![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1447084
¼Ö¶ó ½Ç¸®ÄÜ ¿þÀÌÆÛ ½ÃÀå ¿¹Ãø(-2030³â) : À¯Çüº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ºÐ¼®Solar Silicon Wafer Market Forecasts to 2030 - Global Analysis By Type (Polycrystalline Wafer, Monocrystalline Wafer and Other Types), Application, End User, and By Geography |
Stratistics MRC¿¡ µû¸£¸é, ¼¼°è ¼Ö¶ó ½Ç¸®ÄÜ ¿þÀÌÆÛ ½ÃÀåÀº 2023³â 86¾ï ´Þ·¯ ±Ô¸ðÀ̸ç, ¿¹Ãø ±â°£ µ¿¾È 11.7%ÀÇ CAGR·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 187¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¼Ö¶ó ½Ç¸®ÄÜ ¿þÀÌÆÛ´Â Å¾çÀüÁö Á¦Á¶¿¡ »ç¿ëµÇ´Â ¹ÝµµÃ¼ Àç·áÀÎ °áÁ¤Áú ½Ç¸®ÄÜÀ» ÁÖ¼ººÐÀ¸·Î ÇÏ´Â ¾ãÀº ¿øÆÇÀ» ¸»ÇÕ´Ï´Ù. ÀÌ ¿þÀÌÆÛ´Â Å¾籤À» Àü±â·Î º¯È¯Çϴ žçÀüÁöÀÇ ±âÃʰ¡ µË´Ï´Ù. ÃÖÀûÀÇ Àüµµ¼º°ú ±¤Èí¼ö Ư¼ºÀ» º¸ÀåÇϱâ À§ÇØ ½½¶óÀ̽º, ¿¬¸¶, µµÇÎ µî Á¤¹ÐÇÑ Á¦Á¶ °øÁ¤À» °ÅĨ´Ï´Ù. ´Ù¾çÇÑ Å©±â¿Í µÎ²²·Î Á¦°øµÇ¸ç, Ç¥¸é ÅØ½ºÃ³´Â ºûÀÇ Æ÷ȹÀ» Çâ»ó½Ã۱â À§ÇØ ÃÖÀûȵǾî ÀÖ½À´Ï´Ù. ÅÂ¾ç ½Ç¸®ÄÜ ¿þÀÌÆÛ´Â Å¾çÀüÁöÆÇ Á¦Á¶¿¡ ÇʼöÀûÀÎ ºÎǰÀ¸·Î Àç»ý¿¡³ÊÁö ¹ßÀüÀ» À§ÇØ ÅÂ¾ç ¿¡³ÊÁö¸¦ Ȱ¿ëÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù.
Áß±¹Å¾籤»ê¾÷Çùȸ¿¡ µû¸£¸é Áß±¹Àº ÃÖ´ë ž籤 Á¦Ç° »ý»ê±¹À̸ç 2019³âµµ ½Ç¸®ÄÜ ¿þÀÌÆÛ »ý»ê´É·ÂÀº 173.7GW¸¦ ³Ñ¾î¼¹´Ù°í ÇÕ´Ï´Ù.
ž籤¹ßÀü ¼³ºñ È®´ë
ž籤¹ßÀü ¼³ºñÀÇ È®´ë´Â ½Ç¸®ÄÜ ¿þÀÌÆÛ ¼ö¿ä Áõ°¡¿Í Á÷°áµË´Ï´Ù. ÀÌ·¯ÇÑ ¼³Ä¡´Â Á¤ºÎ Àμ¾Æ¼ºê, ÅÂ¾ç ±¤ ±â¼ú ºñ¿ë °¨¼Ò, ȯ°æ ¹®Á¦, ¿¡³ÊÁö ¾Èº¸ µî ¿©·¯ °¡Áö ¿äÀÎÀ¸·Î ÀÎÇØ Àü ¼¼°èÀûÀ¸·Î Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ½Ç¸®ÄÜ ¿þÀÌÆÛ´Â Å¾çÀüÁöÀÇ ±¸¼º¿ä¼ÒÀÌÀÚ ´ëºÎºÐÀÇ Å¾籤¹ßÀü ±â¼úÀÇ ±âÃʰ¡ µÇ±â ¶§¹®¿¡ ½ÃÀå ¼ºÀåÀ» Å©°Ô ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
»ý»ê ºñ¿ë
½Ç¸®ÄÜÀº ¿¡³ÊÁö Áý¾àÀûÀÎ °øÁ¤À» ÇÊ¿ä·Î ÇÏ´Â ´Ù¾çÇÑ ÀÚ¿ø¿¡¼ ¾ò¾îÁö±â ¶§¹®¿¡ »ý»ê ºñ¿ëÀÌ Áõ°¡ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â°èÀÇ À¯Áöº¸¼ö ¹× ¿î¿µÀº ÇÊ¿äÇÑ ¼÷·ÃµÈ ³ëµ¿·Â°ú ÇÔ²² Àüü ºñ¿ë¿¡ ±â¿©ÇÕ´Ï´Ù. ¶ÇÇÑ °áÁ¤È, ¿þÀÌÆÛÈ ¹× °¡°ø¿¡´Â °íµµÀÇ ±â¼ú°ú Àåºñ°¡ ÇÊ¿äÇϸç, ÀÌ´Â ÀÚº» Áý¾àÀûÀ̱⠶§¹®¿¡ ÀÌ ½ÃÀå ±Ô¸ð¸¦ ÀúÇØÇÏ´Â ¿äÀÎÀ¸·Î ÀÛ¿ëÇÕ´Ï´Ù.
±â¼ú Çõ½Å
±â¼úÀÇ ¹ßÀüÀº ¼Ö¶ó ½Ç¸®ÄÜ ¿þÀÌÆÛ Á¦Á¶ÀÇ È¿À²¼º°ú ºñ¿ë È¿À²¼ºÀ» Áö¼ÓÀûÀ¸·Î Çâ»ó½ÃÄÑ Àç»ý¿¡³ÊÁö·Î¼ ž籤 ¿¡³ÊÁöÀÇ °æÀï·ÂÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù. ¿þÀÌÆÛ ½½¶óÀ̽º ±â¼ú °³¼±, ½Ç¸®ÄÜ Á¤Á¦ °øÁ¤ °³¼±, ¼¿ Á¦Á¶ ±â¼ú ¹ßÀü°ú °°Àº ±â¼ú Çõ½ÅÀÌ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº º¯È¯ È¿À²À» Çâ»ó½Ã۰í, Á¦Á¶ ºñ¿ëÀ» Àý°¨Çϸç, ¼Ö¶ó ½Ç¸®ÄÜ ¿þÀÌÆÛ Á¦Á¶ÀÇ È®À强À» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù.
¿ø·á ºÎÁ·
½Ç¸®ÄÜÀº žçÀüÁö Á¦Á¶ÀÇ ±âº» ¿ä¼ÒÀ̸ç, žçÀüÁö¿ë ½Ç¸®ÄÜ ¿þÀÌÆÛÀÇ ±âÃʰ¡ µË´Ï´Ù. °í¼øµµ ½Ç¸®ÄÜ °ø±Þ ºÎÁ·Àº ä±¼ ´É·ÂÀÇ ÇѰè, Á¤Á¦ °øÁ¤ÀÇ ±â¼úÀû Á¦¾à, ¼Ö¶ó ½Ç¸®ÄÜ ¿þÀÌÆÛ °ø±Þ¸Á¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ÁöÁ¤ÇÐÀû ±äÀå µîÀÇ ¿äÀÎÀ¸·Î ÀÎÇØ ´õ¿í ¾Çȵǰí ÀÖ½À´Ï´Ù. ±× °á°ú, Á¦Á¶¾÷üµéÀº žçÀüÁöÆÇ ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇØ¾ß ÇÏ´Â ¾î·Á¿ò¿¡ Á÷¸éÇØ ¼Ö¶ó ½Ç¸®ÄÜ ¿þÀÌÆÛ ½ÃÀåÀÇ °ø±Þ ºÎÁ·°ú °¡°Ý »ó½ÂÀ» ÃÊ·¡Çß½À´Ï´Ù.
COVID-19ÀÇ ¿µÇâ
COVID-19´Â ¸î °¡Áö Ãø¸é¿¡¼ ¼Ö¶ó ½Ç¸®ÄÜ ¿þÀÌÆÛ ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ù°, ºÀ¼â¿Í ¿©Çà Á¦ÇÑÀ¸·Î ÀÎÇÑ °ø±Þ¸Á È¥¶õÀº ½Ç¸®ÄÜ ¿þÀÌÆÛ Á¦Á¶¿¡ ÇʼöÀûÀÎ ¿øÀÚÀç¿Í ºÎǰÀÇ ¼ö±ÞÀ» ¹æÇØÇÏ¿© Áö¿¬°ú ºñ¿ë »ó½ÂÀ» ÃÊ·¡Çß½À´Ï´Ù. µÑ°, ºÒÈ®½ÇÇÑ °æÁ¦ »óȲÀ¸·Î ÀÎÇØ ž籤 ¼³ºñ ¼ö¿ä°¡ °¨¼ÒÇÏ¸é¼ ½Ç¸®ÄÜ ¿þÀÌÆÛ ÁÖ¹®ÀÌ °¨¼ÒÇÏ¿© Á¦Á¶¾÷üÀÇ ¼öÀÍ¿¡ ¿µÇâÀ» ¹ÌÃÄ ½ÃÀå È®´ë°¡ ¼¼È÷ µÐȵǾú½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ´Ù°áÁ¤ ¿þÀÌÆÛ ºÎ¹®ÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»ó
´Ù°áÁ¤ ¿þÀÌÆÛ ºÎ¹®Àº ºñ¿ë È¿À²¼º°ú »ó´ëÀûÀ¸·Î ³ôÀº È¿À²¼ºÀ¸·Î ÀÎÇØ °¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù. ´Ù°áÁ¤ ¿þÀÌÆÛ´Â ¿©·¯ °³ÀÇ ½Ç¸®ÄÜ °áÁ¤À» »ç¿ëÇÏ¿© Á¦Á¶µÇ±â ¶§¹®¿¡ ´Ü°áÁ¤ ¿þÀÌÆÛ¿¡ ºñÇØ Á¦Á¶ ºñ¿ëÀÌ ³·½À´Ï´Ù. ¶ÇÇÑ, Á¦Á¶ °øÁ¤ÀÇ ¹ßÀüÀ¸·Î È¿À²¼ºÀÌ Çâ»óµÇ°í Á¦Á¶ ºñ¿ëÀÌ Àý°¨µÇ¸é¼ ÀÌ ºÎ¹®ÀÇ ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµÇ´Â žçÀüÁö ºÐ¾ß
žçÀüÁö ºÐ¾ß´Â ¹ÝµµÃ¼ Ư¼ºÀ¸·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±â¾÷µéÀº È¿À²ÀûÀΠžçÀüÁö ±â¼ú °³¹ß, žçÀüÁöÆÇÀÇ ¼º´É Çâ»ó, Àü¹ÝÀûÀÎ ¿¡³ÊÁö º¯È¯ È¿À² °³¼±¿¡ ÁÖ·ÂÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼ ½Ç¸®ÄÜ ¿þÀÌÆÛ ÀçȰ¿ë ¹æ¹ýÀÇ Çõ½Å°ú ȯ°æ Ä£ÈÀûÀÎ Á¦Á¶ ¹æ¹ýÀÇ °³¹ßÀÌ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù.
À¯·´Àº ž籤¹ßÀü(PV) ¼³Ä¡¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ¸é¼ ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇß½À´Ï´Ù. ½ºÆäÀÎ, ÀÌÅ»¸®¾Æ, ÇÁ¶û½º¿Í °°Àº ±¹°¡µéµµ ž籤¹ßÀüÀ» ÃËÁøÇϱâ À§ÇÑ ´Ù¾çÇÑ Á¤ºÎ ÀÌ´Ï¼ÅÆ¼ºê¸¦ ÅëÇØ ½ÃÀå È®´ë¿¡ ±â¿©Çß½À´Ï´Ù. ¶ÇÇÑ, Àç»ý¿¡³ÊÁö¿Í Áö¼Ó°¡´É¼º¿¡ ÃÊÁ¡À» ¸ÂÃá ¸¹Àº À¯·´ ±¹°¡µéÀº ÅÂ¾ç ¿¡³ÊÁö¿¡ ´ëÇÑ Áö¿ø Á¤Ã¥°ú Àμ¾Æ¼ºê¸¦ ½ÃÇàÇÏ¿© ¼Ö¶ó ½Ç¸®ÄÜ ¿þÀÌÆÛ¿¡ ´ëÇÑ ¼ö¿ä¸¦ °ÈÇß½À´Ï´Ù.
È¿À²¼º Çâ»ó°ú Á¦Á¶ ºñ¿ë Àý°¨À¸·Î ÅÂ¾ç ¿¡³ÊÁö´Â ±âÁ¸ ¿¡³ÊÁö¿ø¿¡ ºñÇØ °æÀï·ÂÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ȯ°æ ¹®Á¦¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁö°í ÀÌ»êÈź¼Ò ¹èÃâ·® °¨ÃàÀÌ ½Ã±ÞÇÑ »óȲ¿¡¼ ž籤 ¿¡³ÊÁö ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ°¡ °¡¼Óȵǰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¿¬±¸±â°ü, ´ëÇÐ ¹× ¾÷°è °ü°èÀÚµéÀÇ Çù·ÂÀº ÷´Ü ±â¼ú°ú Àç·á °³¹ßÀ» ÃËÁøÇÏ¿© ÀÌ Áö¿ªÀÇ ½Ç¸®ÄÜ ¿þÀÌÆÛ ¼ö¿ä¸¦ ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Solar Silicon Wafer Market is accounted for $8.6 billion in 2023 and is expected to reach $18.7 billion by 2030 growing at a CAGR of 11.7% during the forecast period. A solar silicon wafer is a thin disc made primarily of crystalline silicon, a semiconductor material used in solar cell manufacturing. These wafers serve as the foundation for photovoltaic cells, which convert sunlight into electricity. They undergo precise fabrication processes, including slicing, polishing, and doping, to ensure optimal electrical conductivity and light absorption properties. They come in various sizes and thicknesses, with surface textures optimized to enhance light trapping. Solar silicon wafers are integral components in the production of solar panels, enabling the harnessing of solar energy for renewable power generation.
According to the China Photovoltaic Industry Association, China holds for the largest manufacturers of photovoltaic products and had a silicon wafers production capacity of more than 173.7 GW in FY2019.
Expansion of solar PV installations
The expansion of solar PV installations directly translates to an increased demand for silicon wafers. These installations are increasing globally due to several factors, including government incentives, declining costs of solar technology, environmental concerns, and energy security. Moreover, silicon wafers are the building blocks of solar cells, forming the basis of most solar PV technologies, which significantly boosts this market growth.
Cost of production
Silicon is derived from various sources that require energy-intensive processes, increasing production costs. The maintenance and operation of these machines, along with the skilled labor required, contribute to the overall cost. Moreover, crystallization, wafering, and processing require advanced technologies and equipment, which can be capital intensive, which is hampering this market size.
Technological innovation
Technological advancements have continuously improved the efficiency and cost-effectiveness of solar silicon wafer production, thereby enhancing the competitiveness of solar energy as a renewable source. Innovations such as improvements in wafer slicing techniques, refining of silicon purification processes, and advancements in cell manufacturing technology have played pivotal roles. Furthermore, these innovations have led to higher conversion efficiencies, reduced production costs, and increased scalability in solar silicon wafer production.
Lack of raw material
Silicon is a fundamental component in the manufacturing of solar cells, forming the basis of solar silicon wafers. The inadequate supply of high-purity silicon is exacerbated by factors like limited mining capacity, technological constraints in refining processes, and geopolitical tensions affecting the supply chains of solar silicon wafers. Consequently, manufacturers experienced challenges in meeting the escalating demand for solar panels, resulting in supply shortages and increased prices in the solar silicon wafer market.
Covid-19 Impact
The COVID-19 pandemic significantly impacted the solar silicon wafer market in several ways. Firstly, disrupted supply chains due to lockdowns and travel restrictions hampered the availability of raw materials and components essential for manufacturing silicon wafers, causing delays and increasing costs. Secondly, decreased demand for solar installations amid economic uncertainties led to a decline in orders for silicon wafers, affecting revenues for manufacturers, which gradually impeded this market expansion.
The polycrystalline wafer segment is expected to be the largest during the forecast period
The polycrystalline wafer segment is estimated to hold the largest share, due to its cost-effectiveness and relatively good efficiency levels. These wafers are fabricated using multiple silicon crystals, resulting in a lower production cost compared to single-crystal wafers. Additionally, advancements in manufacturing processes led to improved efficiency and reduced manufacturing costs, further fueling this segment's growth.
The solar battery segment is expected to have the highest CAGR during the forecast period
The solar battery segment is anticipated to have highest CAGR during the forecast period due to their semiconductor properties; they serve as the foundational material for manufacturing solar cells. Companies focus on developing efficient solar cell technologies, enhancing the performance of solar panels, and improving the overall energy conversion efficiency. Furthermore, there is a growing emphasis on sustainability, driving innovations in recycling methods for silicon wafers and the development of eco-friendly manufacturing practices.
Europe commanded the largest market share during the extrapolated period, owing to increasing demand for solar photovoltaic (PV) installations across the region. Countries such as Spain, Italy, and France also contributed to the market's expansion through various government initiatives promoting solar power generation. In addition, with a focus on renewable energy and sustainability, many European countries implemented supportive policies and incentives for solar energy, bolstering the demand for solar silicon wafers.
North America is expected to witness highest CAGR over the projection period, owing to increased efficiency and reduced manufacturing costs, making solar energy more competitive with traditional energy sources. Heightened awareness of environmental issues and the urgency to reduce carbon emissions have spurred investment in solar energy infrastructure. Furthermore, collaborations between research institutions, universities, and industry players have facilitated the development of cutting-edge technologies and materials, further driving the demand for silicon wafers in this region.
Key players in the market
Some of the key players in the Solar Silicon Wafer Market include Changzhou xusheng - energy Co., Ltd., Zhonghuan Semiconductor Corporation, LONGi Green Energy Technology Co., Ltd., JA Solar Holdings Co., Ltd., Canadian Solar Inc, CETC Solar Energy Holdings Co., Ltd., JinkoSolar Holding Co., Ltd., Trina Solar Co., Ltd, First Solar, Inc, Hanwha Q CELLS Co., Ltd, REC Group, SunPower Corporation, Yingli Green Energy Holding Company Limited, SolarWorld AG, Risen Energy Co., Ltd., Kyocera Corporation, Shunfeng International Clean Energy Limited, SolarEdge Technologies, Inc, LDK Solar Co., Ltd and ReneSola Ltd.
In January 2024, Kyocera Corporation and Nippon Signal Co., Ltd. announced the establishment of the "Smart Mobility Infrastructure Technology Research Partnership".
In January 2024, LONGi energises the adelaide international as the exclusive global solar energy partner of the ATP Tour: serving a sustainable future.
In December 2023, LONGi, announces that has signed a 576 MW sales agreement with Nofar Energy Romania, implementing the latest generation of its high efficiency modules.
In September 2023, Kyocera Corporation announced the launch of a new standard line of 230V silicon nitride (SN) igniters for industrial or residential gas furnaces, water heaters, boilers, and gas stoves.