½ÃÀ庸°í¼­
»óǰÄÚµå
1447042

³ó¾÷¿ë DNA ¸¶ÀÌÅ©·Î¾î·¹ÀÌ ½ÃÀå ¿¹Ãø(-2030³â) : ¸¶ÀÌÅ©·Î¾î·¹ÀÌ À¯Çüº°, ÀÛ¹° À¯Çüº°, ±â¼úº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ºÐ¼®

DNA Microarray for Agriculture Market Forecasts to 2030 - Global Analysis By Microarray Type (cDNA Microarrays, Oligonucleotide Microarrays, SNP Microarrays and Other Microarray Types), Crop Type, Technology, Application, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é, ¼¼°è ³ó¾÷¿ë DNA ¸¶ÀÌÅ©·Î¾î·¹ÀÌ ½ÃÀåÀº 2023³â 37¾ï ´Þ·¯ ±Ô¸ðÀ̸ç, ¿¹Ãø ±â°£ µ¿¾È ¿¬Æò±Õ 10.7% ¼ºÀåÇÏ¿© 2030³â¿¡´Â 76¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

DNA ¸¶ÀÌÅ©·Î¾î·¹ÀÌ´Â ³ó¾÷¿¡¼­ ±ÍÁßÇÑ ¿ëµµ¸¦ ¹ß°ßÇϰí ÀÛ¹° ¿¬±¸, À°Á¾ ¹× °ü¸® ¹æ½Ä¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. ³ó¾÷¿¡¼­ ¸¶ÀÌÅ©·Î¾î·¹ÀÌ´Â ¼öõ °³ÀÇ À¯ÀüÀÚ ¹ßÇöÀ» µ¿½Ã¿¡ ºÐ¼®ÇÏ¿© ½Ä¹° °Ô³ð¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ ÀÌÇØ¸¦ Á¦°øÇÏ´Â µ¥ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. À̸¦ ÅëÇØ ¿¬±¸ÀÚµéÀº ȯ°æÀû ¿äÀÎ, ½ºÆ®·¹½º, Áúº´¿¡ ¹ÝÀÀÇÏ´Â À¯ÀüÀÚ ¹ßÇö ÆÐÅÏÀ» Á¶»çÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÛ¹° À°Á¾¿¡¼­ DNA ¸¶ÀÌÅ©·Î¾î·¹ÀÌ´Â ¿øÇÏ´Â ÇüÁú°ú °ü·ÃµÈ À¯ÀüÀÚ¸¦ ½Äº°ÇÏ¿© ¸¶Ä¿ Áö¿ø ¼±¹ßÀ» ÃËÁøÇÏ°í °³·®µÈ ǰÁ¾ÀÇ °³¹ßÀ» °¡¼ÓÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù.

È¿À²ÀûÀ̰í Áö¼Ó°¡´ÉÇÑ ½Ä·® »ý»êÀÇ Çʿ伺

Á¤¹Ð ³ó¾÷ÀÇ ÇÙ½É ±â¼úÀÎ DNA ¸¶ÀÌÅ©·Î¾î·¹ÀÌ´Â ½Ä¹° °Ô³ðÀÇ ½Å¼ÓÇÑ µ¿½Ã ºÐ¼®À» °¡´ÉÇÏ°Ô ÇÏ¿© °í¼öÀÍ ¹× ȸº¹·Â ÀÖ´Â ÀÛ¹° °³¹ßÀ» µ½½À´Ï´Ù. ÀÌ·¯ÇÑ µµ±¸´Â ¸¶Ä¿ Áö¿ø ¼±¹ßÀ» ÃËÁøÇÔÀ¸·Î½á ÀÛ¹° ÇüÁú °³¼±À» À§ÇÑ À°Á¾ ÇÁ·Î±×·¥À» °¡¼ÓÈ­ÇÕ´Ï´Ù. ¶ÇÇÑ, ½ºÆ®·¹½º ÀúÇ×¼º ¹× ȯ°æ ÀûÀÀ¼º°ú °ü·ÃµÈ À¯ÀüÀÚ¸¦ ½Äº°ÇÏ´Â µ¥¿¡µµ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ÀÌó·³ Áö¼Ó°¡´ÉÇÑ ³ó¹ý¿¡ ´ëÇÑ ½ÃÀåÀÇ ¿ä±¸°¡ ³ô¾ÆÁü¿¡ µû¶ó DNA ¸¶ÀÌÅ©·Î¾î·¹ÀÌ´Â ³ó¾÷ »ý»ê¼ºÀ» Çâ»ó½ÃŰ°í ¼¼°è ½Ä·® ¾Èº¸¸¦ º¸ÀåÇÏ´Â Áß¿äÇÑ µµ±¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

³ôÀº Ãʱâ ÅõÀÚ

Àåºñ, ÀÎÇÁ¶ó ¹× ¼÷·ÃµÈ Àη°ú °ü·ÃµÈ ¸·´ëÇÑ ºñ¿ëÀº ¼Ò±Ô¸ð ³óÀå°ú ÀÚ¿øÀÌ Á¦ÇÑµÈ Áö¿ªÀÌ ÀÌ Ã·´Ü ±â¼úÀ» µµÀÔÇÏ´Â °ÍÀ» ÁÖÀúÇÏ°Ô ¸¸µì´Ï´Ù. ÀÌ·¯ÇÑ °æÁ¦Àû À庮Àº DNA ¸¶ÀÌÅ©·Î¾î·¹À̰¡ ÀÛ¹° ¼öÈ®·®À» ÃÖÀûÈ­ÇÏ°í ½Ä·® ¾Èº¸¸¦ º¸ÀåÇÏ´Â µ¥ ÀÖ¾î DNA ¸¶ÀÌÅ©·Î¾î·¹ÀÌÀÇ ÀáÀçÀû ÀÌÁ¡À» Á¦ÇÑÇÏ°í ³Î¸® Ȱ¿ëµÇ´Â °ÍÀ» ¹æÇØÇÕ´Ï´Ù. ±× °á°ú, ½ÃÀåÀº ´õ ±¤¹üÀ§ÇÑ º¸±ÞÀ» ´Þ¼ºÇÏ´Â µ¥ ¾î·Á¿òÀ» °Þ°í ÀÖÀ¸¸ç, ³ó¾÷ °üÇà¿¡ ¹ÌÄ¡´Â ¿µÇâÀÌ Á¦ÇÑµÇ¾î ½ÃÀå ¼ºÀåÀ» ¹æÇØÇϰí ÀÖ½À´Ï´Ù.

¸¶ÀÌÅ©·Î¾î·¹ÀÌ ±â¼úÀÇ ²÷ÀÓ¾ø´Â ¹ßÀü

Á¤È®µµ Çâ»ó, 󸮷® Áõ°¡, ºñ¿ë È¿À²¼º Çâ»óÀ¸·Î ÀÎÇØ äÅÃÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Çõ½ÅÀº ½Ä¹° °Ô³ð¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ ºÐ¼®À» °¡´ÉÇÏ°Ô Çϰí, ¿øÇÏ´Â ÇüÁú¿¡ ´ëÇÑ ¸¶Ä¿ Áö¿ø ¼±¹ßÀ» ÅëÇÑ ÀÛ¹° °³·®À» °¡¼ÓÈ­ÇÕ´Ï´Ù. ÁøÈ­ÇÑ ±â¼úÀº ½ºÆ®·¹½º ÀúÇ×¼º, Áúº´ ÀúÇ×¼º, ¼öÈ®·® ÃÖÀûÈ­¿Í °ü·ÃµÈ À¯ÀüÀÚ¸¦ ½Å¼ÓÇÏ°Ô ½Äº°ÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ±× °á°ú, ³óºÎ¿Í ¿¬±¸ÀÚµéÀº °³¼±µÈ ÀÛ¹° ǰÁ¾, È¿À²ÀûÀÎ ÇØÃæ °ü¸® ¹× Áö¼Ó°¡´ÉÇÑ ³ó¾÷ °üÇàÀÇ ÇýÅÃÀ» ´©¸± ¼ö ÀÖ½À´Ï´Ù.

º¹ÀâÇÑ µ¥ÀÌÅÍ ºÐ¼®

º¹ÀâÇÑ µ¥ÀÌÅÍ ¼¼Æ®´Â °íµµÀÇ ÄÄÇ»ÆÃ ¸®¼Ò½º¿Í Àü¹® Áö½ÄÀ» ÇÊ¿ä·Î Çϸç, ±¸Çö ¹× À¯Áöº¸¼ö ºñ¿ëÀ» Áõ°¡½Ãŵ´Ï´Ù. ¼Ò±Ô¸ð ³ó¾÷ »ç¾÷ÀÚ´Â ÀçÁ¤Àû Á¦¾à°ú ¼÷·ÃµÈ Àη ºÎÁ·À¸·Î ÀÎÇØ ÀÌ·¯ÇÑ ±â¼úÀ» µµÀÔÇÏ´Â µ¥ ¾î·Á¿òÀ» °ÞÀ» ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ º¹ÀâÇÑ µ¥ÀÌÅÍ ÇØ¼®Àº ÀÇ»ç °áÁ¤ÀÇ Áö¿¬À¸·Î À̾îÁ® ³ó¾÷¿¡ ÇÊ¿äÇÑ ¹Îø¼ºÀ» ¶³¾î¶ß¸³´Ï´Ù. ±× °á°ú, ³ó¾÷ ºÐ¾ßÀÇ DNA ¸¶ÀÌÅ©·Î¾î·¹ÀÌ ±â¼ú äÅ÷üÀº ½ÃÀå ¼ºÀåÀ» ÀúÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

À̵¿ Á¦ÇѰú ¿¬±¸¼Ò Æó¼â·Î ÀÎÇØ ³ó¾÷ ºÐ¾ß¿¡¼­ÀÇ DNA ¸¶ÀÌÅ©·Î¾î·¹ÀÌ ±â¼ú °³¹ß°ú Àû¿ë¿¡ ¾î·Á¿òÀÌ ÀÖ¾ú½À´Ï´Ù. ±×·¯³ª ÀÌ À§±â´Â ȸº¹·Â Àִ ÷´Ü ³ó¾÷ ±â¼úÀÇ Á߿伺À» ºÎ°¢½ÃÄ×½À´Ï´Ù. ¾÷°è°¡ »õ·Î¿î Á¤»ó »óÅ¿¡ ÀûÀÀÇÔ¿¡ µû¶ó DNA ¸¶ÀÌÅ©·Î¾î·¹À̸¦ Á¤¹Ð ³ó¾÷, ÀÛ¹° °³·® ¹× Áúº´ ÀúÇ×¼º Çâ»ó¿¡ Ȱ¿ëÇÏ´Â µ¥ Á¡Á¡ ´õ ÃÊÁ¡À» ¸ÂÃß°í ÀÖÀ¸¸ç, ÀÌ´Â ³ó¾÷ÀÇ Áö¼Ó°¡´É¼ºÀ» ³ôÀÌ´Â Ãø¸é¿¡¼­ ½ÃÀå ȸº¹°ú ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù.

cDNA ¸¶ÀÌÅ©·Î¾î·¹ÀÌ ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀåÀ¸·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»ó

cDNA ¸¶ÀÌÅ©·Î¾î·¹ÀÌ´Â ³ó¾÷ÀÇ DNA ¸¶ÀÌÅ©·Î¾î·¹ÀÌ¿¡ Çõ¸íÀ» ÀÏÀ¸Ä×À¸¸ç, cDNA ¸¶ÀÌÅ©·Î¾î·¹ÀÌ´Â À¯ÀüÀÚ ¹ßÇö ºÐ¼®À» °­È­Çϰí ȯ°æ ¿äÀÎ, Áúº´ ¹× ½ºÆ®·¹½º¿¡ ´ëÇÑ ½Ä¹°ÀÇ ¹ÝÀÀÀ» Á¤È®ÇÏ°Ô ÇÁ·ÎÆÄÀϸµÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ±â¼úÀº ÀÛ¹° °³·®, Áúº´ ÀúÇ×¼º ¹× ¼öÈ®·® ÃÖÀûÈ­¸¦ À§ÇÑ Áß¿äÇÑ À¯ÀüÀû ¸¶Ä¿¸¦ ½±°Ô ½Äº°ÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ±× °á°ú, ³ó¾÷¿ë DNA ¸¶ÀÌÅ©·Î¾î·¹ÀÌ ½ÃÀåÀº ÷´Ü µµ±¸¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ ±â¼ú Çõ½ÅÀÌ ÃËÁøµÇ¸é¼­ Å©°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ÇÏÀ̺긮µåÈ­ ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»ó

ÇÏÀ̺긮´ÙÀÌÁ¦ÀÌ¼Ç ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ ±â¼úÀº ¼öõ °³ÀÇ À¯ÀüÀÚ¸¦ µ¿½Ã¿¡ ºÐ¼®ÇÒ ¼ö ÀÖ¾î ÀÛ¹°ÀÇ ¹Ù¶÷Á÷ÇÑ ÇüÁúÀ» ºü¸£°Ô ½Äº°ÇÒ ¼ö Àֱ⠶§¹®ÀÔ´Ï´Ù. ÀÌ ½ÃÀåÀº ÀÛ¹° ǰÁ¾ °³·®, º´ÇØÃæ ÀúÇ×¼º ¹× ¼öÈ®·® ÃÖÀûÈ­¸¦ °­È­ÇÔÀ¸·Î½á ÀÌÀÍÀ» ¾ò°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, DNA ¸¶ÀÌÅ©·Î¾î·¹ÀÌÀÇ ÇÏÀ̺긮µåÈ­´Â À¯ÀüÀûÀ¸·Î ¿ì¼öÇÑ ½Ä¹°ÀÇ °³¹ßÀ» ÃËÁøÇÏ¿© Áö¼Ó°¡´ÉÇÑ °í¼öÀÍ ³ó¾÷¿¡ ´ëÇÑ Àü ¼¼°è ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÃÖ´ë ½ÃÀå Á¡À¯À² Áö¿ª

¾Æ½Ã¾ÆÅÂÆò¾çÀº Áö¼Ó°¡´ÉÇÑ ³ó¾÷°ú ½Ä·® ¾Èº¸¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁü¿¡ µû¶ó ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÁÖ¿ä ±â¾÷µéÀº ¿¬±¸°³¹ß¿¡ ÅõÀÚÇÏ¿© Á¦Ç° ¶óÀξ÷À» °­È­Çϱâ À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ³óºÎµéÀº DNA ¸¶ÀÌÅ©·Î¾î·¹À̸¦ Æ÷ÇÔÇÑ »õ·Î¿î ±â¼úÀ» ºü¸£°Ô äÅÃÇÏ¿© È¿À²¼º, ¼öÈ®·® ¹× ¼öÀͼºÀ» °³¼±ÇÒ ¼ö ÀÖ´Â °¡´É¼ºÀ» ÀνÄÇϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª:

ºÏ¹Ì Áö¿ªÀº ¿¬±¸ÀÚµéÀÌ ½Ä¹° ½Ã½ºÅÛ¿¡¼­ ´Ù¾çÇÑ À¯ÀüÀÚÀÇ ±â´ÉÀ» ÀÌÇØÇÏ´Â µ¥ µµ¿òÀ» ÁÖ´Â ±â´É À¯ÀüüÇп¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» Çϱ⠶§¹®¿¡ ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ Á¤º¸´Â Ç¥ÀûÈ­µÈ ÀÛ¹° °³·® Àü·«ÀÇ ±âÃʰ¡ µÉ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ºÏ¹Ì, ƯÈ÷ ¹Ì±¹°ú ij³ª´Ù Á¤ºÎ´Â À¯ÀüüÇÐ ¹× DNA ¸¶ÀÌÅ©·Î¾î·¹ÀÌ¿Í °°Àº °ü·Ã ±â¼úÀ» Æ÷ÇÔÇÑ ³ó¾÷ ¿¬±¸ °³¹ß¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀÚ±Ý Áö¿øÀº ±â¼ú Çõ½ÅÀ» ÃËÁøÇÏ°í ³ó¾÷ ºÐ¾ßÀÇ ½Å±â¼ú äÅÃÀ» ÃËÁøÇÕ´Ï´Ù.

¹«·á ¸ÂÃãÇü ¼­ºñ½º:

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù:

  • ±â¾÷ °³¿ä
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀûÀÎ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ SWOT ºÐ¼®(ÃÖ´ë 3°³»ç)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤Ä¡, ¿¹Ãø, CAGR(ÁÖ: Ÿ´ç¼º °ËÅä¿¡ µû¸¥)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù¹ý
  • Á¶»ç ¼Ò½º
    • 1Â÷ Á¶»ç ¼Ò½º
    • 2Â÷ Á¶»ç ¼Ò½º
    • °¡Á¤

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ±â¼ú ºÐ¼®
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾»ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • ½ÅÁ¾ Äڷγª¹ÙÀÌ·¯½º °¨¿°Áõ(COVID-19)ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ±¸¸ÅÀÚÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü¿©¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷ °£ÀÇ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ³ó¾÷¿ë DNA ¸¶ÀÌÅ©·Î¾î·¹ÀÌ ½ÃÀå : ¸¶ÀÌÅ©·Î¾î·¹ÀÌ À¯Çüº°

  • cDNA ¸¶ÀÌÅ©·Î¾î·¹ÀÌ
  • ¿Ã¸®°í´ºÅ¬·¹¿ÀƼµå ¸¶ÀÌÅ©·Î¾î·¹ÀÌ
  • SNP ¸¶ÀÌÅ©·Î¾î·¹ÀÌ
  • ±âŸ ¸¶ÀÌÅ©·Î¾î·¹ÀÌ À¯Çü

Á¦6Àå ¼¼°èÀÇ ³ó¾÷¿ë DNA ¸¶ÀÌÅ©·Î¾î·¹ÀÌ ½ÃÀå : ÀÛ¹° À¯Çüº°

  • ¾ßä
  • °î·ù
  • °úÀÏ
  • Äá°ú½Ä¹°
  • ±âŸ ÀÛ¹° À¯Çü

Á¦7Àå ¼¼°èÀÇ ³ó¾÷¿ë DNA ¸¶ÀÌÅ©·Î¾î·¹ÀÌ ½ÃÀå : ±â¼úº°

  • ÇÏÀ̺긮´ÙÀÌÁ¦À̼Ç
  • Çü±¤ Ç¥Áö
  • ¹ÙÀÌ¿ÀÀÎÆ÷¸Åƽ½º¿Í ÄÄÇ»ÆÃ
  • ´ÜÀÏ¿°±â´ÙÇü(SNP) ¸¶ÀÌÅ©·Î¾î·¹ÀÌ
  • ±â´ÉÀû À¯ÀüüÇÐ
  • ±âŸ ±â¼ú

Á¦8Àå ¼¼°èÀÇ ³ó¾÷¿ë DNA ¸¶ÀÌÅ©·Î¾î·¹ÀÌ ½ÃÀå : ¿ëµµº°

  • Áö³ëŸÀÌÇΰú ¸¶Ä¿ ¹ß°ß
  • Áúº´¿¡ ´ëÇÑ ³»¼º°ú º´¿øÃ¼ °ËÃâ
  • ºñ»ý¹°Àû ½ºÆ®·¹½º ³»¼º
  • ¿µ¾ç¼Ò ÀÌ¿ë°ú ´ë»ç ¿¬±¸
  • Á¤¹Ð ³ó¾÷ÀÇ ÀÛ¹° ¸ð´ÏÅ͸µ
  • ¿¡ÇÇÁ¦³×ƽ½º ¿¬±¸
  • ±âŸ ¿ëµµ

Á¦9Àå ¼¼°èÀÇ ³ó¾÷¿ë DNA ¸¶ÀÌÅ©·Î¾î·¹ÀÌ ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • ¿¬±¸±â°ü°ú ´ëÇÐ
  • ¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö ±â¾÷
  • ³ó¾à
  • ½Ä¹° À°Á¾°¡¿Í À¯ÀüÇÐÀÚ
  • ±âŸ ÃÖÁ¾»ç¿ëÀÚ

Á¦10Àå ¼¼°èÀÇ ³ó¾÷¿ë DNA ¸¶ÀÌÅ©·Î¾î·¹ÀÌ ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦11Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕÀÛÅõÀÚ
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦12Àå ±â¾÷ °³¿ä

  • Eurofins Genomics
  • Affymetrix
  • Agilent Technologies
  • Illumina, Inc.
  • Applied Microarrays
  • Arrayit Corporation
  • LCG Genomics
  • Inqaba Biotec
  • LC Sciences
  • Biometrix Technology Inc.
  • Oxford Gene Technology(OGT)
  • PerkinElmer, Inc.
  • Greenea Biosciences
  • BioCat GmbH
  • Scienion AG
  • RayBiotech, Inc.
ksm 24.04.24

According to Stratistics MRC, the Global DNA Microarray for Agriculture Market is accounted for $3.7 billion in 2023 and is expected to reach $7.6 billion by 2030 growing at a CAGR of 10.7% during the forecast period. DNA microarrays have found valuable applications in agriculture, revolutionizing crop research, breeding, and management practices. In agriculture, these microarrays are utilized to analyze the expression of thousands of genes simultaneously, providing a comprehensive understanding of plant genomes. They enable researchers to study gene expression patterns in response to environmental factors, stress, and disease. In crop breeding, DNA microarrays facilitate marker-assisted selection by identifying genes associated with desirable traits, accelerating the development of improved varieties.

Market Dynamics:

Driver:

Need for efficient and sustainable food production

As a key technology in precision agriculture, DNA microarrays enable rapid and simultaneous analysis of plant genomes, aiding in the development of high-yielding and resilient crops. By facilitating marker-assisted selection, these tools accelerate breeding programs for improved crop traits. Additionally, they contribute to the identification of genes related to stress resistance and environmental adaptability. Thus the need for sustainable farming practices amplifies the market's significance, positioning DNA microarrays as crucial tools for advancing agricultural productivity and ensuring global food security.

Restraint:

High initial investment

The substantial costs associated with equipment, infrastructure, and skilled personnel deter smaller farms and resource-limited regions from embracing this advanced technology. This financial barrier restricts widespread accessibility and hampers the potential benefits of DNA microarrays in optimizing crop yields and ensuring food security. As a consequence, the market faces challenges in achieving broader adoption, limiting its impact on agricultural practices hampering the market growth.

Opportunity:

Continuous advancements in microarray technology

Enhanced precision, higher throughput and cost-effectiveness are driving adoption. These innovations enable comprehensive analysis of plant genomes, accelerating crop improvement through marker-assisted selection for desirable traits. The evolving technology facilitates rapid identification of genes associated with stress resistance, disease tolerance, and yield optimization. As a result, farmers and researchers benefit from improved crop varieties, efficient pest management, and sustainable agricultural practices.

Threat:

Complex data analysis

Complex datasets demand sophisticated computational resources and expertise, raising costs for implementation and maintenance. Small-scale agricultural enterprises may face barriers in adopting these technologies due to financial constraints and a lack of skilled personnel. Moreover, intricate data interpretation can lead to delays in decision-making, diminishing the agility required in farming. As a result, the adoption rate of DNA microarray technologies in agriculture may be hindered the market growth.

Covid-19 Impact

With restrictions on movement and lab closures, the deployment and adoption of DNA microarray technologies in agriculture faced challenges. However, the crisis has also underscored the importance of resilient and advanced agricultural technologies. As the industry adapts to the new normal, there is an increased focus on leveraging DNA microarrays for precision farming, crop improvement, and disease resistance, driving the market towards recovery and future growth in enhancing agricultural sustainability.

The cDNA microarrays segment is expected to be the largest during the forecast period

The cDNA microarrays segment is estimated to have a lucrative growth. cDNA microarrays have revolutionized the DNA microarray landscape in agriculture. Offering enhanced gene expression analysis, they enable precise profiling of plant responses to environmental factors, diseases, and stress. This technology facilitates the identification of key genetic markers for crop improvement, disease resistance, and yield optimization. As a result, the DNA Microarray for Agriculture Market has experienced a substantial boost, with increased demand for advanced tools driving innovation.

The hybridization segment is expected to have the highest CAGR during the forecast period

The hybridization segment is anticipated to witness the highest CAGR growth during the forecast period, as this technique enables the simultaneous analysis of thousands of genes, facilitating rapid identification of desirable traits in crops. The market benefits from enhanced crop breeding, disease resistance, and yield optimization. Moreover, hybridization in DNA microarrays expedites the development of genetically superior plants, meeting the increasing global demand for sustainable and high-yielding agriculture.

Region with largest share:

Asia Pacific is projected to hold the largest market share during the forecast period owing to the growing emphasis on sustainable agriculture and food security in the region. Key players are investing in research and development to enhance product offerings. Furthermore, Asia Pacific farmers have been early adopters of new technologies, including DNA microarrays, recognizing their potential to improve efficiency, yields, and profitability. contribute to the market's expansion.

Region with highest CAGR:

North America is projected to have the highest CAGR over the forecast period, due to its significant role in functional genomics by helping researchers understand the functions of various genes in plant systems. This information is fundamental for targeted crop improvement strategies. Additionally, governments in North America, particularly the United States and Canada, invest heavily in agricultural research and development, including genomics and related technologies like DNA microarrays. This funding fuels innovation and facilitates the adoption of new technologies in the agricultural sector.

Key players in the market

Some of the key players in the DNA Microarray for Agriculture Market include Eurofins Genomics, Affymetrix, Agilent Technologies , Illumina, Inc., Applied Microarrays, Arrayit Corporation, LCG Genomics, Inqaba Biotec, LC Sciences, Biometrix Technology Inc., Oxford Gene Technology (OGT), PerkinElmer, Inc., Greenea Biosciences, BioCat GmbH , Scienion AG and RayBiotech, Inc.

Key Developments:

In January 2024, Agilent Technologies Inc. announced an agreement with Incyte that will bring together Agilent's expertise and proven track record in the development of companion diagnostics (CDx) to support the development and commercialization of Incyte's hematology and oncology portfolio.

In January 2024, Illumina Inc announced it has signed an agreement with Janssen Research & Development, LLC (Janssen). This collaboration will be the first relating to the development of Illumina's novel molecular residual disease (MRD) assay, a whole-genome sequencing (WGS) multi-cancer research solution

In September 2022, Eurofins Genomics has partnered with Concentric by Ginkgo Bioworks on an expanded program that will serve as an early warning system to detect new or emerging SARS-CoV-2 variants, and can facilitate response to future travel-associated outbreaks and pandemics.

Microarray Types Covered:

  • cDNA Microarrays
  • Oligonucleotide Microarrays
  • SNP Microarrays
  • Other Microarray Types

Crop Types Covered:

  • Vegetables
  • Cereals
  • Fruits
  • Legume
  • Other Crop Types

Technologies Covered:

  • Hybridization
  • Fluorescent Labeling
  • Bioinformatics & Computational
  • Single Nucleotide Polymorphism (SNP) Microarray
  • Functional Genomics
  • Other Technologies

Applications Covered:

  • Genotyping & Marker Discovery
  • Disease Resistance & Pathogen Detection
  • Abiotic Stress Tolerance
  • Nutrient Utilization & Metabolism Studies
  • Crop Monitoring in Precision Agriculture
  • Epigenetics Studies
  • Other Applications

End Users Covered:

  • Research Institutions & Universities
  • Biotechnology Companies
  • Agrochemicals
  • Plant Breeders & Geneticists
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2021, 2022, 2023, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global DNA Microarray for Agriculture Market, By Microarray Type

  • 5.1 Introduction
  • 5.2 cDNA Microarrays
  • 5.3 Oligonucleotide Microarrays
  • 5.4 SNP Microarrays
  • 5.5 Other Microarray Types

6 Global DNA Microarray for Agriculture Market, By Crop Type

  • 6.1 Introduction
  • 6.2 Vegetables
  • 6.3 Cereals
  • 6.4 Fruits
  • 6.5 Legume
  • 6.6 Other Crop Types

7 Global DNA Microarray for Agriculture Market, By Technology

  • 7.1 Introduction
  • 7.2 Hybridization
  • 7.3 Fluorescent Labeling
  • 7.4 Bioinformatics & Computational
  • 7.5 Single Nucleotide Polymorphism (SNP) Microarray
  • 7.6 Functional Genomics
  • 7.7 Other Technologies

8 Global DNA Microarray for Agriculture Market, By Application

  • 8.1 Introduction
  • 8.2 Genotyping & Marker Discovery
  • 8.3 Disease Resistance & Pathogen Detection
  • 8.4 Abiotic Stress Tolerance
  • 8.5 Nutrient Utilization & Metabolism Studies
  • 8.6 Crop Monitoring in Precision Agriculture
  • 8.7 Epigenetics Studies
  • 8.8 Other Applications

9 Global DNA Microarray for Agriculture Market, By End User

  • 9.1 Introduction
  • 9.2 Research Institutions & Universities
  • 9.3 Biotechnology Companies
  • 9.4 Agrochemicals
  • 9.5 Plant Breeders & Geneticists
  • 9.6 Other End Users

10 Global DNA Microarray for Agriculture Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Eurofins Genomics
  • 12.2 Affymetrix
  • 12.3 Agilent Technologies
  • 12.4 Illumina, Inc.
  • 12.5 Applied Microarrays
  • 12.6 Arrayit Corporation
  • 12.7 LCG Genomics
  • 12.8 Inqaba Biotec
  • 12.9 LC Sciences
  • 12.10 Biometrix Technology Inc.
  • 12.11 Oxford Gene Technology (OGT)
  • 12.12 PerkinElmer, Inc.
  • 12.13 Greenea Biosciences
  • 12.14 BioCat GmbH
  • 12.15 Scienion AG
  • 12.16 RayBiotech, Inc.
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦