½ÃÀ庸°í¼­
»óǰÄÚµå
1453896

¼¼°èÀÇ µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå ¿¹Ãø(-2030³â) : Àü°³ À¯Çüº°, ¼­ºñ½ºº°, ºÎ¹®º°, Á¶Á÷ ±Ô¸ðº°, ÃÖÁ¾ »ç¿ëÀÚ, Áö¿ªº° ºÐ¼®

Data Mining Tools Market Forecasts to 2030 - Global Analysis By Deployment Type (Cloud and On-Premises), Service, Business Function, Organization Size, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°è µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀåÀº 2023³â 7¾ï 5,360¸¸ ´Þ·¯¸¦ Â÷ÁöÇϰí, 2030³â¿¡´Â 18¾ï 1,740¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. µ¥ÀÌÅÍ ¸¶ÀÌ´× ÅøÀº ´ë±Ô¸ð µ¥ÀÌÅÍ ¼¼Æ®¿¡¼­ ÀÇ¹Ì ÀÖ´Â ÆÐÅÏ, ÅëÂû·Â, Áö½ÄÀ» ÃßÃâÇϵµ·Ï ¼³°èµÈ ¼ÒÇÁÆ®¿þ¾î ¾ÖÇø®ÄÉÀ̼ÇÀÔ´Ï´Ù. ÀÌ·¯ÇÑ µµ±¸´Â Åë°è ºÐ¼® ¹× ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀ» Æ÷ÇÔÇÑ ´Ù¾çÇÑ ±â¼úÀ» äÅÃÇÏ¿© µ¥ÀÌÅÍ Å½»ö ¹× º¯È¯ ÇÁ·Î¼¼½º¸¦ ÃËÁøÇÔÀ¸·Î½á Á¶Á÷ÀÌ ÀÇ»ç°áÁ¤À» À§ÇÑ °¡Ä¡ ÀÖ´Â Á¤º¸¸¦ ¹ß°ßÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ¸¶ÄÉÆÃ, ±ÝÀ¶, ÀÇ·á, ¼Ò¸Å µî ¾÷°è¿¡¼­´Â ¹æ´ëÇÑ µ¥ÀÌÅÍÀÇ È¿À²ÀûÀÎ ºÐ¼®°ú ÇØ¼®À» °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á Àü·«Àû ÀÇ»ç°áÁ¤°ú ¾÷¹« ÃÖÀûÈ­¸¦ ½ÇÇöÇϰí Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.

µ¥ÀÌÅÍ ¾ç Áõ°¡

µ¥ÀÌÅÍ ¸¶ÀÌ´× ÅøÀ» ÅëÇØ Á¶Á÷Àº ÀÌ ¾öû³­ µ¥ÀÌÅÍ¿¡¼­ °¡Ä¡ ÀÖ´Â ÅëÂû·ÂÀ» ²ø¾î³¾ ¼ö ÀÖ½À´Ï´Ù. °í±Þ ¾Ë°í¸®Áò°ú ºÐ¼® ±â¼úÀ» äÅÃÇÔÀ¸·Î½á ÀÌ·¯ÇÑ µµ±¸´Â ¼öÀÛ¾÷À¸·Î ºñÇö½ÇÀûÀ̰ųª ºÒ°¡´ÉÇÑ ¼û°ÜÁø ÆÐÅϰú µ¿ÇâÀ» ¹ß°ßÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, µ¥ÀÌÅÍ ¾ç Áõ°¡´Â °í°´ °æÇè Çâ»ó, ºñÁî´Ï½º ÃÖÀûÈ­, Çõ½Å ÃßÁø µî ºñÁî´Ï½º ±âȸ¸¦ Á¦°øÇÏ¿© ½ÃÀå ±Ô¸ð¸¦ ¹Ð¾î ¿Ã¸®°í ÀÖ½À´Ï´Ù.

³ôÀº Ãʱ⠺ñ¿ë

µ¥ÀÌÅÍ ¸¶ÀÌ´× ¼ÒÇÁÆ®¿þ¾î ¶óÀ̼±½º ¹× ±¸µ¶À» ±¸¸ÅÇÏ´Â µ¥´Â Ãʱ⠺ñ¿ëÀÌ µì´Ï´Ù. ÀÌ·¯ÇÑ ºñ¿ëÀº ƯÈ÷ ¿£ÅÍÇÁ¶óÀÌÁî±Þ ¼Ö·ç¼ÇÀ̳ª °í±Þ ºÐ¼® ±â´ÉÀ» Á¦°øÇÏ´Â ¼Ö·ç¼ÇÀÇ °æ¿ì »ó´çÇÑ ±Ý¾×ÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¾÷µ¥ÀÌÆ®, ±â¼ú Áö¿ø, ÀÎÇÁ¶ó À¯Áöº¸¼ö¿Í °°Àº Áö¼ÓÀûÀÎ À¯Áö º¸¼ö ºñ¿ëÀº µ¥ÀÌÅÍ ¸¶ÀÌ´× ÅøÀÇ ÃÑ ¼ÒÀ¯ ºñ¿ë¿¡ ±â¿©ÇÕ´Ï´Ù. ¼Ò±Ô¸ð Á¶Á÷À̳ª ¾ö°ÝÇÑ ¿¹»êÀ¸·Î ¿î¿µµÇ´Â Á¶Á÷ÀÇ °æ¿ì ÀÌ·¯ÇÑ ³ôÀº ºñ¿ëÀÌ Å« ÁøÀÔ À庮ÀÌ µÇ¾î µ¥ÀÌÅÍ ¸¶ÀÌ´× ÅøÀÇ µµÀÔÀÌ Á¦ÇÑµÉ ¼ö ÀÖ½À´Ï´Ù.

Ŭ¶ó¿ìµå ±â¹Ý ¼Ö·ç¼ÇÀÇ °¡¿ë¼º

Ŭ¶ó¿ìµå ±â¹Ý µ¥ÀÌÅÍ ¸¶ÀÌ´× ÅøÀº Á¶Á÷ÀÌ °í°¡ÀÇ ¿ÂÇÁ·¹¹Ì½º ÀÎÇÁ¶ó¿¡ ÅõÀÚÇϰí À¯ÁöÇÒ Çʿ伺À» Á¦°ÅÇÕ´Ï´Ù. ÀÌ Á¢±Ù¼ºÀº µ¥ÀÌÅÍ ¸¶ÀÌ´×À» ¹ÎÁÖÈ­ÇÏ¿© ¸ðµç ±Ô¸ðÀÇ Á¶Á÷ÀÌ ¼±Çà ÅõÀÚ ¾øÀÌ °í±Þ ºÐ¼®À» Ȱ¿ëÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ¶ÇÇÑ Å¬¶ó¿ìµå ±â¹Ý ¼Ö·ç¼ÇÀ» »ç¿ëÇÒ ¼ö ÀÖ¾î ÁøÀÔ À庮ÀÌ ³·¾ÆÁö°í µ¥ÀÌÅÍ¿¡¼­ ½Ç¿ëÀûÀÎ Áö½ÄÀ» º¸´Ù È¿À²ÀûÀ¸·Î ÃßÃâÇÒ ¼ö ÀÖ´Â Time-to-Value°¡ °¡¼ÓÈ­µË´Ï´Ù.

Àü¹® Áö½Ä ºÎÁ·

µ¥ÀÌÅÍ ¸¶ÀÌ´× ÅøÀ» È¿°úÀûÀ¸·Î ¿î¿µÇÏ´Â µ¥ ÇÊ¿äÇÑ ±â¼úÀû ±â¼ú°ú Àü¹® Áö½ÄÀ» °¡Áø Àü¹®°¡°¡ ºÎÁ·ÇÕ´Ï´Ù. ÀÌ ¶§¹®¿¡ ¼ö¿ä°¡ ³ô°í °ø±ÞÀÌ Á¦ÇÑµÇ¾î ¼÷·ÃµÈ Àü¹®°¡ÀÇ °í¿ë ºñ¿ëÀÌ »ó½ÂÇϰí ÀÖ½À´Ï´Ù. ±×·¯³ª ÀÌ ºÎ¹®Àº ºñ±³Àû »õ·Ó°í ±Þ¼ÓÇÏ°Ô ÁøÈ­Çϰí Àֱ⠶§¹®¿¡ ÇÊ¿äÇÑ Àü¹® Áö½ÄÀ» °®Ãá ÀηÂÀÌ ºÎÁ·ÇÏ¿© µ¥ÀÌÅÍ ¸¶ÀÌ´× ÅøÀÇ ¼ºÀå°ú µµÀÔ¿¡ Å« Á¦¾àÀÌ µÇ¾ú½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

COVID-19ÀÇ À¯ÇàÀº ÁÖ·Î °æÁ¦ È¥¶õ, ¿ì¼±¼øÀ§ º¯È­, ±â¾÷ÀÌ Á÷¸éÇÑ ¿î¿µ»óÀÇ °úÁ¦·Î ÀÎÇØ µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå¿¡ ¸î °¡Áö ¾Ç¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ÀÌ·Î ÀÎÇØ µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ¹× ºÐ¼® ¼ÒÇÁÆ®¿þ¾î¿Í °°Àº ºÒÇÊ¿äÇÑ ±ÞÇÑ ÅõÀÚ¿¡ ´ëÇÑ ÁöÃâÀÌ °¨¼ÒÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, À¯Åë¿¡ ÀÇÇÑ °ø±Þ¸Á È¥¶õ°ú ÇÁ·ÎÁ§Æ® µµÀÔ Áö¿¬À¸·Î ÀÎÇØ ÀϺΠÁ¶Á÷¿¡¼­´Â µ¥ÀÌÅÍ ¸¶ÀÌ´× ÅøÀÇ µµÀÔÀÌ Áö¿¬µÇ°í ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È Ŭ¶ó¿ìµå ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ °ÍÀ¸·Î ¿¹»ó

Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ ÀÎÇÁ¶ó¸¦ Ȱ¿ëÇÏ¿© µ¥ÀÌÅÍ ºÐ¼® ÀÛ¾÷À» ¼öÇàÇϴ Ŭ¶ó¿ìµå ºÎ¹®Àº È®À强, ¾×¼¼½º¼º ¹× ºñ¿ë È¿°ú·Î ÃÖ´ë Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù. ÀÌ·¯ÇÑ µµ±¸´Â À¯¿¬¼º°ú °°Àº ÀåÁ¡ÀÌ ÀÖÀ¸¸ç »ç¿ëÀÚ´Â ´ë±Ô¸ð Çϵå¿þ¾î ÅõÀÚ¸¦ ÇÊ¿ä·Î ÇÏÁö ¾Ê°í ÀÎÅÍ³Ý ¿¬°áÀ» ÅëÇØ ¾îµð¼­³ª µ¥ÀÌÅÍ¿¡ ¾×¼¼½ºÇÏ°í ºÐ¼®ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ´Ù¸¥ Ŭ¶ó¿ìµå ¼­ºñ½º¿Í ÅëÇյǴ °æ¿ì°¡ ¸¹¾Æ ¿øÈ°ÇÑ µ¥ÀÌÅÍ °ü¸® ¹× ºÐ¼® ¿öÅ©Ç÷ο찡 ½¬¿öÁö±â ¶§¹®¿¡ ÀÌ ºÎ¹®ÀÇ ¼ºÀåÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È CAGRÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹»óµÇ´Â °ÍÀº ¸¶ÄÉÆÃ ºÎ¹®ÀÔ´Ï´Ù.

¸¶ÄÉÆÃ ºÎ¹®Àº ±â¾÷ÀÌ °í°´ µ¥ÀÌÅͷκÎÅÍ ½Ç¿ëÀûÀÎ ÅëÂû·ÂÀ» ¾ò°í ¸¶ÄÉÆÃ Àü·« ¹× Ä·ÆäÀÎÀ» ÃÖÀûÈ­ÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇϹǷΠ¿¹Ãø ±â°£ µ¿¾È CAGRÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ·¯ÇÑ µµ±¸´Â °í±Þ ¾Ë°í¸®Áò°ú ±â¼úÀ» Ȱ¿ëÇÏ¿© °í°´ÀÇ ¿ä±¸¸¦ ÃæÁ·½Ã۱â À§ÇØ Æ¯Á¤ °í°´ ¼­ºñ½º¸¦ ´ë»óÀ¸·Î ÇÕ´Ï´Ù. ¶ÇÇÑ ¸¶ÄÉÆÃ ´ã´çÀÚ´Â ¿¹Ãø ºÐ¼®À» Ȱ¿ëÇÏ¿© ¸¶ÄÉÆÃ ¿¹»êÀ» ÃÖÀûÈ­ÇÏ°í ¸®¼Ò½º¸¦ È¿À²ÀûÀ¸·Î ¹èÆ÷Çϸç Àüü ¸¶ÄÉÆÃ Ä·ÆäÀÎÀÇ ÅõÀÚ ¼öÀÍ·ü(ROI)À» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù.

ÃÖ´ë Á¡À¯À²ÀÌ ÀÖ´Â Áö¿ª:

¾Æ½Ã¾ÆÅÂÆò¾çÀº Áö¿ª Àü¹Ý¿¡ °ÉÃÄ °æÁ¦ÀÇ µðÁöÅÐÈ­°¡ ÁøÇàµÊ¿¡ µû¶ó ´Ù¾çÇÑ Ãâó¿¡¼­ ¾öû³­ ¾çÀÇ µ¥ÀÌÅͰ¡ »ý¼ºµÊ¿¡ µû¶ó ¿¹»ó ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇß½À´Ï´Ù. Àεµ, Áß±¹, ½Ì°¡Æ÷¸£¿Í °°Àº ±¹°¡µéÀº µ¥ÀÌÅÍ ºÐ¼® Çõ½ÅÀÇ °ÅÁ¡À¸·Î ºÎ»óÇϰí ÀÖÀ¸¸ç, ±¹³»¿Ü ÁøÃâ ±â¾÷À¸·ÎºÎÅÍ ÅõÀÚ¸¦ ¸ðÀ¸°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¼÷·ÃµÈ Àη Ȯº¸¿Í ½ÅÈï ±â¾÷ »ýŰèÀÇ ±Þ¼ºÀåÀº ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå È®´ë¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª:

À¯·´¿¡¼­´Â °æÀï ¿ìÀ§¸¦ À§ÇØ µ¥ÀÌÅÍ ºÐ¼® Ȱ¿ëÀÇ Á߿伺¿¡ ´ëÇÑ ÀνÄÀÌ ±â¾÷°£¿¡ ³ô¾ÆÁö±â ¶§¹®¿¡ ¿¹Ãø ±â°£ µ¿¾È CAGRÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ´Ù¾çÇÑ ¾÷°è ±â¾÷µéÀÌ µ¥ÀÌÅÍ Áß½ÉÀÇ ÀÇ»ç°áÁ¤ÀÇ °¡Ä¡¸¦ ÀνÄÇϰí ÀÖÀ¸¸ç µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ À¯·´ Á¤ºÎ ¹× ¿¬±¸ ±â°üÀº µ¥ÀÌÅÍ ºÐ¼®ÀÇ Çõ½ÅÀ» ÃËÁøÇϱâ À§ÇÑ ÀÌ´Ï¼ÅÆ¼ºê¸¦ Àû±ØÀûÀ¸·Î ÃßÁøÇϰí ÀÖÀ¸¸ç, ÀÌ Áö¿ª¿¡¼­ °í±Þ µ¥ÀÌÅÍ ¸¶ÀÌ´× ¾Ë°í¸®Áò°ú µµ±¸ °³¹ßÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

¹«·á »ç¿ëÀÚ Á¤ÀÇ ¼­ºñ½º:

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ÁøÃâ±â¾÷ÀÇ Á¾ÇÕÀû ÇÁ·ÎÆÄÀϸµ(3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ ÀÀÇÑ ÁÖ¿ä±¹ ½ÃÀå ÃßÁ¤¡¤¿¹Ãø¡¤CAGR(ÁÖ: Ÿ´ç¼º È®Àο¡ µû¸§)
  • °æÀï º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû Á¸Àç, Àü·«Àû Á¦ÈÞ¿¡ ±â¹ÝÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç ¼Ò½º
    • 1Â÷ Á¶»ç ¼Ò½º
    • 2Â÷ Á¶»ç ¼Ò½º
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼Ò°³
  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ÃÖÁ¾ »ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
  • ±¸¸ÅÀÚÀÇ Çù»ó·Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü°¡¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°è µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå : Àü°³ À¯Çüº°

  • ¼Ò°³
  • Ŭ¶ó¿ìµå
  • ¿ÂÇÁ·¹¹Ì½º

Á¦6Àå ¼¼°è µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå : ¼­ºñ½ºº°

  • ¼Ò°³
  • ÄÁ¼³ÆÃ ¹× ±¸Çö
  • ¸Å´ÏÁöµå ¼­ºñ½º
  • ±âŸ

Á¦7Àå ¼¼°è µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå : ºÎ¹®º°

  • ¼Ò°³
  • ±ÝÀ¶
  • °ø±Þ¸Á ¹× ¹°·ù
  • ¸¶ÄÉÆÃ
  • ¿ÀÆÛ·¹À̼Ç

Á¦8Àå ¼¼°è µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå : Á¶Á÷ ±Ô¸ðº°

  • ¼Ò°³
  • Áß¼Ò±â¾÷
  • ´ë±â¾÷

Á¦9Àå ¼¼°è µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • ¼Ò°³
  • ¼Ò¸Å
  • ÀÇ·á ¹× »ý¸í °úÇÐ
  • ÀºÇà/±ÝÀ¶¼­ºñ½º/º¸Çè
  • Åë½Å ¹× IT
  • ¿¡³ÊÁö ¹× À¯Æ¿¸®Æ¼
  • Á¤ºÎ ¹× ¹æÀ§
  • Á¦Á¶¾÷
  • ±âŸ

Á¦10Àå ¼¼°è µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå : Áö¿ªº°

  • ¼Ò°³
  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦11Àå ÁÖ¿ä ¹ßÀü

  • °è¾à/ÆÄÆ®³Ê½Ê/Çù¾÷/ÇÕÀÛÅõÀÚ(JV)
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦12Àå ±â¾÷ ÇÁ·ÎÆÄÀÏ

  • Microsoft
  • IBM
  • Oracle
  • SAS Institute
  • Intel
  • RapidMiner
  • Teradata
  • KNIME
  • SAP SE
  • Salford Systems
  • Megaputer
  • Biomax Informatics
  • Dataiku, Reltio
  • SenticNet
  • Wolfram
  • Business Insight
  • MathWorks
  • Alteryx
  • H2O.ai
  • Angoss
JHS 24.04.02

According to Stratistics MRC, the Global Data Mining Tools Market is accounted for $753.6 million in 2023 and is expected to reach $1,817.4 million by 2030 growing at a CAGR of 13.4% during the forecast period. Data mining tools are software applications designed to extract meaningful patterns, insights, and knowledge from large datasets. These tools employ various techniques, including statistical analysis and machine learning algorithms, and facilitate the process of data exploration and transformation, enabling organizations to uncover valuable information for decision-making. They play a crucial role in industries such as marketing, finance, healthcare, and retail by enabling efficient analysis and interpretation of vast amounts of data to drive strategic decisions and optimize operations.

Market Dynamics:

Driver:

Increasing data volume

Data mining tools enable organizations to extract valuable insights from this massive volume of data. By employing advanced algorithms and analytical techniques, these tools can uncover hidden patterns and trends that would be impractical or impossible to identify manually. Furthermore, the increasing data volume presents opportunities for businesses to enhance customer experiences, optimize operations, and drive innovation, which are propelling this market size.

Restraint:

High initial cost

There is upfront acquisition costs associated with purchasing licenses or subscriptions for data mining software. These costs can be substantial, especially for enterprise-grade solutions or those offering advanced analytics capabilities. Moreover, ongoing maintenance costs, including updates, technical support, and infrastructure maintenance, contribute to the total cost of ownership of data mining tools. For smaller organizations or those operating on tight budgets, these high costs can act as a significant barrier to entry, limiting their ability to adopt data mining tools.

Opportunity:

Availability of cloud-based solutions

Cloud-based data mining tools eliminate the need for organizations to invest in and maintain expensive on-premises infrastructure. This accessibility democratizes data mining, making it feasible for organizations of all sizes to leverage advanced analytics without an upfront capital investment. In addition, the availability of cloud-based solutions lowers barriers to entry and accelerates time-to-value to extract actionable insights from their data more efficiently, which is boosting this market's expansion.

Threat:

Lack of expertise

There is a scarcity of professionals who possess the technical skills and domain knowledge required to effectively operate data mining tools. This had led to high demand and limited supply, driving up the cost of hiring skilled professionals. However, due to the relatively new and rapidly evolving nature of the field, there was a shortage of individuals with the requisite expertise, which posed a significant constraint on the growth and adoption of data mining tools.

Covid-19 Impact

The COVID-19 pandemic has had several negative impacts on the data mining tools market, primarily due to economic disruptions, shifts in priorities, and operational challenges faced by businesses. This has led to a reduction in spending on non-essential investments, including data mining tools and analytics software. Additionally, the disruptions to supply chains and delays in project implementations caused by the pandemic have led to delays in the adoption of data mining tools by some organizations.

The cloud segment is expected to be the largest during the forecast period

The cloud segment is estimated to hold the largest share due to its scalability, accessibility, and cost-effectiveness, which leverage cloud computing infrastructure to perform data analysis tasks. These tools offer advantages such as flexibility, allowing users to access and analyze data from anywhere with an internet connection without requiring extensive hardware investments. Moreover, they often integrate with other cloud services, facilitating seamless data management and analysis workflows, thereby driving this segment's growth.

The marketing segment is expected to have the highest CAGR during the forecast period

The marketing segment is anticipated to have highest CAGR during the forecast period due to its pivotal role in helping businesses gain actionable insights from customer data to optimize marketing strategies and campaigns. These tools utilize advanced algorithms and techniques to target specific customer services to meet customer needs. Additionally, by leveraging predictive analytics, marketers can optimize marketing budgets, allocate resources efficiently, and improve the overall return on investment (ROI) of marketing campaigns, which is boosting this segment's expansion.

Region with largest share:

Asia Pacific commanded the largest market share during the extrapolated period, owing to the increasing digitization of economies across the region, which has led to the generation of vast amounts of data from various sources. Countries like India, China, and Singapore are emerging as hubs for data analytics innovation, attracting investment from both domestic and international players. In addition, the availability of skilled talent and a burgeoning startup ecosystem are contributing to the expansion of the data mining tools market in Asia Pacific.

Region with highest CAGR:

Europe is expected to witness highest CAGR over the projection period, owing to a growing awareness among European businesses about the importance of leveraging data analytics for competitive advantage. Companies across various industries are recognizing the value of data-driven decision-making and are thus increasingly investing in data mining tools. Furthermore, European governments and research institutions are actively promoting initiatives to foster innovation in data analytics, driving the development of sophisticated data mining algorithms and tools within the region.

Key players in the market

Some of the key players in the Data Mining Tools Market include Microsoft, IBM, Oracle, SAS Institute, Intel, RapidMiner, Teradata, KNIME, SAP SE, Salford Systems, Megaputer, Biomax Informatics, Dataiku, Reltio, SenticNet, Wolfram, Business Insight, MathWorks, Alteryx, H2O.ai and Angoss.

Key Developments:

In February 2024, Intel Corp. launched Intel Foundry as a more sustainable systems foundry business designed for the AI era and announced an expanded process roadmap designed to establish leadership into the latter part of this decade.

In January 2024, The GSMA and IBM announced a new collaboration to support the adoption and skills of generative artificial intelligence (AI) in the telecom industry through the launch of GSMA Advance's AI Training program and the GSMA Foundry Generative AI program.

In January 2024, Intel Corp. and United Microelectronics Corporation announced that they will collaborate on the development of a 12-nanometer semiconductor process platform to address high-growth markets such as mobile, communication infrastructure and networking.

In December 2023, IBM announced that it has entered into a definitive agreement with Software AG, a company majority owned by Silver Lake, to purchase StreamSets and webMethods, Software AG's Super iPaaS (integration platform-as-a-service) enterprise technology platforms.

Deployment Types Covered:

  • Cloud
  • On-Premises

Services Covered:

  • Consulting and Implementation
  • Managed Service
  • Other Services

Business Functions Covered:

  • Finance
  • Supply Chain and Logistics
  • Marketing
  • Operations

Organization Size Covered:

  • Small and Medium-Sized Enterprises
  • Large Enterprises

End Users Covered:

  • Retail
  • Healthcare and Life Sciences
  • Banking, Financial Services, and Insurance
  • Telecom and IT
  • Energy and Utilities
  • Government and Defense
  • Manufacturing
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2021, 2022, 2023, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 End User Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Data Mining Tools Market, By Deployment Type

  • 5.1 Introduction
  • 5.2 Cloud
  • 5.3 On-Premises

6 Global Data Mining Tools Market, By Service

  • 6.1 Introduction
  • 6.2 Consulting and Implementation
  • 6.3 Managed Service
  • 6.4 Other Services

7 Global Data Mining Tools Market, By Business Function

  • 7.1 Introduction
  • 7.2 Finance
  • 7.3 Supply Chain and Logistics
  • 7.4 Marketing
  • 7.5 Operations

8 Global Data Mining Tools Market, By Organization Size

  • 8.1 Introduction
  • 8.2 Small and Medium-Sized Enterprises
  • 8.3 Large Enterprises

9 Global Data Mining Tools Market, By End User

  • 9.1 Introduction
  • 9.2 Retail
  • 9.3 Healthcare and Life Sciences
  • 9.4 Banking, Financial Services, and Insurance
  • 9.5 Telecom and IT
  • 9.6 Energy and Utilities
  • 9.7 Government and Defense
  • 9.8 Manufacturing
  • 9.9 Other End Users

10 Global Data Mining Tools Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Microsoft
  • 12.2 IBM
  • 12.3 Oracle
  • 12.4 SAS Institute
  • 12.5 Intel
  • 12.6 RapidMiner
  • 12.7 Teradata
  • 12.8 KNIME
  • 12.9 SAP SE
  • 12.10 Salford Systems
  • 12.11 Megaputer
  • 12.12 Biomax Informatics
  • 12.13 Dataiku, Reltio
  • 12.14 SenticNet
  • 12.15 Wolfram
  • 12.16 Business Insight
  • 12.17 MathWorks
  • 12.18 Alteryx
  • 12.19 H2O.ai
  • 12.20 Angoss
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦