![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1454026
¼¼°èÀÇ Æ÷Åä´Ð µðÀÚÀÎ ÀÚµ¿È ½ÃÀå ¿¹Ãø(-2030³â) : ºÎ¹®º° ºÐ¼®Photonic Design Automation Market Forecasts to 2030 - Global Analysis By Component (Solution and Service), Deployment (On-Premise and Cloud), Organization Size, Application, End User and By Geography |
Æ÷Åä´Ð µðÀÚÀÎ ÀÚµ¿È(PDA, Photonic Design Automation) ½ÃÀåÀº 2023³â¿¡ 16¾ï 1,000¸¸ ´Þ·¯¿´À¸¸ç, ¿¹Ãø ±â°£ µ¿¾È CAGR 15.8%·Î ÃßÀÌÇÏ¸ç ¼ºÀå ÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2030³â¿¡´Â 44¾ï 9,000¸¸ ´Þ·¯¿¡ À̸¦ Àü¸ÁÀÔ´Ï´Ù.
Æ÷Åä´Ð µðÀÚÀÎ ÀÚµ¿È(PDA)´Â Æ÷Åä´Ð ÀåÄ¡ ¹× ½Ã½ºÅÛÀÇ º¹ÀâÇÑ ¼³°è ¹× ÃÖÀûȸ¦ À§ÇÑ ÄÄÇ»ÅÍ Áö¿ø ¼³°è(CAD) Á¢±Ù¹ýÀÔ´Ï´Ù. Ư¼ö ¾Ë°í¸®Áò°ú ½Ã¹Ä·¹ÀÌ¼Ç ÅøÀ» ÅëÇÕÇÏ¿© µµÆÄ°ü, ·¹ÀÌÀú, ±¤ °ËÃâ±â¿Í °°Àº ±¤ÇÐ ±¸¼º ¿ä¼ÒÀÇ °Åµ¿°ú ¼º´ÉÀ» ¸ðµ¨¸µ, ½Ã¹Ä·¹ÀÌ¼Ç ¹× ÃÖÀûÈÇÕ´Ï´Ù. PDA´Â ¼³°è °ËÅä ¹× °ËÁõÀ» À§ÇÑ Á¾ÇÕÀûÀÎ Ç÷§ÆûÀ» Á¦°øÇÔÀ¸·Î½á °í±Þ Æ÷Åä´Ð ±â¼úÀÇ °³¹ßÀ» °¡¼ÓÈÇϰí Åë½Å, µ¥ÀÌÅÍ Ã³¸® ¹× °¨Áö¿¡¼ Çõ½ÅÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.
º¸´Ù ºü¸£°í È¿À²ÀûÀÎ Åë½Å ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
¼¼°è°¡ °í¼Ó µ¥ÀÌÅÍ Àü¼Û°ú Åë½Å ³×Æ®¿öÅ©¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ´Ã¸®¸é¼ ºü¸£°í ¾ÈÁ¤ÀûÀÎ µ¥ÀÌÅÍ Àü¼ÛÀ» ½ÇÇöÇÏ´Â Æ÷Åä´Ð ÄÄÆ÷³ÍÆ®¿Í ½Ã½ºÅÛÀÇ Çʿ伺ÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. Æ÷Åä´Ð µðÀÚÀÎ ÀÚµ¿È ÅøÀº Çõ½ÅÀûÀÎ Æ÷Åä´Ð µð¹ÙÀ̽º¿Í ½Ã½ºÅÛÀÇ °³¹ß°ú ÃÖÀûȸ¦ °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á ÀÌ ¼ö¿ä¿¡ ºÎÀÀÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Àü¹ÝÀûÀ¸·Î º¸´Ù ºü¸£°í È¿À²ÀûÀÎ Åë½Å ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ ½ÃÀå ¼ºÀåÀÇ ÁÖ¿ä ÃËÁø¿äÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù.
³ôÀº °³¹ß ºñ¿ë
Æ÷Åä´Ð µð¹ÙÀ̽º¿Í ½Ã½ºÅÛ °³¹ß¿¡´Â ¿¬±¸ °³¹ß, ÇÁ·ÎÅäŸÀÌÇÎ, Á¦Á¶¿¡ ¸¹Àº ÅõÀÚ°¡ ÇÊ¿äÇÕ´Ï´Ù. Æ÷Åä´Ð ±â¼ú¿¡ ÇÊ¿äÇÑ Æ¯¼ö Àåºñ, Àç·á ¹× Á¦Á¶ °øÁ¤Àº Ãʱ⠺ñ¿ëÀÌ ³ô¾Æ ±â¾÷¿¡ ¾î·Á¿òÀ» °Þ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ Æ÷Åä´Ð½º ¼³°è´Â º¹ÀâÇϱ⠶§¹®¿¡ Æ÷Åä´Ð½º¿Í ÀüÀÚ¼³°è ÀÚµ¿È(EDA) ¸ðµÎ¿¡ Àͼ÷ÇÑ ¼÷·ÃµÈ Àü¹®°¡°¡ ¿ä±¸µÇ´Â °æ¿ì°¡ ¸¹¾Æ °³¹ß ºñ¿ëÀÌ ´õ¿í Áõ°¡ÇÏ°í ½ÃÀå ¼ö¿ä¸¦ ¹æÇØÇϰí ÀÖ½À´Ï´Ù.
Æ÷Åä´Ð½º ±â¼ú äÅà Áõ°¡
ÇコÄɾî, ÀÚµ¿Â÷, Ç×°ø¿ìÁÖ, °¡Àü µî ¾÷°è¿¡¼´Â ÀÇ·á¿ë À̹Ì¡, LiDAR ½Ã½ºÅÛ, ȯ°æ ¸ð´ÏÅ͸µ, °í±Þ µð½ºÇ÷¹ÀÌ µî ´Ù¾çÇÑ ¿ëµµ·Î Æ÷Åä´Ð ±â¼úÀÇ È°¿ëÀÌ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. PDA ÅøÀº Æ÷Åä´Ð ÄÄÆ÷³ÍÆ®ÀÇ ¼³°è¿Í ÃÖÀûÈ¿¡ Áß¿äÇÑ ¿ªÇÒÀ» Çϸç, ¾ö°ÝÇÑ ¼º´É ¿ä±¸»çÇ×À» ÃæÁ·Çϸç, ¾ÈÁ¤ÀûÀÎ ³×Æ®¿öÅ© ¿î¿µÀ» ½ÇÇöÇϰí ÀÖ½À´Ï´Ù. Æ÷Åä´Ð ±â¼úÀÇ Ã¤ÅÃÀÌ ´Ù¾çÇÑ ºÐ¾ß¿¡¼ °è¼Ó È®´ëµÇ°í ÀÖ´Â °¡¿îµ¥, PDA ¼Ö·ç¼Ç ¼ö¿ä´Â ³ô¾ÆÁú °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
Æ÷Åä´Ð µðÀÚÀÎÀÇ º¹À⼺
Æ÷Åä´Ð µð¹ÙÀ̽º¿Í ½Ã½ºÅÛÀº Á¾Á¾ º¹ÀâÇÑ ¼³°è¿Í ±¤ ÄÄÆ÷³ÍÆ®¿Í Àü±â ÄÄÆ÷³ÍÆ® °£ÀÇ »óÈ£ÀÛ¿ëÀ» Æ÷ÇÔÇϸç, Æ÷Åä´Ð½º¿Í ÀüÀÚ ¼³°è ÀÚµ¿È(EDA) Àü¹® Áö½ÄÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¶ÇÇÑ, µµÆÄ°ü, º¯Á¶±â, °ËÃâ±â µî Æ÷Åä´Ð ÄÄÆ÷³ÍÆ®ÀÇ ¼³°è¿Í ÃÖÀûÈ´Â ºûÀÇ ÀüÆÄ, Æí±¤ È¿°ú, ºñ¼±Çü ±¤Çаú °°Àº º¹ÀâÇÑ ¹°¸® Çö»óÀÌ °ü·ÃµÇ±â ¶§¹®¿¡ ¾î·Á¿î °úÁ¦°¡ µË´Ï´Ù. µû¶ó¼ Æ÷Åä´Ð µðÀÚÀÎÀÇ º¹À⼺Àº ½ÃÀå È®´ë¸¦ Á¦ÇÑÇÏ´Â ÁÖ¿ä ¿äÀÎÀÌ µÇ¾ú½À´Ï´Ù.
COVID-19ÀÇ ¿µÇâ
COVID-19 ÆÒµ¥¹ÍÀº Æ÷Åä´Ð µðÀÚÀÎ ÀÚµ¿È(PDA) ½ÃÀå¿¡ ´Ù¾çÇÑ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ´çÃÊ ÆÒµ¥¹ÍÀº °ø±Þ¸ÁÀ» È¥¶õ½ÃÄÑ Á¦Á¶ °øÁ¤¸¦ Áö¿¬½ÃŰ°í ¿¬±¸ Ȱµ¿¿¡ ÁöÀåÀ» ÁÖ¾ú°í Á¦Ç° °³¹ß°ú Àü°³ Áö¿¬À¸·Î À̾îÁ³½À´Ï´Ù. ±×·¯³ª ÆÒµ¥¹ÍÀº ¼¼°èÀÇ °úÁ¦¿¡ ´ëÀÀÇÏ´Â Æ÷Åä´Ð µð¹ÙÀ̽º¿Í ½Ã½ºÅÛ°ú °°Àº ÷´Ü ±â¼úÀÇ Á߿伺À» µ¸º¸ÀÌ°Ô Çß½À´Ï´Ù. ±× °á°ú ¿ø°Ý ÀÇ·á, ¿ø°Ý °¨Áö, °í¼Ó Åë½Å µî ¿ëµµ·Î Æ÷Åä´Ð ±â¼ú¿¡ ´ëÇÑ °ü½É°ú ÅõÀÚ°¡ ³ô¾ÆÁ® PDA ¼Ö·ç¼Ç ¼ö¿ä¸¦ °ßÀÎÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È Ŭ¶ó¿ìµå ºÐ¾ß°¡ ÃÖ´ë鵃 Àü¸Á
Ŭ¶ó¿ìµå ºÎ¹®ÀÌ ÃÖ´ë Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Ŭ¶ó¿ìµå ÀÎÇÁ¶ó¸¦ Ȱ¿ëÇÔÀ¸·Î½á ¿£Áö´Ï¾î¿Í ¿¬±¸ÀÚµéÀº °·ÂÇÑ ÄÄÇ»ÆÃ ¸®¼Ò½º¿¡ ¿Âµð¸Çµå·Î ¾×¼¼½ºÇÒ ¼ö ÀÖ¾î °í°¡ÀÇ ¿ÂÇÁ·¹¹Ì½º Çϵå¿þ¾î ¾øÀÌ º¹ÀâÇÑ ½Ã¹Ä·¹À̼ǰú ÃÖÀûȸ¦ ¼öÇàÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ Å¬¶ó¿ìµå ±â¹Ý PDA ¼Ö·ç¼ÇÀº À¯¿¬¼ºÀÌ ¶Ù¾î³ª¸ç ÀÎÅÍ³Ý ¿¬°á¸¸À¸·Îµµ ¾îµð¼³ª Çù¾÷, ¼³°è µµ±¸ ¹× µ¥ÀÌÅÍ¿¡ ¿ø°ÝÀ¸·Î ¾×¼¼½ºÇÒ ¼ö ÀÖ½À´Ï´Ù.
¿¹Ãø±â°£ µ¿¾È Åë½Å ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀÌ ¿¹»ó
Åë½Å ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È À¯¸®ÇÑ ¼ºÀåÀÌ ¿¹»óµË´Ï´Ù. ±¤¼¶À¯, ·¹ÀÌÀú, º¯Á¶±â, ±¤°ËÃâ±â µî Æ÷Åä´Ð ÄÄÆ÷³ÍÆ®´Â °í¼Ó µ¥ÀÌÅÍ Àü¼ÛÀ» ½ÇÇöÇϴµ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϸç, ÃֽŠÅë½Å ³×Æ®¿öÅ©ÀÇ ¹éº»¿¡ Àü·ÂÀ» °ø±ÞÇÕ´Ï´Ù. ¶ÇÇÑ PDA ¼Ö·ç¼ÇÀº Åë½Å ¿ëµµ¿¡ ¸Â´Â Æ÷Åä´Ð µð¹ÙÀ̽º¸¦ ¼³°èÇϰí ÃÖÀûÈÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. Àü¹ÝÀûÀ¸·Î Åë½ÅÀº Æ÷Åä´Ð µðÀÚÀÎ ÀÚµ¿È ½ÃÀå ¼ºÀå°ú Çõ½ÅÀ» ÃßÁøÇÏ´Â ÁÖ¿ä ½ÃÀå ºÎ¹®ÀÔ´Ï´Ù.
¾Æ½Ã¾ÆÅÂÆò¾çÀº °ß°íÇÑ Á¦Á¶°ÅÁ¡°ú °ß°íÇÑ R&D ÀÌ´Ï¼ÅÆ¼ºê¸¦ ÅëÇØ ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» ȹµæÇß½À´Ï´Ù. Áß±¹, Çѱ¹, ´ë¸¸, ½Ì°¡Æ÷¸£ µî ±¹°¡µéÀº ±â¼ú Áøº¸¿Í Çõ½ÅÀÇ ¼±Áø Áö¿ª Áß Çϳª·Î Æ÷Åä´Ð ±â¼ú °³¹ß ¹× µµÀÔ¿¡ Àû±ØÀûÀ¸·Î ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ±¤Åë½Å°ú ¹ÝµµÃ¼ Á¦Á¶ Àü¹® ±â¼ú·Î À¯¸íÇÑ ÀϺ»Àº Æ÷Åä´Ð µðÀÚÀÎ Åø°ú ¼ö¹ýÀÇ Áøº¸¿¡ Å©°Ô °øÇåÇϰí ÀÖ½À´Ï´Ù.
ºÏ¹Ì´Â ±â¼ú Çõ½Å, °·ÂÇÑ »ê¾÷ ±â¹Ý, Áß¿äÇÑ R&D Ȱµ¿ÀÇ Á¶ÇÕÀ¸·Î ¿¹Ãø ±â°£ µ¿¾È ¼öÀͼº ³ôÀº ¼ºÀåÀÌ ¿¹»óµË´Ï´Ù. ¹Ì±¹°ú ij³ª´Ù´Â Æ÷Åä´Ð½º ¿¬±¸°³¹ßÀÇ ÃÖÀü¼±¿¡ ÀÖ´Â ¼ö¸¹Àº ±â¾÷, ¿¬±¸±â°ü, ´ëÇÐÀ» º¸À¯Çϰí ÀÖÀ¸¸ç, ÀÌ Áö¿ª ¼ºÀåÀÇ ÁÖ¿ä ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ºÏ¹Ì´Â À¯¸®ÇÑ ±ÔÁ¦ ȯ°æ°ú ÷´Ü ±â¼ú¿¡ ´ëÇÑ ½ÇÁúÀûÀÎ ÅõÀÚÀÇ ÇýÅÃÀ» ¹Þ°í ÀÖÀ¸¸ç, PDA ½ÃÀå ¼ºÀåÀ» ´õ¿í °ÈÇϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Photonic Design Automation Market is accounted for $1.61 billion in 2023 and is expected to reach $4.49 billion by 2030 growing at a CAGR of 15.8% during the forecast period. Photonic Design Automation (PDA) is a computer-aided design (CAD) approach tailored for the intricate design and optimization of photonic devices and systems. It integrates specialized algorithms and simulation tools to model, simulate, and optimize the behavior and performance of optical components like waveguides, lasers, and photo detectors. By providing a comprehensive platform for design exploration and validation, PDA accelerates the development of advanced photonic technologies, enabling innovations in telecommunications, data processing and sensing.
Rising demand for faster, more efficient communication systems
As the world becomes increasingly reliant on high-speed data transmission and communication networks, there is a pressing need for photonic components and systems that can facilitate rapid and reliable data transfer. Photonic design automation tools play a crucial role in meeting this demand by enabling the development and optimization of innovative photonic devices and systems. Overall, demand for faster, more efficient communication systems is a significant driver of market growth.
High development costs
Developing photonic devices and systems involves substantial investments in research, development, prototyping, and fabrication. The specialized equipment, materials, and fabrication processes required for photonic technologies contribute to high upfront costs, making it challenging for companies. Additionally, the complexity of photonic designs often requires skilled professionals with expertise in both photonics and electronic design automation (EDA), further increasing development costs that hinder market demand.
Increasing adoption of photonic technologies
Industries such as healthcare, automotive, aerospace, and consumer electronics are increasingly leveraging photonic technologies for various applications, including medical imaging, LiDAR systems, environmental monitoring, and advanced displays. PDA tools play a crucial role in designing and optimizing photonic components to meet stringent performance requirements and ensure reliable network operation. As the adoption of photonic technologies continues to expand across diverse sectors, the demand for PDA solutions is expected to rise.
Complexity of photonic designs
Photonic devices and systems often involve intricate designs and interactions between optical and electrical components, requiring expertise in both photonics and electronic design automation (EDA). Moreover, designing and optimizing photonic components such as waveguides, modulators, and detectors can be challenging due to the complex physical phenomena involved, including light propagation, polarization effects, and nonlinear optics. Therefore, the complexity of photonic designs is a significant factor limiting market expansion.
Covid-19 Impact
The COVID-19 pandemic had a mixed impact on the Photonic Design Automation (PDA) market. Initially, the pandemic disrupted supply chains, slowed down manufacturing processes, and hampered research activities, leading to delays in product development and deployment. However, the pandemic also highlighted the importance of advanced technologies like photonic devices and systems in addressing global challenges. As a result, there has been increased interest and investment in photonic technologies for applications such as telemedicine, remote sensing, and high-speed communications, driving demand for PDA solutions.
The cloud segment is expected to be the largest during the forecast period
The cloud segment is estimated to hold the largest share. By leveraging cloud infrastructure, engineers and researchers can access powerful computational resources on-demand, enabling them to perform complex simulations and optimizations without the need for expensive on-premises hardware. Furthermore, cloud-based PDA solutions offer greater flexibility, enabling collaboration and remote access to design tools and data from anywhere with an internet connection.
The telecommunications segment is expected to have the highest CAGR during the forecast period
The telecommunications segment is anticipated to have lucrative growth during the forecast period. Photonic components such as optical fibers, lasers, modulators, and photo detectors play critical roles in enabling high-speed data transmission, powering the backbone of modern telecommunications networks. Moreover, PDA solutions are instrumental in the design and optimization of photonic devices tailored for telecommunications applications. Overall, telecommunications represents a key market segment driving growth and innovation in the photonic design automation market.
Asia Pacific commanded the largest market share during the extrapolated period owing to the strong manufacturing base, coupled with robust research and development initiatives. As one of the leading regions in technological advancement and innovation, countries like China, South Korea, Taiwan, and Singapore are actively investing in the development and adoption of photonic technologies. Additionally, Japan, renowned for its expertise in optical communication and semiconductor manufacturing, continues to contribute significantly to advancements in photonic design tools and methodologies.
North America is expected to witness profitable growth over the projection period, fuelled by a combination of technological innovation, a strong industrial base, and significant research and development activities. The United States and Canada are the primary drivers of growth in this region, hosting a multitude of companies, research institutions, and universities at the forefront of photonics research and development. Moreover, North America benefits from a favourable regulatory environment and substantial investment in advanced technologies, further propelling the growth of the PDA market.
Key players in the market
Some of the key players in the Photonic Design Automation Market include Siemens AG, Ansys Inc, VPlphotonics GmbH, Luceda Photonics, LioniX International BV, Optiwave Systems Inc, Cadence Design Systems Inc, Synopsys Inc, AIM Photonics Inc and SystemLab Inc.
In October 2023, Synopsys announced it has expanded its collaboration with Arm to provide optimized IP and EDA solutions for the newest Arm(R) technology, including the Arm Neoverse(TM) V2 platform and Arm Neoverse Compute Subsystem (CSS).
In October 2022, Siemens and Microsoft announced a partnership to drive cross-industry AI adoption. As a first step, the companies are introducing Siemens Industrial Copilot, an AI-powered jointly developed assistant aimed at improving human-machine collaboration in manufacturing.
In April 2023, Siemens Digital Industries Software and IBM announced they are expanding their long-term partnership by collaborating to develop a combined software solution integrating their respective offerings for systems engineering, service lifecycle management and asset management.
In October 2022, Synopsys, Inc. and SiFive announced their new collaboration to accelerate the design and verification of SiFive RISC-V processor-based SoCs. The collaboration provides mutual customers with Synopsys Fusion QuickStart Implementation Kits (QIKs) that optimize the power, performance and area (PPA) of SiFive's Intelligence(TM) X280 and Performance(TM) P550 processor cores.