½ÃÀ庸°í¼­
»óǰÄÚµå
1454026

¼¼°èÀÇ Æ÷Åä´Ð µðÀÚÀÎ ÀÚµ¿È­ ½ÃÀå ¿¹Ãø(-2030³â) : ºÎ¹®º° ºÐ¼®

Photonic Design Automation Market Forecasts to 2030 - Global Analysis By Component (Solution and Service), Deployment (On-Premise and Cloud), Organization Size, Application, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Æ÷Åä´Ð µðÀÚÀÎ ÀÚµ¿È­(PDA, Photonic Design Automation) ½ÃÀåÀº 2023³â¿¡ 16¾ï 1,000¸¸ ´Þ·¯¿´À¸¸ç, ¿¹Ãø ±â°£ µ¿¾È CAGR 15.8%·Î ÃßÀÌÇÏ¸ç ¼ºÀå ÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2030³â¿¡´Â 44¾ï 9,000¸¸ ´Þ·¯¿¡ À̸¦ Àü¸ÁÀÔ´Ï´Ù.

Æ÷Åä´Ð µðÀÚÀÎ ÀÚµ¿È­(PDA)´Â Æ÷Åä´Ð ÀåÄ¡ ¹× ½Ã½ºÅÛÀÇ º¹ÀâÇÑ ¼³°è ¹× ÃÖÀûÈ­¸¦ À§ÇÑ ÄÄÇ»ÅÍ Áö¿ø ¼³°è(CAD) Á¢±Ù¹ýÀÔ´Ï´Ù. Ư¼ö ¾Ë°í¸®Áò°ú ½Ã¹Ä·¹ÀÌ¼Ç ÅøÀ» ÅëÇÕÇÏ¿© µµÆÄ°ü, ·¹ÀÌÀú, ±¤ °ËÃâ±â¿Í °°Àº ±¤ÇÐ ±¸¼º ¿ä¼ÒÀÇ °Åµ¿°ú ¼º´ÉÀ» ¸ðµ¨¸µ, ½Ã¹Ä·¹ÀÌ¼Ç ¹× ÃÖÀûÈ­ÇÕ´Ï´Ù. PDA´Â ¼³°è °ËÅä ¹× °ËÁõÀ» À§ÇÑ Á¾ÇÕÀûÀÎ Ç÷§ÆûÀ» Á¦°øÇÔÀ¸·Î½á °í±Þ Æ÷Åä´Ð ±â¼úÀÇ °³¹ßÀ» °¡¼ÓÈ­Çϰí Åë½Å, µ¥ÀÌÅÍ Ã³¸® ¹× °¨Áö¿¡¼­ Çõ½ÅÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.

º¸´Ù ºü¸£°í È¿À²ÀûÀÎ Åë½Å ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡

¼¼°è°¡ °í¼Ó µ¥ÀÌÅÍ Àü¼Û°ú Åë½Å ³×Æ®¿öÅ©¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ´Ã¸®¸é¼­ ºü¸£°í ¾ÈÁ¤ÀûÀÎ µ¥ÀÌÅÍ Àü¼ÛÀ» ½ÇÇöÇÏ´Â Æ÷Åä´Ð ÄÄÆ÷³ÍÆ®¿Í ½Ã½ºÅÛÀÇ Çʿ伺ÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. Æ÷Åä´Ð µðÀÚÀÎ ÀÚµ¿È­ ÅøÀº Çõ½ÅÀûÀÎ Æ÷Åä´Ð µð¹ÙÀ̽º¿Í ½Ã½ºÅÛÀÇ °³¹ß°ú ÃÖÀûÈ­¸¦ °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á ÀÌ ¼ö¿ä¿¡ ºÎÀÀÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Àü¹ÝÀûÀ¸·Î º¸´Ù ºü¸£°í È¿À²ÀûÀÎ Åë½Å ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ ½ÃÀå ¼ºÀåÀÇ ÁÖ¿ä ÃËÁø¿äÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù.

³ôÀº °³¹ß ºñ¿ë

Æ÷Åä´Ð µð¹ÙÀ̽º¿Í ½Ã½ºÅÛ °³¹ß¿¡´Â ¿¬±¸ °³¹ß, ÇÁ·ÎÅäŸÀÌÇÎ, Á¦Á¶¿¡ ¸¹Àº ÅõÀÚ°¡ ÇÊ¿äÇÕ´Ï´Ù. Æ÷Åä´Ð ±â¼ú¿¡ ÇÊ¿äÇÑ Æ¯¼ö Àåºñ, Àç·á ¹× Á¦Á¶ °øÁ¤Àº Ãʱ⠺ñ¿ëÀÌ ³ô¾Æ ±â¾÷¿¡ ¾î·Á¿òÀ» °Þ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ Æ÷Åä´Ð½º ¼³°è´Â º¹ÀâÇϱ⠶§¹®¿¡ Æ÷Åä´Ð½º¿Í ÀüÀÚ¼³°è ÀÚµ¿È­(EDA) ¸ðµÎ¿¡ Àͼ÷ÇÑ ¼÷·ÃµÈ Àü¹®°¡°¡ ¿ä±¸µÇ´Â °æ¿ì°¡ ¸¹¾Æ °³¹ß ºñ¿ëÀÌ ´õ¿í Áõ°¡ÇÏ°í ½ÃÀå ¼ö¿ä¸¦ ¹æÇØÇϰí ÀÖ½À´Ï´Ù.

Æ÷Åä´Ð½º ±â¼ú äÅà Áõ°¡

ÇコÄɾî, ÀÚµ¿Â÷, Ç×°ø¿ìÁÖ, °¡Àü µî ¾÷°è¿¡¼­´Â ÀÇ·á¿ë À̹Ì¡, LiDAR ½Ã½ºÅÛ, ȯ°æ ¸ð´ÏÅ͸µ, °í±Þ µð½ºÇ÷¹ÀÌ µî ´Ù¾çÇÑ ¿ëµµ·Î Æ÷Åä´Ð ±â¼úÀÇ È°¿ëÀÌ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. PDA ÅøÀº Æ÷Åä´Ð ÄÄÆ÷³ÍÆ®ÀÇ ¼³°è¿Í ÃÖÀûÈ­¿¡ Áß¿äÇÑ ¿ªÇÒÀ» Çϸç, ¾ö°ÝÇÑ ¼º´É ¿ä±¸»çÇ×À» ÃæÁ·Çϸç, ¾ÈÁ¤ÀûÀÎ ³×Æ®¿öÅ© ¿î¿µÀ» ½ÇÇöÇϰí ÀÖ½À´Ï´Ù. Æ÷Åä´Ð ±â¼úÀÇ Ã¤ÅÃÀÌ ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ °è¼Ó È®´ëµÇ°í ÀÖ´Â °¡¿îµ¥, PDA ¼Ö·ç¼Ç ¼ö¿ä´Â ³ô¾ÆÁú °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

Æ÷Åä´Ð µðÀÚÀÎÀÇ º¹À⼺

Æ÷Åä´Ð µð¹ÙÀ̽º¿Í ½Ã½ºÅÛÀº Á¾Á¾ º¹ÀâÇÑ ¼³°è¿Í ±¤ ÄÄÆ÷³ÍÆ®¿Í Àü±â ÄÄÆ÷³ÍÆ® °£ÀÇ »óÈ£ÀÛ¿ëÀ» Æ÷ÇÔÇϸç, Æ÷Åä´Ð½º¿Í ÀüÀÚ ¼³°è ÀÚµ¿È­(EDA) Àü¹® Áö½ÄÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¶ÇÇÑ, µµÆÄ°ü, º¯Á¶±â, °ËÃâ±â µî Æ÷Åä´Ð ÄÄÆ÷³ÍÆ®ÀÇ ¼³°è¿Í ÃÖÀûÈ­´Â ºûÀÇ ÀüÆÄ, Æí±¤ È¿°ú, ºñ¼±Çü ±¤Çаú °°Àº º¹ÀâÇÑ ¹°¸® Çö»óÀÌ °ü·ÃµÇ±â ¶§¹®¿¡ ¾î·Á¿î °úÁ¦°¡ µË´Ï´Ù. µû¶ó¼­ Æ÷Åä´Ð µðÀÚÀÎÀÇ º¹À⼺Àº ½ÃÀå È®´ë¸¦ Á¦ÇÑÇÏ´Â ÁÖ¿ä ¿äÀÎÀÌ µÇ¾ú½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

COVID-19 ÆÒµ¥¹ÍÀº Æ÷Åä´Ð µðÀÚÀÎ ÀÚµ¿È­(PDA) ½ÃÀå¿¡ ´Ù¾çÇÑ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ´çÃÊ ÆÒµ¥¹ÍÀº °ø±Þ¸ÁÀ» È¥¶õ½ÃÄÑ Á¦Á¶ °øÁ¤¸¦ Áö¿¬½ÃŰ°í ¿¬±¸ Ȱµ¿¿¡ ÁöÀåÀ» ÁÖ¾ú°í Á¦Ç° °³¹ß°ú Àü°³ Áö¿¬À¸·Î À̾îÁ³½À´Ï´Ù. ±×·¯³ª ÆÒµ¥¹ÍÀº ¼¼°èÀÇ °úÁ¦¿¡ ´ëÀÀÇÏ´Â Æ÷Åä´Ð µð¹ÙÀ̽º¿Í ½Ã½ºÅÛ°ú °°Àº ÷´Ü ±â¼úÀÇ Á߿伺À» µ¸º¸ÀÌ°Ô Çß½À´Ï´Ù. ±× °á°ú ¿ø°Ý ÀÇ·á, ¿ø°Ý °¨Áö, °í¼Ó Åë½Å µî ¿ëµµ·Î Æ÷Åä´Ð ±â¼ú¿¡ ´ëÇÑ °ü½É°ú ÅõÀÚ°¡ ³ô¾ÆÁ® PDA ¼Ö·ç¼Ç ¼ö¿ä¸¦ °ßÀÎÇϰí ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È Ŭ¶ó¿ìµå ºÐ¾ß°¡ ÃÖ´ëÈ­µÉ Àü¸Á

Ŭ¶ó¿ìµå ºÎ¹®ÀÌ ÃÖ´ë Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Ŭ¶ó¿ìµå ÀÎÇÁ¶ó¸¦ Ȱ¿ëÇÔÀ¸·Î½á ¿£Áö´Ï¾î¿Í ¿¬±¸ÀÚµéÀº °­·ÂÇÑ ÄÄÇ»ÆÃ ¸®¼Ò½º¿¡ ¿Âµð¸Çµå·Î ¾×¼¼½ºÇÒ ¼ö ÀÖ¾î °í°¡ÀÇ ¿ÂÇÁ·¹¹Ì½º Çϵå¿þ¾î ¾øÀÌ º¹ÀâÇÑ ½Ã¹Ä·¹À̼ǰú ÃÖÀûÈ­¸¦ ¼öÇàÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ Å¬¶ó¿ìµå ±â¹Ý PDA ¼Ö·ç¼ÇÀº À¯¿¬¼ºÀÌ ¶Ù¾î³ª¸ç ÀÎÅÍ³Ý ¿¬°á¸¸À¸·Îµµ ¾îµð¼­³ª Çù¾÷, ¼³°è µµ±¸ ¹× µ¥ÀÌÅÍ¿¡ ¿ø°ÝÀ¸·Î ¾×¼¼½ºÇÒ ¼ö ÀÖ½À´Ï´Ù.

¿¹Ãø±â°£ µ¿¾È Åë½Å ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀÌ ¿¹»ó

Åë½Å ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È À¯¸®ÇÑ ¼ºÀåÀÌ ¿¹»óµË´Ï´Ù. ±¤¼¶À¯, ·¹ÀÌÀú, º¯Á¶±â, ±¤°ËÃâ±â µî Æ÷Åä´Ð ÄÄÆ÷³ÍÆ®´Â °í¼Ó µ¥ÀÌÅÍ Àü¼ÛÀ» ½ÇÇöÇϴµ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϸç, ÃֽŠÅë½Å ³×Æ®¿öÅ©ÀÇ ¹éº»¿¡ Àü·ÂÀ» °ø±ÞÇÕ´Ï´Ù. ¶ÇÇÑ PDA ¼Ö·ç¼ÇÀº Åë½Å ¿ëµµ¿¡ ¸Â´Â Æ÷Åä´Ð µð¹ÙÀ̽º¸¦ ¼³°èÇϰí ÃÖÀûÈ­ÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. Àü¹ÝÀûÀ¸·Î Åë½ÅÀº Æ÷Åä´Ð µðÀÚÀÎ ÀÚµ¿È­ ½ÃÀå ¼ºÀå°ú Çõ½ÅÀ» ÃßÁøÇÏ´Â ÁÖ¿ä ½ÃÀå ºÎ¹®ÀÔ´Ï´Ù.

ÃÖ´ë Á¡À¯À² Áö¿ªº°

¾Æ½Ã¾ÆÅÂÆò¾çÀº °ß°íÇÑ Á¦Á¶°ÅÁ¡°ú °ß°íÇÑ R&D ÀÌ´Ï¼ÅÆ¼ºê¸¦ ÅëÇØ ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» ȹµæÇß½À´Ï´Ù. Áß±¹, Çѱ¹, ´ë¸¸, ½Ì°¡Æ÷¸£ µî ±¹°¡µéÀº ±â¼ú Áøº¸¿Í Çõ½ÅÀÇ ¼±Áø Áö¿ª Áß Çϳª·Î Æ÷Åä´Ð ±â¼ú °³¹ß ¹× µµÀÔ¿¡ Àû±ØÀûÀ¸·Î ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ±¤Åë½Å°ú ¹ÝµµÃ¼ Á¦Á¶ Àü¹® ±â¼ú·Î À¯¸íÇÑ ÀϺ»Àº Æ÷Åä´Ð µðÀÚÀÎ Åø°ú ¼ö¹ýÀÇ Áøº¸¿¡ Å©°Ô °øÇåÇϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

ºÏ¹Ì´Â ±â¼ú Çõ½Å, °­·ÂÇÑ »ê¾÷ ±â¹Ý, Áß¿äÇÑ R&D Ȱµ¿ÀÇ Á¶ÇÕÀ¸·Î ¿¹Ãø ±â°£ µ¿¾È ¼öÀͼº ³ôÀº ¼ºÀåÀÌ ¿¹»óµË´Ï´Ù. ¹Ì±¹°ú ij³ª´Ù´Â Æ÷Åä´Ð½º ¿¬±¸°³¹ßÀÇ ÃÖÀü¼±¿¡ ÀÖ´Â ¼ö¸¹Àº ±â¾÷, ¿¬±¸±â°ü, ´ëÇÐÀ» º¸À¯Çϰí ÀÖÀ¸¸ç, ÀÌ Áö¿ª ¼ºÀåÀÇ ÁÖ¿ä ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ºÏ¹Ì´Â À¯¸®ÇÑ ±ÔÁ¦ ȯ°æ°ú ÷´Ü ±â¼ú¿¡ ´ëÇÑ ½ÇÁúÀûÀÎ ÅõÀÚÀÇ ÇýÅÃÀ» ¹Þ°í ÀÖÀ¸¸ç, PDA ½ÃÀå ¼ºÀåÀ» ´õ¿í °­È­Çϰí ÀÖ½À´Ï´Ù.

¹«·á »ç¿ëÀÚ ÁöÁ¤ ¿ÀÆÛ¸µ :

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀû ÇÁ·ÎÆÄÀϸµ(3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ °ü½É ±â¹Ý ÁÖ¿ä ±¹°¡ ½ÃÀå ÃßÁ¤ ¹× ¿¹Ãø¡¤CAGR(ÁÖ : Ÿ´ç¼º È®Àο¡ µû¸§)
  • °æÀï º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû Á¸Àç, Àü·«Àû Á¦ÈÞ¿¡ ±â¹ÝÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç ¼Ò½º
    • 1Â÷ Á¶»ç ¼Ò½º
    • 2Â÷ Á¶»ç ¼Ò½º
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾ »ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
  • ±¸¸ÅÀÚÀÇ Çù»ó·Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô ÁøÀÔ¾÷ÀÚÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ Æ÷Åä´Ð µðÀÚÀÎ ÀÚµ¿È­ ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • ¼Ö·ç¼Ç
  • ¼­ºñ½º

Á¦6Àå ¼¼°èÀÇ Æ÷Åä´Ð µðÀÚÀÎ ÀÚµ¿È­ ½ÃÀå : Àü°³º°

  • ¿ÂÇÁ·¹¹Ì½º
  • Ŭ¶ó¿ìµå

Á¦7Àå ¼¼°èÀÇ Æ÷Åä´Ð µðÀÚÀÎ ÀÚµ¿È­ ½ÃÀå : Á¶Á÷ ±Ô¸ðº°

  • Áß¼Ò±â¾÷
  • ´ë±â¾÷

Á¦8Àå ¼¼°èÀÇ Æ÷Åä´Ð µðÀÚÀÎ ÀÚµ¿È­ ½ÃÀå : ¿ëµµº°

  • ±¤Åë½Å
  • µ¥ÀÌÅͼ¾ÅÍ
  • ¼¾½Ì°ú °èÃø
  • ±âŸ ¿ëµµ

Á¦9Àå ¼¼°èÀÇ Æ÷Åä´Ð µðÀÚÀÎ ÀÚµ¿È­ ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • ÇコÄÉ¾î ¹× »ý¸í°úÇÐ
  • Àü±âÅë½Å
  • ÀÚµ¿Â÷
  • °¡Àü
  • ÇコÄɾî
  • ±âŸ ÃÖÁ¾ »ç¿ëÀÚ

Á¦10Àå ¼¼°èÀÇ Æ÷Åä´Ð µðÀÚÀÎ ÀÚµ¿È­ ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦11Àå ÁÖ¿ä ¹ßÀü

  • °è¾à/ÆÄÆ®³Ê½Ê/Çù¾÷/ÇÕÀÛÅõÀÚ(JV)
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦12Àå ±â¾÷ ÇÁ·ÎÆÄÀÏ

  • Siemens AG
  • Ansys Inc
  • VPlphotonics GmbH
  • Luceda Photonics
  • LioniX International BV
  • Optiwave Systems Inc
  • Cadence Design Systems Inc
  • Synopsys Inc
  • AIM Photonics Inc
  • SystemLab Inc
LYJ

According to Stratistics MRC, the Global Photonic Design Automation Market is accounted for $1.61 billion in 2023 and is expected to reach $4.49 billion by 2030 growing at a CAGR of 15.8% during the forecast period. Photonic Design Automation (PDA) is a computer-aided design (CAD) approach tailored for the intricate design and optimization of photonic devices and systems. It integrates specialized algorithms and simulation tools to model, simulate, and optimize the behavior and performance of optical components like waveguides, lasers, and photo detectors. By providing a comprehensive platform for design exploration and validation, PDA accelerates the development of advanced photonic technologies, enabling innovations in telecommunications, data processing and sensing.

Market Dynamics:

Driver:

Rising demand for faster, more efficient communication systems

As the world becomes increasingly reliant on high-speed data transmission and communication networks, there is a pressing need for photonic components and systems that can facilitate rapid and reliable data transfer. Photonic design automation tools play a crucial role in meeting this demand by enabling the development and optimization of innovative photonic devices and systems. Overall, demand for faster, more efficient communication systems is a significant driver of market growth.

Restraint:

High development costs

Developing photonic devices and systems involves substantial investments in research, development, prototyping, and fabrication. The specialized equipment, materials, and fabrication processes required for photonic technologies contribute to high upfront costs, making it challenging for companies. Additionally, the complexity of photonic designs often requires skilled professionals with expertise in both photonics and electronic design automation (EDA), further increasing development costs that hinder market demand.

Opportunity:

Increasing adoption of photonic technologies

Industries such as healthcare, automotive, aerospace, and consumer electronics are increasingly leveraging photonic technologies for various applications, including medical imaging, LiDAR systems, environmental monitoring, and advanced displays. PDA tools play a crucial role in designing and optimizing photonic components to meet stringent performance requirements and ensure reliable network operation. As the adoption of photonic technologies continues to expand across diverse sectors, the demand for PDA solutions is expected to rise.

Threat:

Complexity of photonic designs

Photonic devices and systems often involve intricate designs and interactions between optical and electrical components, requiring expertise in both photonics and electronic design automation (EDA). Moreover, designing and optimizing photonic components such as waveguides, modulators, and detectors can be challenging due to the complex physical phenomena involved, including light propagation, polarization effects, and nonlinear optics. Therefore, the complexity of photonic designs is a significant factor limiting market expansion.

Covid-19 Impact

The COVID-19 pandemic had a mixed impact on the Photonic Design Automation (PDA) market. Initially, the pandemic disrupted supply chains, slowed down manufacturing processes, and hampered research activities, leading to delays in product development and deployment. However, the pandemic also highlighted the importance of advanced technologies like photonic devices and systems in addressing global challenges. As a result, there has been increased interest and investment in photonic technologies for applications such as telemedicine, remote sensing, and high-speed communications, driving demand for PDA solutions.

The cloud segment is expected to be the largest during the forecast period

The cloud segment is estimated to hold the largest share. By leveraging cloud infrastructure, engineers and researchers can access powerful computational resources on-demand, enabling them to perform complex simulations and optimizations without the need for expensive on-premises hardware. Furthermore, cloud-based PDA solutions offer greater flexibility, enabling collaboration and remote access to design tools and data from anywhere with an internet connection.

The telecommunications segment is expected to have the highest CAGR during the forecast period

The telecommunications segment is anticipated to have lucrative growth during the forecast period. Photonic components such as optical fibers, lasers, modulators, and photo detectors play critical roles in enabling high-speed data transmission, powering the backbone of modern telecommunications networks. Moreover, PDA solutions are instrumental in the design and optimization of photonic devices tailored for telecommunications applications. Overall, telecommunications represents a key market segment driving growth and innovation in the photonic design automation market.

Region with largest share:

Asia Pacific commanded the largest market share during the extrapolated period owing to the strong manufacturing base, coupled with robust research and development initiatives. As one of the leading regions in technological advancement and innovation, countries like China, South Korea, Taiwan, and Singapore are actively investing in the development and adoption of photonic technologies. Additionally, Japan, renowned for its expertise in optical communication and semiconductor manufacturing, continues to contribute significantly to advancements in photonic design tools and methodologies.

Region with highest CAGR:

North America is expected to witness profitable growth over the projection period, fuelled by a combination of technological innovation, a strong industrial base, and significant research and development activities. The United States and Canada are the primary drivers of growth in this region, hosting a multitude of companies, research institutions, and universities at the forefront of photonics research and development. Moreover, North America benefits from a favourable regulatory environment and substantial investment in advanced technologies, further propelling the growth of the PDA market.

Key players in the market

Some of the key players in the Photonic Design Automation Market include Siemens AG, Ansys Inc, VPlphotonics GmbH, Luceda Photonics, LioniX International BV, Optiwave Systems Inc, Cadence Design Systems Inc, Synopsys Inc, AIM Photonics Inc and SystemLab Inc.

Key Developments:

In October 2023, Synopsys announced it has expanded its collaboration with Arm to provide optimized IP and EDA solutions for the newest Arm(R) technology, including the Arm Neoverse(TM) V2 platform and Arm Neoverse Compute Subsystem (CSS).

In October 2022, Siemens and Microsoft announced a partnership to drive cross-industry AI adoption. As a first step, the companies are introducing Siemens Industrial Copilot, an AI-powered jointly developed assistant aimed at improving human-machine collaboration in manufacturing.

In April 2023, Siemens Digital Industries Software and IBM announced they are expanding their long-term partnership by collaborating to develop a combined software solution integrating their respective offerings for systems engineering, service lifecycle management and asset management.

In October 2022, Synopsys, Inc. and SiFive announced their new collaboration to accelerate the design and verification of SiFive RISC-V processor-based SoCs. The collaboration provides mutual customers with Synopsys Fusion QuickStart Implementation Kits (QIKs) that optimize the power, performance and area (PPA) of SiFive's Intelligence(TM) X280 and Performance(TM) P550 processor cores.

Components Covered:

  • Solution
  • Service

Deployments Covered:

  • On-Premise
  • Cloud

Organization Sizes Covered:

  • Small and Medium Enterprises
  • Large Enterprises

Applications Covered:

  • Optical Communication
  • Data Centers
  • Sensing and Measurement
  • Other Applications

End Users Covered:

  • Healthcare and Life Sciences
  • Telecommunications
  • Automotive
  • Consumer Electronics
  • Healthcare
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2021, 2022, 2023, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Photonic Design Automation Market, By Component

  • 5.1 Introduction
  • 5.2 Solution
  • 5.3 Service

6 Global Photonic Design Automation Market, By Deployment

  • 6.1 Introduction
  • 6.2 On-Premise
  • 6.3 Cloud

7 Global Photonic Design Automation Market, By Organization Size

  • 7.1 Introduction
  • 7.2 Small and Medium Enterprises
  • 7.3 Large Enterprises

8 Global Photonic Design Automation Market, By Application

  • 8.1 Introduction
  • 8.2 Optical Communication
  • 8.3 Data Centers
  • 8.4 Sensing and Measurement
  • 8.5 Other Applications

9 Global Photonic Design Automation Market, By End User

  • 9.1 Introduction
  • 9.2 Healthcare and Life Sciences
  • 9.3 Telecommunications
  • 9.4 Automotive
  • 9.5 Consumer Electronics
  • 9.6 Healthcare
  • 9.7 Other End Users

10 Global Photonic Design Automation Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Siemens AG
  • 12.2 Ansys Inc
  • 12.3 VPlphotonics GmbH
  • 12.4 Luceda Photonics
  • 12.5 LioniX International BV
  • 12.6 Optiwave Systems Inc
  • 12.7 Cadence Design Systems Inc
  • 12.8 Synopsys Inc
  • 12.9 AIM Photonics Inc
  • 12.10 SystemLab Inc
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦