![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1453956
¼¼°èÀÇ ·Îº¿ ±ÞÀ¯ ½Ã½ºÅÛ ½ÃÀå Àü¸Á(-2030³â) : ¿¬·á À¯Çüº°, ±¸¼º¿ä¼Òº°, ÀûÀç·®º°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®Robotic Refueling System Market Forecasts to 2030 - Global Analysis By Fuel Type (Gasoline, Diesel, Natural Gas and Other Fuel Types), By Component (Hardware, Software and Services), Payload Capacity, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é, ·Îº¿ ±ÞÀ¯ ½Ã½ºÅÛ ¼¼°è ½ÃÀåÀº 2023³â 1¾ï 4,014¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í, ¿¹Ãø ±â°£ µ¿¾È 46.5%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 20¾ï 2,979¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÈ´Ù°í ÇÕ´Ï´Ù.
·Îº¿ ±ÞÀ¯ ½Ã½ºÅÛÀº »ç¶÷ÀÇ °³ÀÔ ¾øÀÌ Â÷·®¿¡ ±ÞÀ¯Çϵµ·Ï ¼³°èµÈ ÀÚµ¿È ¼Ö·ç¼ÇÀÔ´Ï´Ù. ·Îº¿ ÆÈ°ú Àü¿ë Àåºñ¸¦ »ç¿ëÇÏ¿© ·Îº¿ ±ÞÀ¯ ½Ã½ºÅÛÀº È¿À²ÀûÀ̰í Á¤È®ÇÑ ±ÞÀ¯ ÀÛ¾÷À» °¡´ÉÇÏ°Ô Çϰí, À¯Ãâ À§ÇèÀ» ÁÙ¿© ¾ÈÀü¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. ¼öµ¿ ±ÞÀ¯ ÀÛ¾÷ÀÇ Çʿ伺À» ¾ø¾Ö°í Áß´Ü ¾ø´Â ÀÓ¹« ¼öÇàÀ» º¸ÀåÇÔÀ¸·Î½á ¹«ÀÎ Â÷·® ¿î¿µÀÇ »ý»ê¼ºÀ» ³ôÀÔ´Ï´Ù.
±¹Á¦ÀÚµ¿Â÷»ê¾÷Çùȸ(OICA)¿¡ µû¸£¸é, ¼¼°è ÀÚµ¿Â÷ »ý»ê·®Àº °³ÀÎ À̵¿¼º¿¡ ´ëÇÑ ¼¼°è ¼ö¿ä Áõ°¡·Î ÀÎÇØ Àü³â ´ëºñ 6% Áõ°¡Çß½À´Ï´Ù.
³ëµ¿ÀÚ ¾ÈÀü¿¡ ´ëÇÑ ¿ì·Á Áõ°¡
ÀÛ¾÷ÀÚÀÇ ¾ÈÀü¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼ ·Îº¿ ±ÞÀ¯ ½Ã½ºÅÛ µµÀÔÀÇ Áß¿äÇÑ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ·Îº¿ ±ÞÀ¯ ½Ã½ºÅÛÀº ƯÈ÷ À§ÇèÇÑ È¯°æÀ̳ª ¿ø°ÝÁö¿¡¼ ÀÚµ¿Â÷ ±ÞÀ¯ °úÁ¤À» ÀÚµ¿ÈÇÔÀ¸·Î½á Àΰ£ÀÌ ÀáÀçÀûÀ¸·Î À§ÇèÇÑ ÀÛ¾÷À» ÇÒ Çʿ䰡 ¾øµµ·Ï ÇÕ´Ï´Ù. ÀÌ´Â »ç°í, ºÎ»ó, À§Çè¹° ³ëÃâÀÇ À§ÇèÀ» ÁÙ¿© ÀÛ¾÷ÀÚÀÇ ¾ÈÀüÀ» Çâ»ó½Ãŵ´Ï´Ù. Á¶Á÷ÀÌ Á÷¿ø º¹Áö¸¦ ¿ì¼±½ÃÇÏ´Â °¡¿îµ¥, ±ÞÀ¯ ÀÛ¾÷ÀÇ ¾ÈÀü À§ÇèÀ» ÁÙÀ̱â À§ÇÑ ¼ö´ÜÀ¸·Î ·Îº¿ ±ÞÀ¯ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä´Â °è¼Ó Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
³ôÀº Ãʱâ ÅõÀÚ ºñ¿ë
·Îº¿ ±ÞÀ¯ ½Ã½ºÅÛÀ» µµÀÔÇÏ·Á¸é ·Îº¿ Àåºñ ±¸¸Å, Ư¼ö ÀÎÇÁ¶ó, ±âÁ¸ Â÷·®°úÀÇ ÅëÇÕ µî ¸¹Àº ÀÚº» ÅõÀÚ°¡ ÇÊ¿äÇÕ´Ï´Ù. ¶ÇÇÑ, ½Ã½ºÅÛ ¼³Ä¡, ±³À° ¹× À¯Áöº¸¼ö¿¡µµ ¸¹Àº ºñ¿ëÀÌ ¼Ò¿äµË´Ï´Ù. ÀÌ·¯ÇÑ Ãʱ⠺ñ¿ëÀº ÀϺΠÁ¶Á÷, ƯÈ÷ Áß¼Ò±â¾÷(SME)¿¡ Å« ºÎ´ãÀÌ µÉ ¼ö ÀÖÀ¸¸ç, ÀÌ´Â µµÀÔ¿¡ Á¦ÇÑÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù.
ÀÚÀ²ÁÖÇàÂ÷¿ÍÀÇ ÅëÇÕ
·Îº¿ ±ÞÀ¯ ½Ã½ºÅÛÀº ÀÚÀ²ÁÖÇàÂ÷ Ç÷§Æû°ú ¿øÈ°ÇÏ°Ô ÅëÇÕµÇ¾î ±ÞÀ¯ ÀÛ¾÷À» ¿ÏÀüÈ÷ ÀÚµ¿ÈÇÏ°í »ç¶÷ÀÇ °³ÀÔÀÌ ÇÊ¿ä ¾øµµ·Ï ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÅëÇÕÀº Áß´Ü ¾ø´Â ¿î¿µÀ» º¸ÀåÇÏ°í ¼öµ¿ ±ÞÀ¯ ÇÁ·Î¼¼½º¿Í °ü·ÃµÈ ´Ù¿îŸÀÓÀ» ÁÙÀÓÀ¸·Î½á ÀÚÀ² ÁÖÇà Â÷·® Â÷·®ÀÇ È¿À²¼º°ú È¿À²¼ºÀ» ³ôÀÔ´Ï´Ù. ¶ÇÇÑ, Â÷·® °ü¸®ÀÚ´Â ±ÞÀ¯ ÀÏÁ¤À» ÃÖÀûÈÇϰí, ¿¬·á ¼öÁØÀ» ¿ø°ÝÀ¸·Î ¸ð´ÏÅ͸µÇϰí, ´Ù¿îŸÀÓÀ» ÃÖ¼ÒÈÇÒ ¼ö ÀÖ¾î ±Ã±ØÀûÀ¸·Î Àüü Â÷·® °ü¸®¿Í »ý»ê¼ºÀ» Çâ»ó½ÃÄÑ ½ÃÀå ¼ºÀåÀÇ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù.
·Îº¿ ±ÞÀ¯ ½Ã½ºÅÛ°ú °ü·ÃµÈ ¾ö°ÝÇÑ ±ÔÁ¤ ¹× ±ÔÁ¦
¾ö°ÝÇÑ ¾ÈÀü ±âÁØ, ȯ°æ ±ÔÁ¦, »ê¾÷º° °¡À̵å¶óÀÎÀ» ÁؼöÇÏ´Â °ÍÀº ·Îº¿ ±ÞÀ¯ ½Ã½ºÅÛ ¼Ö·ç¼ÇÀÇ ¹èÆ÷¸¦ º¹ÀâÇÏ°Ô ¸¸µé°í ºñ¿ëÀ» Áõ°¡½Ãų ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±ÔÁ¦ÀÇ ºÒÈ®½Ç¼º°ú ¹ý±ÔÀÇ º¯È·Î ÀÎÇØ ·Îº¿ ±ÞÀ¯ ½Ã½ºÅÛ ±â¼ú ½ÃÀå °³Ã´°ú »ó¿ëȸ¦ ¹æÇØÇÏ¿© Àüü ½ÃÀå È®´ë°¡ Á¦ÇÑµÉ ¼ö ÀÖ½À´Ï´Ù.
Äڷγª19·Î ÀÎÇØ »çȸÀû °Å¸®µÎ±â°¡ °ÈµÇ¸é¼ Á¶Á÷ÀÌ »ç¶÷°úÀÇ Á¢ÃËÀ» ÃÖ¼ÒÈÇÏ°í ¾÷¹«ÀÇ ¿¬¼Ó¼ºÀ» À¯ÁöÇϱâ À§ÇØ ·Îº¿ ±ÞÀ¯ ½Ã½ºÅÛ µµÀÔÀÌ °¡¼Óȵǰí ÀÖ½À´Ï´Ù. ·Îº¿ ±ÞÀ¯ ½Ã½ºÅÛ ¼Ö·ç¼ÇÀº ¹«ÀÎ ±ÞÀ¯ ÀÛ¾÷À» °¡´ÉÇÏ°Ô ÇÏ¿© ¹ÙÀÌ·¯½º °¨¿° À§ÇèÀ» ÁÙÀÌ°í ¹°·ù, ¿î¼Û, ÀÎÇÁ¶ó À¯Áö º¸¼ö¿Í °°Àº Áß¿äÇÑ »ê¾÷¿¡¼ Áß´Ü ¾ø´Â ¼ºñ½º¸¦ º¸ÀåÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¼ö¿ä Áõ°¡´Â ·Îº¿ ±ÞÀ¯ ½Ã½ºÅÛ ±â¼ú ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¼ÒÇÁÆ®¿þ¾î ºÎ¹®ÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¼ÒÇÁÆ®¿þ¾î ºÎ¹®Àº ±ÞÀ¯ ÇÁ·Î¼¼½ºÀÇ ÀÚµ¿È, Á¦¾î ¹× ÃÖÀûȸ¦ °¡´ÉÇÏ°Ô ÇÏ´Â Áß¿äÇÑ ¿ªÇÒÀ» ¼öÇàÇϱ⠶§¹®¿¡ ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ±Ô¸ð¸¦ Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÷´Ü ¼ÒÇÁÆ®¿þ¾î ¼Ö·ç¼ÇÀº ½Ç½Ã°£ ¸ð´ÏÅ͸µ, ¿¹Áöº¸Àü, ¿ø°Ý °ü¸® µîÀÇ ±â´ÉÀ» Á¦°øÇÏ¿© ·Îº¿ ±ÞÀ¯ ½Ã½ºÅÛ ¿î¿µÀÇ È¿À²¼º, ¾ÈÀü¼º, ½Å·Ú¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. Á¶Á÷ÀÌ µðÁöÅÐ Çõ½Å ¹× ÀÚµ¿È ÀÌ´Ï¼ÅÆ¼ºê¸¦ ¿ì¼±½ÃÇÔ¿¡ µû¶ó Á¤±³ÇÑ ·Îº¿ ±ÞÀ¯ ½Ã½ºÅÛ ¼ÒÇÁÆ®¿þ¾î¿¡ ´ëÇÑ ¼ö¿ä°¡ Å©°Ô Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È 50kg ÀÌÇÏ ºÎ¹®ÀÌ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
½£ ±â°£ µ¿¾È 50kg ÀÌÇÏ ºÎ¹®Àº ½ÃÀå¿¡¼ °¡Àå ³ôÀº º¹ÇÕ ¿¬°£ ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ¼ºÀåÀº ³ó¾÷, °Ë»ç, °¨½Ã µî ´Ù¾çÇÑ »ê¾÷¿¡¼ ¼ÒÇü ¹«ÀÎ Â÷·® ¹× µå·Ð¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí Àֱ⠶§¹®ÀÔ´Ï´Ù. °æ·® Â÷·®¿¡ ±ÞÀ¯Çϵµ·Ï Á¶Á¤µÈ ·Îº¿ ±ÞÀ¯ ½Ã½ºÅÛÀº À¯¿¬¼º, È¿À²¼º ¹× ºñ¿ë È¿À²¼ºÀ» Çâ»ó½ÃÄÑ ÀÌ ºÎ¹®¿¡¼ ÀÌ·¯ÇÑ ±â¼úÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
ºÏ¹Ì´Â ÁÖ¿ä °ø±Þ¾÷üÀÇ Á¸Àç, ³ôÀº ÀÚµ¿È ±â¼ú äÅ÷ü, ¹«ÀÎ Â÷·® ¿î¿µÀ» ÃËÁøÇϱâ À§ÇÑ Á¤ºÎÀÇ °·ÂÇÑ ³ë·Â µîÀÇ ¿äÀÎÀ¸·Î ÀÎÇØ ·Îº¿ ±ÞÀ¯ ½Ã½ºÅÛ ½ÃÀå¿¡¼ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ, źźÇÑ ÀÎÇÁ¶ó, ³ôÀº R&D ¿ª·®, ¾çÈ£ÇÑ ±ÔÁ¦ ȯ°æÀº ·Îº¿ ±ÞÀ¯ ½Ã½ºÅÛ ½ÃÀå¿¡¼ ºÏ¹ÌÀÇ ¿ìÀ§¸¦ ´õ¿í °ÈÇÏ¿© ½ÃÀå ¼ºÀåÀÇ ÁÖ¿ä Áö¿ªÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù.
À¯·´Àº ÀÚµ¿È ÅõÀÚ Áõ°¡, ¾ö°ÝÇÑ ¾ÈÀü ±ÔÁ¦, ÁÖ¿ä ÀÚµ¿Â÷ ¹× Ç×°ø¿ìÁÖ »ê¾÷ÀÇ Á¸Àç·Î ÀÎÇØ ·Îº¿ ±ÞÀ¯ ½Ã½ºÅÛ ½ÃÀåÀÌ ºü¸£°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¹°·ù, ³ó¾÷ ¹× °¨½Ã ºÐ¾ß¿¡¼ ¹«ÀÎ Â÷·®ÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ·Îº¿ ±ÞÀ¯ ½Ã½ºÅÛ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Á¤ºÎ Áö¿ø, ±â¼ú ¹ßÀü, ¼÷·ÃµÈ ³ëµ¿·Â µîÀÌ À¯·´ ½ÃÀåÀ» Å©°Ô È®´ëÇÒ ¼ö ÀÖ´Â ÀáÀç·ÂÀ» °¡Áö°í ÀÖ¾î ¼ºÀå ÀáÀç·ÂÀÌ ³ôÀº Áö¿ªÀ¸·Î ²ÅÈü´Ï´Ù.
According to Stratistics MRC, the Global Robotic Refueling System Market is accounted for $140.14 million in 2023 and is expected to reach $2029.79 million by 2030 growing at a CAGR of 46.5% during the forecast period. A robotic refueling system is an automated solution designed to refuel vehicles without human intervention. Using robotic arms and specialized equipment, a robotic refueling system enables efficient and precise fueling operations, reducing the risk of spills and improving safety. It enhances productivity in unmanned vehicle operations by eliminating the need for manual refueling processes and ensuring uninterrupted missions.
According to the International Organization of Motor Vehicle Manufacturers (OICA), global automobile production increased by 6% compared to the previous year due to increasing global demand for private mobility.
Increased concerns about worker safety
Increased concerns about worker safety serve as a significant driver for the adoption of robotic refueling systems. By automating the refueling process for vehicles, particularly in hazardous or remote environments, robotic refueling systems eliminate the need for human operators to perform potentially dangerous tasks. This reduces the risk of accidents, injuries, and exposure to hazardous materials, thereby enhancing worker safety. As organizations prioritize the well-being of their employees, the demand for robotic refueling systems continues to grow as a means of mitigating safety risks in refueling operations.
High initial investment costs
Implementing robotic refueling systems requires significant capital investment for purchasing robotic equipment, specialized infrastructure, and integration with existing vehicle fleets. Additionally, there are expenses associated with system installation, training, and maintenance. These upfront costs can be prohibitive for some organizations, particularly small and medium-sized enterprises (SMEs), limiting their ability to adopt.
Integration with autonomous vehicles
By seamlessly integrating with autonomous vehicle platforms, robotic refueling systems can enable fully automated refueling operations, eliminating the need for human intervention. This integration enhances the efficiency and effectiveness of autonomous vehicle fleets by ensuring uninterrupted operations and reducing downtime associated with manual refueling processes. Moreover, it also enables fleet managers to optimize fueling schedules, monitor fuel levels remotely, and minimize downtime, ultimately improving overall fleet management and productivity, which fuels market growth.
Strict rules and regulations associated with robotic refueling systems
Compliance with stringent safety standards, environmental regulations, and industry-specific guidelines may increase the complexity and cost of deploying robotic refueling system solutions. Additionally, regulatory uncertainties or changes in legislation could hinder the development and commercialization of robotic refueling system technologies, which limits the overall market expansion.
The COVID-19 pandemic has accelerated the adoption of robotic refueling systems as organizations seek to minimize human contact and maintain operational continuity amidst social distancing measures. Robotic refueling system solutions enable unmanned refueling operations, reducing the risk of virus transmission and ensuring uninterrupted service in critical industries such as logistics, transportation, and infrastructure maintenance. This increased demand is expected to drive market growth for robotic refueling system technologies.
The software segment is expected to be the largest during the forecast period
The software segment is anticipated to be the largest during the forecast period due to its critical role in enabling the automation, control, and optimization of refueling processes. Advanced software solutions offer features such as real-time monitoring, predictive maintenance, and remote management, enhancing the efficiency, safety, and reliability of robotic refueling system operations. As organizations prioritize digital transformation and automation initiatives, the demand for sophisticated robotic refueling system software is expected to grow significantly.
The Up to 50 kg segment is expected to have the highest CAGR during the forecast period
During the forested period, the up to 50 kg segment is projected to exhibit the highest compound annual growth rate in the market. This growth can be attributed to the increasing demand for smaller unmanned vehicles and drones across various industries, including agriculture, inspection, and surveillance. Robotic refueling systems tailored to refuel lightweight vehicles offer enhanced flexibility, efficiency, and cost-effectiveness, driving the adoption of these technologies within this segment.
The North American region is poised to capture the largest market share in the robotic refueling system market due to factors such as the presence of key providers, high adoption of automation technologies, and strong government initiatives to promote unmanned vehicle operations. Additionally, robust infrastructure, advanced research and development capabilities, and a favorable regulatory environment further contribute to North America's dominance in the robotic refueling system market, making it a key region for market growth.
Europe is positioned for rapid growth in the robotic refueling system market due to increasing investments in automation, stringent safety regulations, and the presence of leading automotive and aerospace industries. Additionally, the growing adoption of unmanned vehicles for logistics, agriculture, and surveillance applications drives demand for robotic refueling system solutions. Furthermore, supportive government initiatives, technological advancements, and a skilled workforce contribute to Europe's potential for significant expansion in the market, making it a promising region for growth.
Key players in the market
Some of the key players in Robotic Refueling System Market include ABB Ltd., Aerobotix, Inc., ASI Technologies, Inc., Autofuel, FANUC America Corporation, Fuelmatics AB, Gazpromneft-Aero, Husky Corporation, Kawasaki Heavy Industries, Ltd., KUKA AG, Mine Energy Solutions Ltd., Mitsubishi Electric Corporation, OC Robotics, RobotWorx, Rotec Engineering, Scott Technology Ltd., Shaw Development LLC, Simon Group Holdings, Titan Robotics and Yaskawa Electric Corporation.
In December 2022, Denmark-based Autofuel Aps introduces its fully automated robotic refueling system, aiming to provide a hassle-free refueling experience at gas stations. The company intends to apply its technological advantage to the current traditional refueling systems. The system can be completely automatic and start functioning when it recognizes the vehicle, or it can integrate with a mobile app from which the user can start the system.
In June 2021, Gazprom Neft has announced that Smart Fuel has been approved for a full market launch. Using the enterprise blockchain Hyperledger Fabric, this instant digital aviation refueling software cuts the transaction time between a jet fuel supplier and an airline from five days to just 15 seconds.