![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1447042
³ó¾÷¿ë DNA ¸¶ÀÌÅ©·Î¾î·¹ÀÌ ½ÃÀå ¿¹Ãø(-2030³â) : ¸¶ÀÌÅ©·Î¾î·¹ÀÌ À¯Çüº°, ÀÛ¹° À¯Çüº°, ±â¼úº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ºÐ¼®DNA Microarray for Agriculture Market Forecasts to 2030 - Global Analysis By Microarray Type (cDNA Microarrays, Oligonucleotide Microarrays, SNP Microarrays and Other Microarray Types), Crop Type, Technology, Application, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é, ¼¼°è ³ó¾÷¿ë DNA ¸¶ÀÌÅ©·Î¾î·¹ÀÌ ½ÃÀåÀº 2023³â 37¾ï ´Þ·¯ ±Ô¸ðÀ̸ç, ¿¹Ãø ±â°£ µ¿¾È ¿¬Æò±Õ 10.7% ¼ºÀåÇÏ¿© 2030³â¿¡´Â 76¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
DNA ¸¶ÀÌÅ©·Î¾î·¹ÀÌ´Â ³ó¾÷¿¡¼ ±ÍÁßÇÑ ¿ëµµ¸¦ ¹ß°ßÇϰí ÀÛ¹° ¿¬±¸, À°Á¾ ¹× °ü¸® ¹æ½Ä¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. ³ó¾÷¿¡¼ ¸¶ÀÌÅ©·Î¾î·¹ÀÌ´Â ¼öõ °³ÀÇ À¯ÀüÀÚ ¹ßÇöÀ» µ¿½Ã¿¡ ºÐ¼®ÇÏ¿© ½Ä¹° °Ô³ð¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ ÀÌÇØ¸¦ Á¦°øÇÏ´Â µ¥ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. À̸¦ ÅëÇØ ¿¬±¸ÀÚµéÀº ȯ°æÀû ¿äÀÎ, ½ºÆ®·¹½º, Áúº´¿¡ ¹ÝÀÀÇÏ´Â À¯ÀüÀÚ ¹ßÇö ÆÐÅÏÀ» Á¶»çÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÛ¹° À°Á¾¿¡¼ DNA ¸¶ÀÌÅ©·Î¾î·¹ÀÌ´Â ¿øÇÏ´Â ÇüÁú°ú °ü·ÃµÈ À¯ÀüÀÚ¸¦ ½Äº°ÇÏ¿© ¸¶Ä¿ Áö¿ø ¼±¹ßÀ» ÃËÁøÇÏ°í °³·®µÈ ǰÁ¾ÀÇ °³¹ßÀ» °¡¼ÓÈÇÒ ¼ö ÀÖ½À´Ï´Ù.
È¿À²ÀûÀ̰í Áö¼Ó°¡´ÉÇÑ ½Ä·® »ý»êÀÇ Çʿ伺
Á¤¹Ð ³ó¾÷ÀÇ ÇÙ½É ±â¼úÀÎ DNA ¸¶ÀÌÅ©·Î¾î·¹ÀÌ´Â ½Ä¹° °Ô³ðÀÇ ½Å¼ÓÇÑ µ¿½Ã ºÐ¼®À» °¡´ÉÇÏ°Ô ÇÏ¿© °í¼öÀÍ ¹× ȸº¹·Â ÀÖ´Â ÀÛ¹° °³¹ßÀ» µ½½À´Ï´Ù. ÀÌ·¯ÇÑ µµ±¸´Â ¸¶Ä¿ Áö¿ø ¼±¹ßÀ» ÃËÁøÇÔÀ¸·Î½á ÀÛ¹° ÇüÁú °³¼±À» À§ÇÑ À°Á¾ ÇÁ·Î±×·¥À» °¡¼ÓÈÇÕ´Ï´Ù. ¶ÇÇÑ, ½ºÆ®·¹½º ÀúÇ×¼º ¹× ȯ°æ ÀûÀÀ¼º°ú °ü·ÃµÈ À¯ÀüÀÚ¸¦ ½Äº°ÇÏ´Â µ¥¿¡µµ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ÀÌó·³ Áö¼Ó°¡´ÉÇÑ ³ó¹ý¿¡ ´ëÇÑ ½ÃÀåÀÇ ¿ä±¸°¡ ³ô¾ÆÁü¿¡ µû¶ó DNA ¸¶ÀÌÅ©·Î¾î·¹ÀÌ´Â ³ó¾÷ »ý»ê¼ºÀ» Çâ»ó½ÃŰ°í ¼¼°è ½Ä·® ¾Èº¸¸¦ º¸ÀåÇÏ´Â Áß¿äÇÑ µµ±¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.
³ôÀº Ãʱâ ÅõÀÚ
Àåºñ, ÀÎÇÁ¶ó ¹× ¼÷·ÃµÈ Àη°ú °ü·ÃµÈ ¸·´ëÇÑ ºñ¿ëÀº ¼Ò±Ô¸ð ³óÀå°ú ÀÚ¿øÀÌ Á¦ÇÑµÈ Áö¿ªÀÌ ÀÌ Ã·´Ü ±â¼úÀ» µµÀÔÇÏ´Â °ÍÀ» ÁÖÀúÇÏ°Ô ¸¸µì´Ï´Ù. ÀÌ·¯ÇÑ °æÁ¦Àû À庮Àº DNA ¸¶ÀÌÅ©·Î¾î·¹À̰¡ ÀÛ¹° ¼öÈ®·®À» ÃÖÀûÈÇÏ°í ½Ä·® ¾Èº¸¸¦ º¸ÀåÇÏ´Â µ¥ ÀÖ¾î DNA ¸¶ÀÌÅ©·Î¾î·¹ÀÌÀÇ ÀáÀçÀû ÀÌÁ¡À» Á¦ÇÑÇÏ°í ³Î¸® Ȱ¿ëµÇ´Â °ÍÀ» ¹æÇØÇÕ´Ï´Ù. ±× °á°ú, ½ÃÀåÀº ´õ ±¤¹üÀ§ÇÑ º¸±ÞÀ» ´Þ¼ºÇÏ´Â µ¥ ¾î·Á¿òÀ» °Þ°í ÀÖÀ¸¸ç, ³ó¾÷ °üÇà¿¡ ¹ÌÄ¡´Â ¿µÇâÀÌ Á¦ÇÑµÇ¾î ½ÃÀå ¼ºÀåÀ» ¹æÇØÇϰí ÀÖ½À´Ï´Ù.
¸¶ÀÌÅ©·Î¾î·¹ÀÌ ±â¼úÀÇ ²÷ÀÓ¾ø´Â ¹ßÀü
Á¤È®µµ Çâ»ó, 󸮷® Áõ°¡, ºñ¿ë È¿À²¼º Çâ»óÀ¸·Î ÀÎÇØ äÅÃÀÌ °¡¼Óȵǰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Çõ½ÅÀº ½Ä¹° °Ô³ð¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ ºÐ¼®À» °¡´ÉÇÏ°Ô Çϰí, ¿øÇÏ´Â ÇüÁú¿¡ ´ëÇÑ ¸¶Ä¿ Áö¿ø ¼±¹ßÀ» ÅëÇÑ ÀÛ¹° °³·®À» °¡¼ÓÈÇÕ´Ï´Ù. ÁøÈÇÑ ±â¼úÀº ½ºÆ®·¹½º ÀúÇ×¼º, Áúº´ ÀúÇ×¼º, ¼öÈ®·® ÃÖÀûÈ¿Í °ü·ÃµÈ À¯ÀüÀÚ¸¦ ½Å¼ÓÇÏ°Ô ½Äº°ÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ±× °á°ú, ³óºÎ¿Í ¿¬±¸ÀÚµéÀº °³¼±µÈ ÀÛ¹° ǰÁ¾, È¿À²ÀûÀÎ ÇØÃæ °ü¸® ¹× Áö¼Ó°¡´ÉÇÑ ³ó¾÷ °üÇàÀÇ ÇýÅÃÀ» ´©¸± ¼ö ÀÖ½À´Ï´Ù.
º¹ÀâÇÑ µ¥ÀÌÅÍ ºÐ¼®
º¹ÀâÇÑ µ¥ÀÌÅÍ ¼¼Æ®´Â °íµµÀÇ ÄÄÇ»ÆÃ ¸®¼Ò½º¿Í Àü¹® Áö½ÄÀ» ÇÊ¿ä·Î Çϸç, ±¸Çö ¹× À¯Áöº¸¼ö ºñ¿ëÀ» Áõ°¡½Ãŵ´Ï´Ù. ¼Ò±Ô¸ð ³ó¾÷ »ç¾÷ÀÚ´Â ÀçÁ¤Àû Á¦¾à°ú ¼÷·ÃµÈ Àη ºÎÁ·À¸·Î ÀÎÇØ ÀÌ·¯ÇÑ ±â¼úÀ» µµÀÔÇÏ´Â µ¥ ¾î·Á¿òÀ» °ÞÀ» ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ º¹ÀâÇÑ µ¥ÀÌÅÍ ÇØ¼®Àº ÀÇ»ç °áÁ¤ÀÇ Áö¿¬À¸·Î À̾îÁ® ³ó¾÷¿¡ ÇÊ¿äÇÑ ¹Îø¼ºÀ» ¶³¾î¶ß¸³´Ï´Ù. ±× °á°ú, ³ó¾÷ ºÐ¾ßÀÇ DNA ¸¶ÀÌÅ©·Î¾î·¹ÀÌ ±â¼ú äÅ÷üÀº ½ÃÀå ¼ºÀåÀ» ÀúÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.
COVID-19ÀÇ ¿µÇâ
À̵¿ Á¦ÇѰú ¿¬±¸¼Ò Æó¼â·Î ÀÎÇØ ³ó¾÷ ºÐ¾ß¿¡¼ÀÇ DNA ¸¶ÀÌÅ©·Î¾î·¹ÀÌ ±â¼ú °³¹ß°ú Àû¿ë¿¡ ¾î·Á¿òÀÌ ÀÖ¾ú½À´Ï´Ù. ±×·¯³ª ÀÌ À§±â´Â ȸº¹·Â Àִ ÷´Ü ³ó¾÷ ±â¼úÀÇ Á߿伺À» ºÎ°¢½ÃÄ×½À´Ï´Ù. ¾÷°è°¡ »õ·Î¿î Á¤»ó »óÅ¿¡ ÀûÀÀÇÔ¿¡ µû¶ó DNA ¸¶ÀÌÅ©·Î¾î·¹À̸¦ Á¤¹Ð ³ó¾÷, ÀÛ¹° °³·® ¹× Áúº´ ÀúÇ×¼º Çâ»ó¿¡ Ȱ¿ëÇÏ´Â µ¥ Á¡Á¡ ´õ ÃÊÁ¡À» ¸ÂÃß°í ÀÖÀ¸¸ç, ÀÌ´Â ³ó¾÷ÀÇ Áö¼Ó°¡´É¼ºÀ» ³ôÀÌ´Â Ãø¸é¿¡¼ ½ÃÀå ȸº¹°ú ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù.
cDNA ¸¶ÀÌÅ©·Î¾î·¹ÀÌ ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀåÀ¸·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»ó
cDNA ¸¶ÀÌÅ©·Î¾î·¹ÀÌ´Â ³ó¾÷ÀÇ DNA ¸¶ÀÌÅ©·Î¾î·¹ÀÌ¿¡ Çõ¸íÀ» ÀÏÀ¸Ä×À¸¸ç, cDNA ¸¶ÀÌÅ©·Î¾î·¹ÀÌ´Â À¯ÀüÀÚ ¹ßÇö ºÐ¼®À» °ÈÇϰí ȯ°æ ¿äÀÎ, Áúº´ ¹× ½ºÆ®·¹½º¿¡ ´ëÇÑ ½Ä¹°ÀÇ ¹ÝÀÀÀ» Á¤È®ÇÏ°Ô ÇÁ·ÎÆÄÀϸµÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ±â¼úÀº ÀÛ¹° °³·®, Áúº´ ÀúÇ×¼º ¹× ¼öÈ®·® ÃÖÀûȸ¦ À§ÇÑ Áß¿äÇÑ À¯ÀüÀû ¸¶Ä¿¸¦ ½±°Ô ½Äº°ÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ±× °á°ú, ³ó¾÷¿ë DNA ¸¶ÀÌÅ©·Î¾î·¹ÀÌ ½ÃÀåÀº ÷´Ü µµ±¸¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ ±â¼ú Çõ½ÅÀÌ ÃËÁøµÇ¸é¼ Å©°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ÇÏÀ̺긮µåÈ ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»ó
ÇÏÀ̺긮´ÙÀÌÁ¦ÀÌ¼Ç ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ ±â¼úÀº ¼öõ °³ÀÇ À¯ÀüÀÚ¸¦ µ¿½Ã¿¡ ºÐ¼®ÇÒ ¼ö ÀÖ¾î ÀÛ¹°ÀÇ ¹Ù¶÷Á÷ÇÑ ÇüÁúÀ» ºü¸£°Ô ½Äº°ÇÒ ¼ö Àֱ⠶§¹®ÀÔ´Ï´Ù. ÀÌ ½ÃÀåÀº ÀÛ¹° ǰÁ¾ °³·®, º´ÇØÃæ ÀúÇ×¼º ¹× ¼öÈ®·® ÃÖÀûȸ¦ °ÈÇÔÀ¸·Î½á ÀÌÀÍÀ» ¾ò°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, DNA ¸¶ÀÌÅ©·Î¾î·¹ÀÌÀÇ ÇÏÀ̺긮µåÈ´Â À¯ÀüÀûÀ¸·Î ¿ì¼öÇÑ ½Ä¹°ÀÇ °³¹ßÀ» ÃËÁøÇÏ¿© Áö¼Ó°¡´ÉÇÑ °í¼öÀÍ ³ó¾÷¿¡ ´ëÇÑ Àü ¼¼°è ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇÒ ¼ö ÀÖ½À´Ï´Ù.
¾Æ½Ã¾ÆÅÂÆò¾çÀº Áö¼Ó°¡´ÉÇÑ ³ó¾÷°ú ½Ä·® ¾Èº¸¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁü¿¡ µû¶ó ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÁÖ¿ä ±â¾÷µéÀº ¿¬±¸°³¹ß¿¡ ÅõÀÚÇÏ¿© Á¦Ç° ¶óÀξ÷À» °ÈÇϱâ À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ³óºÎµéÀº DNA ¸¶ÀÌÅ©·Î¾î·¹À̸¦ Æ÷ÇÔÇÑ »õ·Î¿î ±â¼úÀ» ºü¸£°Ô äÅÃÇÏ¿© È¿À²¼º, ¼öÈ®·® ¹× ¼öÀͼºÀ» °³¼±ÇÒ ¼ö ÀÖ´Â °¡´É¼ºÀ» ÀνÄÇϰí ÀÖ½À´Ï´Ù.
ºÏ¹Ì Áö¿ªÀº ¿¬±¸ÀÚµéÀÌ ½Ä¹° ½Ã½ºÅÛ¿¡¼ ´Ù¾çÇÑ À¯ÀüÀÚÀÇ ±â´ÉÀ» ÀÌÇØÇÏ´Â µ¥ µµ¿òÀ» ÁÖ´Â ±â´É À¯ÀüüÇп¡¼ Áß¿äÇÑ ¿ªÇÒÀ» Çϱ⠶§¹®¿¡ ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ Á¤º¸´Â Ç¥ÀûÈµÈ ÀÛ¹° °³·® Àü·«ÀÇ ±âÃʰ¡ µÉ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ºÏ¹Ì, ƯÈ÷ ¹Ì±¹°ú ij³ª´Ù Á¤ºÎ´Â À¯ÀüüÇÐ ¹× DNA ¸¶ÀÌÅ©·Î¾î·¹ÀÌ¿Í °°Àº °ü·Ã ±â¼úÀ» Æ÷ÇÔÇÑ ³ó¾÷ ¿¬±¸ °³¹ß¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀÚ±Ý Áö¿øÀº ±â¼ú Çõ½ÅÀ» ÃËÁøÇÏ°í ³ó¾÷ ºÐ¾ßÀÇ ½Å±â¼ú äÅÃÀ» ÃËÁøÇÕ´Ï´Ù.
According to Stratistics MRC, the Global DNA Microarray for Agriculture Market is accounted for $3.7 billion in 2023 and is expected to reach $7.6 billion by 2030 growing at a CAGR of 10.7% during the forecast period. DNA microarrays have found valuable applications in agriculture, revolutionizing crop research, breeding, and management practices. In agriculture, these microarrays are utilized to analyze the expression of thousands of genes simultaneously, providing a comprehensive understanding of plant genomes. They enable researchers to study gene expression patterns in response to environmental factors, stress, and disease. In crop breeding, DNA microarrays facilitate marker-assisted selection by identifying genes associated with desirable traits, accelerating the development of improved varieties.
Need for efficient and sustainable food production
As a key technology in precision agriculture, DNA microarrays enable rapid and simultaneous analysis of plant genomes, aiding in the development of high-yielding and resilient crops. By facilitating marker-assisted selection, these tools accelerate breeding programs for improved crop traits. Additionally, they contribute to the identification of genes related to stress resistance and environmental adaptability. Thus the need for sustainable farming practices amplifies the market's significance, positioning DNA microarrays as crucial tools for advancing agricultural productivity and ensuring global food security.
High initial investment
The substantial costs associated with equipment, infrastructure, and skilled personnel deter smaller farms and resource-limited regions from embracing this advanced technology. This financial barrier restricts widespread accessibility and hampers the potential benefits of DNA microarrays in optimizing crop yields and ensuring food security. As a consequence, the market faces challenges in achieving broader adoption, limiting its impact on agricultural practices hampering the market growth.
Continuous advancements in microarray technology
Enhanced precision, higher throughput and cost-effectiveness are driving adoption. These innovations enable comprehensive analysis of plant genomes, accelerating crop improvement through marker-assisted selection for desirable traits. The evolving technology facilitates rapid identification of genes associated with stress resistance, disease tolerance, and yield optimization. As a result, farmers and researchers benefit from improved crop varieties, efficient pest management, and sustainable agricultural practices.
Complex data analysis
Complex datasets demand sophisticated computational resources and expertise, raising costs for implementation and maintenance. Small-scale agricultural enterprises may face barriers in adopting these technologies due to financial constraints and a lack of skilled personnel. Moreover, intricate data interpretation can lead to delays in decision-making, diminishing the agility required in farming. As a result, the adoption rate of DNA microarray technologies in agriculture may be hindered the market growth.
Covid-19 Impact
With restrictions on movement and lab closures, the deployment and adoption of DNA microarray technologies in agriculture faced challenges. However, the crisis has also underscored the importance of resilient and advanced agricultural technologies. As the industry adapts to the new normal, there is an increased focus on leveraging DNA microarrays for precision farming, crop improvement, and disease resistance, driving the market towards recovery and future growth in enhancing agricultural sustainability.
The cDNA microarrays segment is expected to be the largest during the forecast period
The cDNA microarrays segment is estimated to have a lucrative growth. cDNA microarrays have revolutionized the DNA microarray landscape in agriculture. Offering enhanced gene expression analysis, they enable precise profiling of plant responses to environmental factors, diseases, and stress. This technology facilitates the identification of key genetic markers for crop improvement, disease resistance, and yield optimization. As a result, the DNA Microarray for Agriculture Market has experienced a substantial boost, with increased demand for advanced tools driving innovation.
The hybridization segment is expected to have the highest CAGR during the forecast period
The hybridization segment is anticipated to witness the highest CAGR growth during the forecast period, as this technique enables the simultaneous analysis of thousands of genes, facilitating rapid identification of desirable traits in crops. The market benefits from enhanced crop breeding, disease resistance, and yield optimization. Moreover, hybridization in DNA microarrays expedites the development of genetically superior plants, meeting the increasing global demand for sustainable and high-yielding agriculture.
Asia Pacific is projected to hold the largest market share during the forecast period owing to the growing emphasis on sustainable agriculture and food security in the region. Key players are investing in research and development to enhance product offerings. Furthermore, Asia Pacific farmers have been early adopters of new technologies, including DNA microarrays, recognizing their potential to improve efficiency, yields, and profitability. contribute to the market's expansion.
North America is projected to have the highest CAGR over the forecast period, due to its significant role in functional genomics by helping researchers understand the functions of various genes in plant systems. This information is fundamental for targeted crop improvement strategies. Additionally, governments in North America, particularly the United States and Canada, invest heavily in agricultural research and development, including genomics and related technologies like DNA microarrays. This funding fuels innovation and facilitates the adoption of new technologies in the agricultural sector.
Key players in the market
Some of the key players in the DNA Microarray for Agriculture Market include Eurofins Genomics, Affymetrix, Agilent Technologies , Illumina, Inc., Applied Microarrays, Arrayit Corporation, LCG Genomics, Inqaba Biotec, LC Sciences, Biometrix Technology Inc., Oxford Gene Technology (OGT), PerkinElmer, Inc., Greenea Biosciences, BioCat GmbH , Scienion AG and RayBiotech, Inc.
In January 2024, Agilent Technologies Inc. announced an agreement with Incyte that will bring together Agilent's expertise and proven track record in the development of companion diagnostics (CDx) to support the development and commercialization of Incyte's hematology and oncology portfolio.
In January 2024, Illumina Inc announced it has signed an agreement with Janssen Research & Development, LLC (Janssen). This collaboration will be the first relating to the development of Illumina's novel molecular residual disease (MRD) assay, a whole-genome sequencing (WGS) multi-cancer research solution
In September 2022, Eurofins Genomics has partnered with Concentric by Ginkgo Bioworks on an expanded program that will serve as an early warning system to detect new or emerging SARS-CoV-2 variants, and can facilitate response to future travel-associated outbreaks and pandemics.