½ÃÀ庸°í¼­
»óǰÄÚµå
1453917

ź¼Ò ³ª³ëÀç·á ½ÃÀå ¿¹Ãø(-2030³â) : À¯Çüº°, ¹æ¹ýº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ºÐ¼®

Carbon Nanomaterials Market Forecasts to 2030 - Global Analysis By Type (Carbon Nanotube (CNT), Fullerenes and Other Types), Method (Arc Discharge, Catalyzed Chemical Vapor Deposition and Other Methods), Application, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é, ¼¼°è ź¼Ò ³ª³ëÀç·á ½ÃÀåÀº 2023³â 47¾ï ´Þ·¯ ±Ô¸ðÀ̸ç, ¿¹Ãø ±â°£ µ¿¾È 29.50%ÀÇ CAGR·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 285¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ź¼Ò ³ª³ëÀç·á¿¡´Â ź¼Ò³ª³ëÆ©ºê(CNT), ±×·¡ÇÉ, Ç®·¯·» µî ´Ù¾çÇÑ ±¸Á¶ÀÇ Åº¼Ò ³ª³ëÀç·á°¡ Æ÷ÇԵ˴ϴÙ. À̵é Àç·á´Â °í°­µµ, Àü±â Àüµµ¼º, ¿­ Àüµµ¼º µî ¶Ù¾î³­ Ư¼ºÀ» °¡Áö°í ÀÖ½À´Ï´Ù. ź¼Ò³ª³ëÆ©ºê´Â ¿øÅëÇü ±¸Á¶ÀÇ ±×·¡ÇÉ ½ÃÆ®¸¦ °¨¾Æ ¸¸µç ¿øÅëÇü ±¸Á¶·Î, ¶Ù¾î³­ ±â°èÀû °­µµ¿Í µ¶Æ¯ÇÑ Àü±âÀû Ư¼ºÀ» °¡Áö°í ÀÖ½À´Ï´Ù.

Àεµ ºê·£µå ÁÖ½Ä Àç´Ü(IBEF)¿¡ µû¸£¸é ÀεµÀÇ ÀüÀÚÁ¦Ç° Á¦Á¶ »ê¾÷Àº 2025³â±îÁö 5,200¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À¯·´ÀÚµ¿Â÷»ê¾÷Çùȸ(ACEA)¿¡ µû¸£¸é 2021³â Àü ¼¼°èÀûÀ¸·Î 7,910¸¸ ´ëÀÇ ÀÚµ¿Â÷°¡ »ý»êµÇ¾î 2020³â ´ëºñ 1.3% Áõ°¡Çß½À´Ï´Ù.

ÃÖÁ¾ »ç¿ë »ê¾÷¿¡¼­ ¼ö¿ä È®´ë

ÃÖÁ¾ »ç¿ë »ê¾÷ÀÇ ¼ö¿ä Áõ°¡´Â ź¼Ò ³ª³ëÀç·á ½ÃÀåÀ» ¹ßÀü½ÃŰ´Â Áß¿äÇÑ ¿äÀÎÀÔ´Ï´Ù. ÀüÀÚ, ÀÚµ¿Â÷, Ç×°ø¿ìÁÖ, ÇコÄÉ¾î µî »ê¾÷Àº °í°­µµ, Àüµµ¼º, ¿­ ¾ÈÁ¤¼º µî ¿ì¼öÇÑ Æ¯¼ºÀ¸·Î ÀÎÇØ ź¼Ò ³ª³ëÀç·áÀÇ ÅëÇÕÀ» ÃßÁøÇϰí ÀÖ½À´Ï´Ù. ÀüÀÚ ºÐ¾ß¿¡¼­´Â ź¼Ò ³ª³ëÀç·á°¡ ÷´Ü ¹ÝµµÃ¼¿Í ¹èÅ͸® °³¹ß¿¡ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ ¹× Ç×°ø¿ìÁÖ ºÐ¾ß¿¡¼­´Â °æ·®È­ Àç·á·Î Ȱ¿ëµÇ¾î ¿¬ºñ È¿À²°ú ±¸Á¶Àû °­µµ¸¦ ³ôÀ̰í ÀÖ½À´Ï´Ù. ÇコÄÉ¾î ºÐ¾ß¿¡¼­´Â »ýü ÀûÇÕ¼º°ú Ç¥Àû Àü´Þ ´É·ÂÀ¸·Î ÀÎÇØ ¾à¹°Àü´Þ ½Ã½ºÅÛ ¹× ¹ÙÀÌ¿À ÀÇ·á±â±â¿¡ Àû¿ëµÇ°í ÀÖ½À´Ï´Ù.

Ç¥ÁØÈ­ ºÎÁ·

Ç¥ÁØÈ­°¡ ÀÌ·ç¾îÁöÁö ¾ÊÀº °ÍÀº ź¼Ò ³ª³ëÀç·áÀÇ ¼ºÀå°ú äÅÿ¡ Å« °É¸²µ¹·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ǰÁú °ü¸®, Ư¼ºÈ­ ¹æ¹ý, ¼º´É ÃøÁ¤ ±âÁØ¿¡ ´ëÇÑ ¸íÈ®ÇÏ°í º¸ÆíÀûÀ¸·Î ÀÎÁ¤µÇ´Â Ç¥ÁØÀÌ ¾ø±â ¶§¹®¿¡ Á¦Á¶¾÷ü °£ Á¦Ç° ǰÁú¿¡ ´ëÇÑ ºÒÀÏÄ¡³ª ÆíÂ÷°¡ ¹ß»ýÇÒ À§ÇèÀÌ ³ô½À´Ï´Ù. ÀÌ·¯ÇÑ ºÒÈ®½Ç¼ºÀº »ê¾÷°è, ¿¬±¸ÀÚ µî ÀáÀçÀû »ç¿ëÀÚ°¡ ¿ëµµ¿¡ ¸Â´Â ź¼Ò ³ª³ëÀç·á¿¡ ´ëÇÑ ÀڽۨÀ» °¡Áö°í ÅõÀÚÇÏ´Â °ÍÀ» ²¨¸®°Ô ÇÕ´Ï´Ù. ¶ÇÇÑ Ç¥ÁØÀÌ Á¸ÀçÇÏÁö ¾Ê¾Æ Á¦Ç° ºñ±³°¡ ¾î·Á¿ö ½ÃÀå Åõ¸í¼ºÀ» ÀúÇØÇÏ°í »ý»ê ¹× »ç¿ë°ú °ü·ÃµÈ °øÅë ÇÁ·ÎÅäÄÝÀ» °³Ã´ÇÏ´Â µ¥ ¾î·Á¿òÀ» °Þ°í ÀÖ½À´Ï´Ù. ±× °á°ú, ÀÌ ½ÃÀåÀº ³Î¸® ¼ö¿ëµÇ°í ´Ù¾çÇÑ ±â¼ú ¹ßÀüÀ¸·Î ÀÎÇØ ÀáÀç·ÂÀ» ÃÖ´ëÇÑ ¹ßÈÖÇÏ´Â µ¥ Àå¾Ö¹°¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù.

ÀÚµ¿Â÷ »ê¾÷

ÀÚµ¿Â÷ »ê¾÷Àº ¶Ù¾î³­ Ư¼ºÀ¸·Î ÀÎÇØ Å« ºñÁî´Ï½º ±âȸ¸¦ Á¦°øÇϰí ÀÖ½À´Ï´Ù. ±×·¡Çɰú ź¼Ò³ª³ëÆ©ºê¿Í °°Àº ź¼Ò ³ª³ëÀç·á´Â ÀÚµ¿Â÷ ºÎǰ¿¡ °¡º±Áö¸¸ ³î¶ó¿î °­µµ¸¦ °¡Áø º¸°­ ¿É¼ÇÀ» Á¦°øÇÏ¿© ¿¬ºñ È¿À²°ú Àü¹ÝÀûÀÎ ¼º´ÉÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ Àü±â Àüµµµµ°¡ ³ô¾Æ Àü±âÀÚµ¿Â÷ °³¹ß¿¡ ÇʼöÀûÀΠ÷´Ü ¹èÅ͸® ¹× ¿¡³ÊÁö ÀúÀå ¾ÖÇø®ÄÉÀ̼ǿ¡µµ ÀûÇÕÇÕ´Ï´Ù. ¶ÇÇÑ, ź¼Ò ³ª³ëÀç·á´Â ÀÚµ¿Â÷ Á¦Á¶¿¡ »ç¿ëµÇ´Â º¹ÇÕÀç·áÀÇ ³»±¸¼º°ú °­µµ¸¦ Çâ»ó½ÃÄÑ º¸´Ù ¾ÈÀüÇÏ°í ³»±¸¼ºÀÌ ¶Ù¾î³­ ÀÚµ¿Â÷¸¦ ±¸ÇöÇÒ ¼ö ÀÖ½À´Ï´Ù.

°Ç°­°ú ¾ÈÀü¿¡ ´ëÇÑ ¿ì·Á

ź¼Ò ³ª³ëÀç·á ½ÃÀåÀÌ È®´ëµÊ¿¡ µû¶ó ÀáÀçÀûÀÎ µ¶¼º°ú ÀÎü¿¡ ¹ÌÄ¡´Â ¹ÌÁöÀÇ Àå±âÀûÀÎ ¿µÇâ ¶§¹®¿¡ °Ç°­°ú ¾ÈÀü¿¡ ´ëÇÑ ½É°¢ÇÑ ¿ì·Á°¡ Á¦±âµÇ°í ÀÖ½À´Ï´Ù. ³ª³ëÀÔÀÚ¸¦ ÈíÀÔÇϸé È£Èí±â¿¡ ¹®Á¦¸¦ ÀÏÀ¸Å³ À§ÇèÀÌ ÀÖÀ¸¸ç, ÇǺο¡ ´êÀ¸¸é ¿°Áõ°ú ¾Ë·¹¸£±â ¹ÝÀÀÀ» ÀÏÀ¸Å³ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹°ÁúÀÌ »ý¹°ÇÐÀû À庮À» °üÅëÇÏ´Â ´É·ÂÀº Àü½Å µ¶¼º°ú »ý¹° ³óÃà °¡´É¼º¿¡ ´ëÇÑ ¿ì·Á¸¦ ºÒ·¯ÀÏÀ¸Åµ´Ï´Ù. ¶ÇÇÑ ÀûÀýÇÑ Ãë±Þ ¹× Æó±â ÇÁ·ÎÅäÄÝÀº Á÷¾÷Àû ³ëÃâ°ú ȯ°æ ¿À¿°À» ÃÖ¼ÒÈ­Çϱâ À§ÇØ ¸Å¿ì Áß¿äÇÕ´Ï´Ù.

COVID-19ÀÇ ¿µÇâ:

COVID-19´Â ź¼Ò ³ª³ëÀç·á ½ÃÀå¿¡ ´Ù¾çÇÑ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ÇÑÆíÀ¸·Î´Â ¼¼°è °ø±Þ¸ÁÀÇ È¥¶õ°ú »ê¾÷ Ȱµ¿ÀÇ °¨¼Ò·Î ÀÎÇØ óÀ½¿¡´Â ź¼Ò ³ª³ë ¼ÒÀçÀÇ »ý»ê°ú ¼ö¿ä°¡ µÐÈ­µÇ¾ú½À´Ï´Ù. ±×·¯³ª ÆÒµ¥¹ÍÀ¸·Î ÀÎÇØ ÀÇ·á ¹× ÀÇÇÐ ¿¬±¸¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ ¹ÙÀÌ¿À ¼¾¼­, ¾à¹°Àü´Þ ½Ã½ºÅÛ, °³Àκ¸È£±¸¿Í °°Àº ÀÀ¿ë ºÐ¾ß¿¡¼­ ź¼Ò ³ª³ëÀç·á¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇß½À´Ï´Ù. ¶ÇÇÑ, ¿¡³ÊÁö ÀúÀå ¹× ÀüÀÚ°øÇÐ µîÀÇ ºÐ¾ß¿¡¼­ ÷´Ü ±â¼úÀÇ Çʿ伺ÀÌ Åº¼Ò ³ª³ëÀç·á¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù.

ź¼Ò³ª³ëÆ©ºê(CNT) ºÐ¾ß°¡ ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ºÐ¾ß°¡ µÉ °ÍÀ¸·Î ¿¹»ó

ź¼Ò ³ª³ëÀç·á ½ÃÀå¿¡¼­ ź¼Ò³ª³ëÆ©ºê(CNT) ºÎ¹®ÀÇ ¼ºÀåÀº °í°­µµ, Àüµµ¼º, À¯¿¬¼º µî ¿ì¼öÇÑ Æ¯¼ºÀ¸·Î ÀÎÇØ ź¼Ò³ª³ëÆ©ºêÀÇ µ¶Æ¯ÇÑ ±¸Á¶Àû Ư¼ºÀ¸·Î ÀÎÇØ ÀüÀÚ, Ç×°ø¿ìÁÖ, ¿¡³ÊÁö ÀúÀå µî ´Ù¾çÇÑ »ê¾÷¿¡¼­ Æø³Ð°Ô Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºÐ¾ß¿¡¼­ °¡º±°í ³»±¸¼ºÀÌ ¶Ù¾î³­ ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϸ鼭 ½ÃÀå ¼ºÀåÀ» °ßÀÎÇϰí ÀÖ½À´Ï´Ù. Á¦Á¶ ±â¼úÀÇ ¹ßÀüÀ¸·Î CNTÀÇ »ý»êÀÌ ´õ¿í ºñ¿ë È¿À²ÀûÀÌ µÇ¾î ½ÃÀå È®´ë¸¦ ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È °ÇÃà ¹× °Ç¼³ ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»ó

°ÇÃà ¹× °Ç¼³ ºÐ¾ß¿¡¼­ ź¼Ò ³ª³ëÀç·áÀÇ ¼ºÀåÀº °í°­µµ, °æ·®¼º, ¿ì¼öÇÑ Àüµµ¼º µî ¶Ù¾î³­ Ư¼ºÀ¸·Î ÀÎÇØ ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Àç·á´Â ±¸Á¶Àû ¹«°á¼ºÀ» ³ôÀ̰í, ¿¡³ÊÁö È¿À²À» °³¼±Çϸç, °Ç¼³ ÇÁ·ÎÁ§Æ®¿¡¼­ Çõ½ÅÀûÀÎ ¼³°è¸¦ °¡´ÉÇÏ°Ô ÇÏ´Â Å« ÀáÀç·ÂÀ» °¡Áö°í ÀÖ½À´Ï´Ù. ±× ¿ëµµ´Â ÄÜÅ©¸®Æ® º¸°­ ¹× º¹ÇÕÀç·á °­È­¿¡¼­ ȯ°æ °¨Áö ¹× ¿¡³ÊÁö ¼öÈ®À» À§ÇÑ ½º¸¶Æ® ÄÚÆÃ °³¹ß±îÁö ´Ù¾çÇÕ´Ï´Ù. ¶ÇÇÑ, ź¼Ò ³ª³ëÀç·á´Â ±¸Á¶¹°ÀÇ °æ·®È­ ¹× ³»±¸¼º Çâ»óÀ» ÅëÇØ °Ç¹°ÀÇ È¯°æ ¹ßÀÚ±¹À» ÁÙÀÓÀ¸·Î½á Áö¼Ó°¡´É¼º ¸ñÇ¥¿¡ ±â¿©ÇÒ ¼ö ÀÖ½À´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

ºÏ¹Ì´Â ÀüÀÚ¿¡¼­ Ç×°ø¿ìÁÖ±îÁö ´Ù¾çÇÑ ÀÀ¿ëºÐ¾ß¿¡¼­ ź¼Ò³ª³ëÆ©ºê, ±×·¡ÇÉ µî ´Ù¾çÇÑ Åº¼Ò ³ª³ëÀç·áÀÇ »ó¿ëÈ­¸¦ À̲ö ¿¬±¸°³¹ßÀÇ ¹ßÀüÀ¸·Î ź¼Ò ³ª³ëÀç·á ½ÃÀå¿¡¼­ Å« ¼ºÀåÀ» ÀÌ·ç°í ÀÖ½À´Ï´Ù. Á¤ºÎ, ÇÐ°è ¹× ¹Î°£ ±â¾÷ÀÇ ³ª³ë±â¼ú¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡´Â ±â¼ú Çõ½Å°ú ½ÃÀå È®´ë¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ ÅºÅºÇÑ ÀÎÇÁ¶ó¿Í Àß ±¸ÃàµÈ »ê¾÷ ±â¹ÝÀº ź¼Ò ³ª³ëÀç·áÀÇ »ý»ê°ú äÅÿ¡ ÀûÇÕÇÑ È¯°æÀ» Á¦°øÇϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª:

¾Æ½Ã¾ÆÅÂÆò¾çÀº źźÇÑ Á¦Á¶ ÀÎÇÁ¶ó¿Í ¼÷·ÃµÈ ³ëµ¿·ÂÀ» ¹ÙÅÁÀ¸·Î °æÀï·Â ÀÖ´Â °¡°ÝÀÇ Åº¼Ò ³ª³ëÀç·á »ý»ê°ú ±â¼ú Çõ½ÅÀ» ÃËÁøÇϸç Å« ¼ºÀåÀ» ÀÌ·ç°í ÀÖ½À´Ï´Ù. ³ª³ë±â¼ú¿¡ ÃÊÁ¡À» ¸ÂÃá ¿¬±¸ °³¹ß ÇÁ·ÎÁ§Æ®¿¡ ´ëÇÑ Á¤ºÎ ÀÚ±ÝÀÇ Áõ°¡´Â ÀÌ ºÐ¾ßÀÇ ±â¼ú ¹ßÀü¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀüÀÚ, ¿¡³ÊÁö ÀúÀå, ÇコÄÉ¾î µî ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ ź¼Ò ³ª³ëÀç·áÀÇ ÀÀ¿ë ºÐ¾ß°¡ È®´ëµÇ¸é¼­ ÀÌ ºÐ¾ß¿¡¼­ ź¼Ò ³ª³ëÀç·á¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

¹«·á ¸ÂÃãÇü ¼­ºñ½º:

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù:

  • ±â¾÷ °³¿ä
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀûÀÎ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ SWOT ºÐ¼®(ÃÖ´ë 3°³»ç)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤Ä¡, ¿¹Ãø, CAGR(ÁÖ: Ÿ´ç¼º °ËÅä¿¡ µû¸¥)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù¹ý
  • Á¶»ç ¼Ò½º
    • 1Â÷ Á¶»ç ¼Ò½º
    • 2Â÷ Á¶»ç ¼Ò½º
    • °¡Á¤

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾»ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • ½ÅÁ¾ Äڷγª¹ÙÀÌ·¯½º °¨¿°Áõ(COVID-19)ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ±¸¸ÅÀÚÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü¿©¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷ °£ÀÇ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ Åº¼Ò ³ª³ëÀç·á ½ÃÀå : À¯Çüº°

  • ź¼Ò³ª³ëÆ©ºê(CNT)
    • ´ÜÃþ ź¼Ò³ª³ëÆ©ºê(SWCNT)
    • ´ÙÃþ ź¼Ò³ª³ëÆ©ºê(MWCNT)
  • Ç®·¯·»
  • ±×·¡ÇÉ
  • ź¼Ò ±â¹Ý ¾çÀÚÁ¡
  • ±âŸ À¯Çü

Á¦6Àå ¼¼°èÀÇ Åº¼Ò ³ª³ëÀç·á ½ÃÀå : ¹æ¹ýº°

  • ¾ÆÅ© ¹æÀü
  • Ã˸ŠȭÇÐ ÁõÂø
  • ·¹ÀÌÀú ÀýÁ¦
  • °í¾Ð ÀÏ»êȭź¼Ò ¹ÝÀÀ
  • È­ÇÐ ÁõÂø
  • ¾×»ó ź¼Ò³ª³ëÆ©ºê Á¤Á¦
  • ±âŸ ¹æ¹ý

Á¦7Àå ¼¼°èÀÇ Åº¼Ò ³ª³ëÀç·á ½ÃÀå : ¿ëµµº°

  • ÆäÀÎÆ®¿Í ÄÚÆÃ
  • ¿£Áø
  • ¿¬·á ¼ººÐ°è
  • µ¿Ã¼
  • ŸÀ̾î
  • Ä¡·á
  • ¾à¹°Àü´Þ
  • ¸®Æ¬À̿ ¹èÅ͸®
  • ž籤¹ßÀü
  • ¼¾¼­
  • Å״Ͻº ¶óÄÏ
  • Æ®·£Áö½ºÅÍ
  • ½ºÆ÷Ã÷ º¼
  • ·¹ÀÌ½Ì ¿ëǰ
  • ±âŸ ¿ëµµ

Á¦8Àå ¼¼°èÀÇ Åº¼Ò ³ª³ëÀç·á ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • Àü±â¡¤ÀüÀÚ
  • ÀÇ·á¿Í ÇコÄɾî
  • °ÇÃà°ú °Ç¼³
    • ÁÖÅà °Ç¼³
      • µ¶¸³ ÁÖÅÃ
      • ´ë±Ô¸ð ¸Ç¼Ç
      • ¿¬¸³ ÁÖÅÃ
    • »ó¾÷ °Ç¼³
      • °øÇ×
      • ±³À°±â°ü
      • ÇコÄÉ¾î ½Ã¼³
      • È£ÅÚ°ú ·¹½ºÅä¶û
      • ¼îÇθô
      • ±âŸ »ó¾÷ °Ç¹°
    • »ê¾÷¿ë
    • ÀÎÇÁ¶ó
  • ÀÚµ¿Â÷
    • ´ëÇü »ó¿ëÂ÷
    • ¼ÒÇü »ó¿ëÂ÷
    • ½Â¿ëÂ÷
  • Ç×°ø¿ìÁÖ
    • ¹Î°£Ç×°ø±â
    • ±º¿ë±â
    • Ç︮ÄßÅÍ
    • ±âŸ Ç×°ø¿ìÁÖ
  • ½ºÆ÷Ã÷ ¹× ·¹Àú
  • ±âŸ ÃÖÁ¾»ç¿ëÀÚ

Á¦9Àå ¼¼°èÀÇ Åº¼Ò ³ª³ëÀç·á ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦10Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕÀÛÅõÀÚ
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦11Àå ±â¾÷ °³¿ä

  • Arkema Group
  • Bayer AG
  • Dupont
  • G6 Materials Corp
  • Graphenea
  • Haydale Graphene
  • Hollingsworth & Vose
  • Hyperion Catalysis International INC
  • Jiangsu Cnano Technology CO LTD
  • LG Chem
  • MTR Ltd
  • Nano-C
  • Nanocyl SA
  • Otto Chemie PVT LTD
  • Resonac
  • SES Research INC
  • Thomas Swan & CO LTD
  • Tokyo Chemicals Industry UK LTD
ksm 24.04.29

According to Stratistics MRC, the Global Carbon Nanomaterials Market is accounted for $4.70 billion in 2023 and is expected to reach $28.50 billion by 2030 growing at a CAGR of 29.50% during the forecast period. Carbon nanomaterials encompass a diverse array of structures, including carbon nanotubes (CNTs), graphene, and fullerenes. These materials are characterized by their extraordinary properties, such as high strength, electrical conductivity, and thermal conductivity. Carbon nanotubes are cylindrical structures composed of rolled-up graphene sheets, exhibiting exceptional mechanical strength and unique electrical properties.

According to the Indian Brand Equity Foundation (IBEF), the Indian electronics manufacturing industry is projected to reach US$520 billion by 2025. According to the European Automobile Manufacturers' Association (ACEA), in 2021, 79.1 million motor vehicles were produced around the world. It was an increase of 1.3% compared to 2020.

Market Dynamics:

Driver:

Growing demand from end-use industries

The growing demand from end-use industries is a significant driver propelling the carbon nanomaterials market forward. These industries, including electronics, automotive, aerospace, and healthcare, are increasingly integrating carbon nanomaterials due to their exceptional properties such as high strength, conductivity, and thermal stability. In electronics, carbon nanomaterials are used for developing advanced semiconductors and batteries. In automotive and aerospace, they are utilized for lightweight materials, enhancing fuel efficiency and structural strength. Additionally, in healthcare, carbon nanomaterials find applications in drug delivery systems and biomedical devices, owing to their biocompatibility and targeted delivery capabilities.

Restraint:

Lack of standardization

The lack of standardization poses a significant restraint on its growth and adoption. Without clear and universally accepted standards for quality control, characterization methods, and performance metrics, there's a heightened risk of inconsistency and variability in product quality across manufacturers. This uncertainty discourages potential users, such as industries and researchers, from confidently investing in carbon nanomaterials for their applications. Moreover, the absence of standards makes it challenging to compare products, hindering market transparency and impeding the development of common protocols for production and usage. As a result, the market faces hurdles in achieving widespread acceptance and realizing its full potential for various technological advancements.

Opportunity:

Automotive industry

The automotive industry presents a significant opportunity due to their remarkable properties. Carbon nanomaterials like graphene and carbon nanotubes offer lightweight yet incredibly strong reinforcement options for vehicle components, enhancing fuel efficiency and overall performance. Their high electrical conductivity also makes them ideal for advanced battery and energy storage applications, crucial for the development of electric vehicles. Moreover, carbon nanomaterials can improve the durability and strength of composites used in car manufacturing, leading to safer and more durable vehicles.

Threat:

Health and safety concerns

The growing market for carbon nanomaterials raises significant health and safety concerns due to their potential toxicity and unknown long-term effects on human health. Inhalation of nanoparticles poses a risk of respiratory issues, while skin contact may lead to irritation or allergic reactions. The ability of these materials to penetrate biological barriers raises concerns about their systemic toxicity and potential for bioaccumulation. In addition, proper handling and disposal protocols are crucial to minimizing occupational exposure and environmental contamination.

Covid-19 Impact:

The COVID-19 pandemic has had a mixed impact on the carbon nanomaterials market. On one hand, disruptions in global supply chains and reduced industrial activities initially led to a slowdown in production and demand for carbon nanomaterials. However, as the pandemic prompted increased focus on healthcare and medical research, there has been a surge in demand for carbon nanomaterials for applications such as biosensors, drug delivery systems, and personal protective equipment. Additionally, the need for advanced technologies in sectors like energy storage and electronics has further driven the demand for carbon nanomaterials.

The carbon nanotube (CNT) segment is expected to be the largest during the forecast period

The growth of carbon nanotube (CNT) segments in the carbon nanomaterials market can be attributed to their exceptional properties, such as high strength, conductivity, and flexibility. CNTs find extensive applications in various industries, including electronics, aerospace, and energy storage, due to their unique structural characteristics. The increasing demand for lightweight and durable materials in these sectors has propelled market growth. Advancements in manufacturing techniques have made CNT production more cost-effective, further driving market expansion.

The building and construction segment is expected to have the highest CAGR during the forecast period

The growth of carbon nanomaterials in the building and construction segment is driven by their exceptional properties, including high strength, lightweight nature, and excellent conductivity. These materials offer significant potential for enhancing structural integrity, improving energy efficiency, and enabling innovative designs in construction projects. Applications range from reinforcing concrete and enhancing composite materials to developing smart coatings for environmental sensing and energy harvesting. Additionally, carbon nanomaterials can contribute to sustainability goals by reducing the environmental footprint of buildings through lighter structures and improved durability.

Region with largest share:

North America has experienced significant growth in the carbon nanomaterials market due to advancements in research and development that have led to the commercialization of various carbon nanomaterials, such as carbon nanotubes and graphene, for applications spanning from electronics to aerospace. Increased investment in nanotechnology by governments, academia, and the private sector has fueled innovation and market expansion. The region's robust infrastructure and established industrial base provide a conducive environment for the production and adoption of carbon nanomaterials.

Region with highest CAGR:

The Asia-Pacific region has experienced significant growth due to region's robust manufacturing infrastructure and skilled workforce that have facilitated the production and innovation of carbon nanomaterials at competitive prices. Increased government funding for research and development projects focused on nanotechnology has spurred technological advancements in the field. Moreover, growing applications across various industries, such as electronics, energy storage, and healthcare, have driven demand for carbon nanomaterials in the region.

Key players in the market

Some of the key players in Carbon Nanomaterials market include Arkema Group , Bayer AG, Dupont, G6 Materials Corp, Graphenea, Haydale Graphene, Hollingsworth & Vose, Hyperion Catalysis International INC, Jiangsu Cnano Technology CO LTD , LG Chem, MTR Ltd, Nano-C, Nanocyl SA , Otto Chemie PVT LTD, Resonac, SES Research INC, Thomas Swan & CO LTD and Tokyo Chemicals Industry UK LTD.

Key Developments:

In February 2024, AgPlenus Ltd., a subsidiary of Evogene Ltd, announced the signing of a licensing & collaboration agreement with Bayer AG. In collaboration with Bayer's Crop Science division, AgPlenus will use its AI-driven computational modeling technology to design and optimize molecules identified for their broad-spectrum herbicidal activity targeting the APTH1 protein, a new mode of action identified by AgPlenus.

In January 2024, Black Swan Graphene announced that it has entered into a distribution and sales agreement for its graphene-enhanced masterbatch (GEM) products with its strategic partner Thomas Swan, a UK-based specialty chemical manufacturing company. The company said that the agreement positions Thomas Swan as its value-added non-exclusive distributor and reseller.

Types Covered:

  • Carbon Nanotube (CNT)
  • Fullerenes
  • Graphene
  • Carbon-based Quantum Dots
  • Other Types

Methods Covered:

  • Arc Discharge
  • Catalyzed Chemical Vapor Deposition
  • Laser Ablation
  • High-Pressure Carbon Monoxide Reaction
  • Chemical Vapor Deposition
  • Liquid Phase Carbon Nanotubes Purification
  • Other Methods

Applications Covered:

  • Paints & Coatings
  • Engines
  • Fuel component system
  • Fuselages
  • Tires
  • Therapeutics
  • Drug Delivery
  • Li-Ion Batteries
  • Photovoltaics
  • Sensors
  • Tennis Rackets
  • Transistors
  • Sports Balls
  • Racing Equipment
  • Other Applications

End Users Covered:

  • Electrical & Electronics
  • Medical & Healthcare
  • Building and Construction
  • Automotive
  • Aerospace
  • Sports & Leisure
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2021, 2022, 2023, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Carbon Nanomaterials Market, By Type

  • 5.1 Introduction
  • 5.2 Carbon Nanotube (CNT)
    • 5.2.1 Single-Walled Carbon Nanotubes (SWCNT)
    • 5.2.2 Multi-Walled Carbon Nanotubes (MWCNT)
  • 5.3 Fullerenes
  • 5.4 Graphene
  • 5.5 Carbon-based Quantum Dots
  • 5.6 Other Types

6 Global Carbon Nanomaterials Market, By Method

  • 6.1 Introduction
  • 6.2 Arc Discharge
  • 6.3 Catalyzed Chemical Vapor Deposition
  • 6.4 Laser Ablation
  • 6.5 High-Pressure Carbon Monoxide Reaction
  • 6.6 Chemical Vapor Deposition
  • 6.7 Liquid Phase Carbon Nanotubes Purification
  • 6.8 Other Methods

7 Global Carbon Nanomaterials Market, By Application

  • 7.1 Introduction
  • 7.2 Paints & Coatings
  • 7.3 Engines
  • 7.4 Fuel component system
  • 7.5 Fuselages
  • 7.6 Tires
  • 7.7 Therapeutics
  • 7.8 Drug Delivery
  • 7.9 Li-Ion Batteries
  • 7.10 Photovoltaics
  • 7.11 Sensors
  • 7.12 Tennis Rackets
  • 7.13 Transistors
  • 7.14 Sports Balls
  • 7.15 Racing Equipment
  • 7.16 Other Applications

8 Global Carbon Nanomaterials Market, By End User

  • 8.1 Introduction
  • 8.2 Electrical & Electronics
  • 8.3 Medical & Healthcare
  • 8.4 Building and Construction
    • 8.4.1 Residential Construction
      • 8.4.1.1 Independent homes
      • 8.4.1.2 Large apartment buildings
      • 8.4.1.3 Row homes
    • 8.4.2 Commercial Construction
      • 8.4.2.1 Airports
      • 8.4.2.2 Educational Institutes
      • 8.4.2.3 Healthcare Facilities
      • 8.4.2.4 Hotels and Restaurants
      • 8.4.2.5 Shopping Malls
      • 8.4.2.6 Other Commercial Constructions
    • 8.4.3 Industrial
    • 8.4.4 Infrastructure
  • 8.5 Automotive
    • 8.5.1 Heavy Commercial Vehicle
    • 8.5.2 Light Commercial Vehicles
    • 8.5.3 Passenger Cars
  • 8.6 Aerospace
    • 8.6.1 Commercial Aircraft
    • 8.6.2 Military Aircraft
    • 8.6.3 Helicopters
    • 8.6.4 Other Aerospace
  • 8.7 Sports & Leisure
  • 8.8 Other End Users

9 Global Carbon Nanomaterials Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 Arkema Group
  • 11.2 Bayer AG
  • 11.3 Dupont
  • 11.4 G6 Materials Corp
  • 11.5 Graphenea
  • 11.6 Haydale Graphene
  • 11.7 Hollingsworth & Vose
  • 11.8 Hyperion Catalysis International INC
  • 11.9 Jiangsu Cnano Technology CO LTD
  • 11.10 LG Chem
  • 11.11 MTR Ltd
  • 11.12 Nano-C
  • 11.13 Nanocyl SA
  • 11.14 Otto Chemie PVT LTD
  • 11.15 Resonac
  • 11.16 SES Research INC
  • 11.17 Thomas Swan & CO LTD
  • 11.18 Tokyo Chemicals Industry UK LTD
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦