impact:

The COVID-19 pandemic accelerated the demand for Data Lakes as organizations sought robust data storage and analytics solutions to handle increased remote work and digital operations. The market witnessed growth due to rising data volumes from online activities and the need for real-time insights for agile decision-making. This surge emphasized the importance of scalable, cloud-based data lakes to manage diverse data sources efficiently, driving innovation and investments in the sector.

The human resources segment is expected to be the largest during the forecast period

The human resources segment is expected to be the largest during the forecast period. The human resources sector within the market focuses on leveraging extensive data repositories to optimize talent acquisition, workforce management, and employee engagement. It employs advanced analytics, AI-driven insights, and predictive models to streamline recruitment, personalize employee experiences, and enhance retention strategies. HR in Data Lakes harnesses diverse data sources to enable informed decision-making, ensuring the right talent is matched with the right opportunities, fostering organizational growth and efficiency.

The education segment is expected to have the highest CAGR during the forecast period

The education segment is expected to have the highest CAGR during the forecast period. The market in education is rapidly expanding, driven by the need for comprehensive storage and analysis of educational data. This technology enables streamlined data management, empowering educators to derive valuable insights for personalized learning, academic research, and administrative decision-making, fostering innovation and efficiency within the educational landscape.

Region with largest share:

North America is projected to hold the largest market share during the forecast period. With a focus on harnessing vast amounts of diverse data, enterprises are increasingly adopting Data Lake platforms. Key players vie for prominence, offering versatile architectures and advanced analytics tools to cater to evolving business needs. The region showcases robust growth prospects, fueled by technological advancements and the imperative need for comprehensive data management solutions.

Region with highest CAGR:

Asia Pacific is projected to hold the highest CAGR over the forecast period. With a growing emphasis on data-driven decision-making, businesses in APAC are increasingly investing in scalable and flexible data storage solutions. Key players offer comprehensive platforms catering to diverse needs, leveraging cloud-based storage and analytics to unlock insights. The market's trajectory signals sustained growth, with organizations prioritizing efficient data management to stay competitive in the dynamic landscape.

Key players in the market

Some of the key players in Data Lake market include Atos SE, Google LLC, IBM Corporation, Microsoft Corporation, Oracle Corporation, SAS Institute Inc., Amazon Web Services Inc, Snowflake Inc., Cloudera Inc., Teradata Corporation, BigStep , Koverse, Inc., Dremio, Temenos Headquarters SA, Atos SE, Cazena, Inc. and Oracle.

Key Developments:

In December 202, Atos announced the development of a new solution in collaboration with AWS that allows clients to expedite and properly monitor company key performance indicators (KPIs) by offering simple access to non-SAP and SAP data silos.

In November 2022, Amazon Web Services (AWS) announced the launch of Amazon Security Lake. This new cybersecurity solution automatically centralizes safety data from on-premises and cloud sources into a purpose-built data lake in a user's AWS account.

Components Covered:

  • Services
  • Solutions

Business Functions Covered:

  • Human Resources
  • Marketing
  • Sales
  • Finance
  • Operations

Deployment Modes Covered:

  • Cloud
  • On-Premises

Organization Sizes Covered:

  • Small and Medium-Sized Enterprises
  • Large Enterprises

End Users Covered:

  • Transportation and Logistics
  • Education
  • Banking, Financial Services and Insurance
  • Telecommunication and Information Technology
  • Retail and E-Commerce
  • Healthcare and Life Sciences
  • Manufacturing
  • Energy and Utilities
  • Media and Entertainment
  • Government
  • Travel and Hospitality
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2021, 2022, 2023, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 End User Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Data Lake Market, By Component

  • 5.1 Introduction
  • 5.2 Services
    • 5.2.1 Professional Services
    • 5.2.2 Consulting
    • 5.2.3 Managed Services
    • 5.2.4 Support and Maintenance
    • 5.2.5 System Integration and Deployment
  • 5.3 Solutions
    • 5.3.1 Data Discovery
    • 5.3.2 Data Integration and Management
    • 5.3.3 Data Lake Analytics
    • 5.3.4 Data Visualization

6 Global Data Lake Market, By Business Function

  • 6.1 Introduction
  • 6.2 Human Resources
  • 6.3 Marketing
  • 6.4 Sales
  • 6.5 Finance
  • 6.6 Operations

7 Global Data Lake Market, By Deployment Mode

  • 7.1 Introduction
  • 7.2 Cloud
  • 7.3 On-Premises

8 Global Data Lake Market, By Organization Size

  • 8.1 Introduction
  • 8.2 Small and Medium-Sized Enterprises
  • 8.3 Large Enterprises

9 Global Data Lake Market, By End User

  • 9.1 Introduction
  • 9.2 Transportation and Logistics
  • 9.3 Education
  • 9.4 Banking, Financial Services and Insurance
  • 9.5 Telecommunication and Information Technology
  • 9.6 Retail and E-Commerce
  • 9.7 Healthcare and Life Sciences
  • 9.8 Manufacturing
  • 9.9 Energy and Utilities
  • 9.10 Media and Entertainment
  • 9.11 Government
  • 9.12 Travel and Hospitality
  • 9.13 Other End Users

10 Global Data Lake Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Atos SE
  • 12.2 Google LLC
  • 12.3 IBM Corporation
  • 12.4 Microsoft Corporation
  • 12.5 Oracle Corporation
  • 12.6 SAS Institute Inc.
  • 12.7 Amazon Web Services Inc
  • 12.8 Snowflake Inc.
  • 12.9 Cloudera Inc.
  • 12.10 Teradata Corporation
  • 12.11 BigStep
  • 12.12 Koverse, Inc.
  • 12.13 Dremio
  • 12.14 Temenos Headquarters SA
  • 12.15 Atos SE
  • 12.16 Cazena, Inc.
  • 12.17 Oracle
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦