½ÃÀ庸°í¼­
»óǰÄÚµå
1454042

¼¼°èÀÇ ÀÓ»ó½ÃÇè¿ë ÀΰøÁö´É(AI) ½ÃÀå ±Ô¸ð ¹× ¿¹Ãø(-2030³â) : ºÎ¹®º° ºÐ¼®

AI in Clinical Trials Market Forecasts to 2030 - Global Analysis By Product (Methacrylic (Methacrylic Ester Copolymer), Modified Aromatic (Brominated Aromatic Matrix) and Other Products), Type, Process, Application, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°è ÀÓ»ó½ÃÇè¿ë ÀΰøÁö´É(AI)(AI in Clinical Trials) ½ÃÀåÀº 2023³â¿¡ 19¾ï ´Þ·¯¸¦ Â÷ÁöÇÏ°í ¿¹Ãø ±â°£ µ¿¾È CAGRÀº 27.6%·Î ¼ºÀåÇϰí 2030³â¿¡´Â 105¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÀÓ»ó½ÃÇè¿ë ÀΰøÁö´É(AI)À̶õ ÀΰøÁö´É(AI) ±â¼úÀ» Ȱ¿ëÇÏ¿© ȯÀÚ ¸ðÁý ¹× µ¥ÀÌÅÍ ºÐ¼®ºÎÅÍ ½ÃÇè ¼³°è, ÀǾàǰ °³¹ß¿¡ À̸£±â±îÁö ÀÓ»ó½ÃÇè °úÁ¤ÀÇ ´Ù¾çÇÑ Ãø¸éÀ» °­È­ÇÏ´Â °ÍÀ» ¸»ÇÕ´Ï´Ù. ¸Ó½Å·¯´× ¾Ë°í¸®Áò°ú µ¥ÀÌÅÍ ºÐ¼®À» Ȱ¿ëÇÔÀ¸·Î½á AI´Â ÇÁ·Î¼¼½º¸¦ °£¼ÒÈ­Çϰí, ÀûÀýÇÑ Èĺ¸ÀÚ¸¦ ½Äº°Çϰí, °á°ú¸¦ ¿¹ÃøÇϸç, Å×½ºÆ® ÇÁ·ÎÅäÄÝÀ» ÃÖÀûÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ AI ÅëÇÕÀº È¿À²¼ºÀ» ³ôÀÌ°í ºñ¿ëÀ» Àý°¨ÇÏ¸ç ±Ã±ØÀûÀ¸·Î ÀÇ·á »ê¾÷¿¡¼­ »õ·Î¿î Ä¡·á¹ý°ú Ä¡·á¹ý °³¹ßÀ» °¡¼ÓÈ­ÇÏ´Â °ÍÀ» ¸ñÇ¥·Î ÇÕ´Ï´Ù.

°ñµå¸¸»è½º ¸®¼­Ä¡ÀÇ Ãß°è¿¡ µû¸£¸é ¼¼°è Á¦¾à¾÷°è´Â 2023³â¿¡ ¾à 7,000¾ï ´Þ·¯¸¦ ¿¬±¸°³¹ß ¹× ±âŸ »ç¾÷ Àμö¿¡ ¼ÒºñÇß½À´Ï´Ù.

ȯÀÚ ¸ðÁý ¹× À¯Áö °³¼± °¡´É¼º

AI ±â¼úÀº ÀûÀýÇÑ Èĺ¸ÀÚ¸¦ ½Äº°Çϱâ À§ÇÑ ¿¹Ãø ºÐ¼®°ú Á¤Âø·üÀ» Çâ»ó½Ã۱â À§ÇÑ °³º°È­ °³ÀÔÀ» Ȱ¿ëÇÏ¿© ȯÀÚ Âü¿©¸¦ À§ÇÑ ¸ÂÃãÇü Á¢±Ù¹ýÀ» Á¦°øÇÕ´Ï´Ù. °í±Þ ¾Ë°í¸®ÁòÀ» ÅëÇØ AI´Â ȯÀÚ ¼±Á¤ °úÁ¤À» °£¼ÒÈ­Çϰí À§ÇèÇÑ °³ÀÎÀ» ÆÄ¾ÇÇÏ¿© Å»¶ô·üÀ» ÁÙÀÌ°í ½Ç½Ã°£ µ¥ÀÌÅÍ ºÐ¼®À» ±â¹ÝÀ¸·Î Å×½ºÆ® ÇÁ·ÎÅäÄÝÀ» ÃÖÀûÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â´ÉÀº ÀÓ»ó½ÃÇèÀ» º¸´Ù È¿À²ÀûÀÌ°í ¼º°øÀûÀ¸·Î À̲ø°í, ±Ã±ØÀûÀ¸·Î ÀÇÇבּ¸¸¦ ÁøÀü½Ã۰í ȯÀÚÀÇ °á°ú¸¦ °³¼±ÇÒ °ÍÀ¸·Î ±â´ëµË´Ï´Ù. À̰ÍÀÌ ½ÃÀå ¼ºÀåÀÇ ÃËÁø¿äÀÎÀÌ µÇ¾ú½À´Ï´Ù.

µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¹× º¸¾È¿¡ ´ëÇÑ ¿ì·Á

¾öû³­ ¾çÀÇ ¹Î°¨ÇÑ È¯ÀÚ Á¤º¸°¡ ¼öÁýµÇ°í ºÐ¼®µÇ±â ¶§¹®¿¡ µ¥ÀÌÅÍ À¯Ãâ ¹× ¹«´Ü ¾×¼¼½º¿¡ ´ëÇÑ °ß°íÇÑ ¾ÈÀü Á¶Ä¡¸¦ º¸ÀåÇÏ´Â °ÍÀÌ °¡Àå Áß¿äÇÕ´Ï´Ù. °³ÀÎ ÀÇ·á µ¥ÀÌÅÍÀÇ ¾Ç¿ëÀ̳ª ¾Ç¿ëÀÇ °¡´É¼ºÀº À±¸®Àû¡¤¹ýÀû ¹®Á¦¸¦ Á¦±âÇÏ°í ¾ö°ÝÇÑ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©À» ¿ä±¸ÇÕ´Ï´Ù. AI ±â¼úÀÇ ÅëÇÕÀº µ¥ÀÌÅÍÀÇ À͸íÈ­ ¹× µ¿ÀÇ °ü¸®¿¡ º¹À⼺À» °¡Á®¿À°í, Å×½ºÆ® ÇÁ·Î¼¼½º Àü¹Ý¿¡ °ÉÃÄ ÇÁ¶óÀ̹ö½Ã ¹× º¸¾È ÇÁ·ÎÅäÄÝÀ» ½ÅÁßÇÏ°Ô °í·ÁÇØ¾ß ÇÕ´Ï´Ù. µû¶ó¼­ µ¥ÀÌÅÍÀÇ ÇÁ¶óÀ̹ö½Ã¿Í º¸¾È¿¡ ´ëÇÑ ¿ì·Á°¡ ½ÃÀå ¼ºÀåÀ» ¾ïÁ¦ÇÏ´Â ¿äÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù.

AI ±â¹Ý Ç÷§Æû ÀÌ¿ë È®´ë

AI ½Ã½ºÅÛÀº ¸Ó½Å·¯´×°ú µ¥ÀÌÅÍ ºÐ¼®À» Ȱ¿ëÇÏ¿© ȯÀÚ ¸ðÁý, ½ÃÇè ¼³°è ¹× µ¥ÀÌÅÍ ºÐ¼®À» °³¼±ÇÕ´Ï´Ù. Á¦¾à±â¾÷°ú ¿¬±¸±â°üÀº ±¤¹üÀ§ÇÑ Á¤º¸¸¦ °ü¸®Çϰí ȯÀÚÀÇ ¹ÝÀÀÀ» ¿¹ÃøÇÏ´Â ´É·ÂÀ¸·Î ÀǾàǰ °³¹ßÀ» °¡¼ÓÈ­ÇÏ°í ½ÃÇè °á°ú¸¦ Çâ»ó½Ã۱â À§ÇØ AI žÀç Ç÷§ÆûÀ» Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ½ÃÀåÀÌ È®´ëµÇ°í ÀÖ´Â °ÍÀº AI°¡ ¹Þ¾Æµé¿©Áö°í ÀÖ¾î ÀÓ»ó ¿¬±¸ °³¹ßÀÇ Àü¸ÁÀ» ¹Ù²Ù´Â ȹ±âÀûÀÎ ´É·ÂÀÌ Àֱ⠶§¹®ÀÔ´Ï´Ù.

³ôÀº µµÀÔ ºñ¿ë

Àü¹® ÀÎÇÁ¶ó, °í±Þ AI ¾Ë°í¸®Áò, µ¥ÀÌÅÍ °ü¸® ½Ã½ºÅÛ, ±ÔÁ¤ Áؼö Á¶Ä¡ÀÇ Çʿ伺 µî ´Ù¾çÇÑ ¿äÀεé·ÎºÎÅÍ ºñ¿ëÀÌ ¹ß»ýÇÕ´Ï´Ù. ÀÓ»ó½ÃÇè ÇÁ·Î¼¼½ºÀÇ È¿À²¼º°ú Á¤È®¼º Çâ»ó°ú °°Àº ÀáÀçÀûÀÎ ÀÌÁ¡ÀÌ ÀÖÀ½¿¡µµ ºÒ±¸ÇÏ°í ±â¾÷Àº ÀÓ»ó ¿¬±¸¿¡ AI ±â¼úÀ» äÅÃÇÏ´Â À繫Àû ¿µÇâÀ» ½ÅÁßÇÏ°Ô °ËÅäÇØ¾ß ÇÕ´Ï´Ù. µû¶ó¼­ ÀÓ»ó½ÃÇè¿ë ÀΰøÁö´É(AI)ÀÇ ÅëÇÕÀº ³ôÀº µµÀÔ ºñ¿ëÀ¸·Î ÀÎÇØ Å« °úÁ¦°¡ µÇ°í ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ :

COVID-19 ÆÒµ¥¹ÍÀº ÀÓ»ó½ÃÇè¿ë ÀΰøÁö´É(AI)ÀÇ Ã¤ÅÃÀ» Å©°Ô °¡¼Ó½ÃÄ×½À´Ï´Ù. ÀüÅëÀûÀÎ ¿¬±¸°¡ ÁߴܵǴ µ¿¾È AI´Â ¿ø°Ý ¸ð´ÏÅ͸µ, µ¥ÀÌÅÍ ºÐ¼® ¹× ȯÀÚ ¸ðÁý ¼Ö·ç¼ÇÀ» Á¦°øÇß½À´Ï´Ù. À̷νá È¿À²¼º Çâ»ó, ºñ¿ë Àý°¨, ½ÃÇè ¿Ï·á ½Ã°£ ´ÜÃàÀÌ ½ÇÇöµÇ¾ú½À´Ï´Ù. AI´Â °¡»ó ½ÃÇè, ¿ø°Ý ȯÀÚ ¸ð´ÏÅ͸µ, ¿¹Ãø ºÐ¼®À» ¿ëÀÌÇÏ°Ô ÇÏ°í ¿¬±¸ÀÚ°¡ »õ·Î¿î »ó½Ä¿¡ ÀûÀÀÇÒ ¼ö ÀÖ°Ô Çß½À´Ï´Ù. ¶ÇÇÑ ¾öû³­ ¾çÀÇ µ¥ÀÌÅ͸¦ ´Ù·ç´Â ÀΰøÁö´ÉÀÇ ´É·ÂÀº ÆÐÅÏÀ» È®ÀÎÇϰí Ä¡·á¹ýÀ» °³¹ßÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇß½À´Ï´Ù. µû¶ó¼­ COVID-19´Â ÀÓ»ó½ÃÇè¿ë ÀΰøÁö´É(AI) ¼ºÀåÀÇ Ã˸Š¿ªÇÒÀ» Çß½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È µö·¯´× ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ Àü¸Á

¿¹Ãø ±â°£ µ¿¾È µö·¯´× ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. µö·¯´× ¾Ë°í¸®ÁòÀ» Ȱ¿ëÇÔÀ¸·Î½á ¿¬±¸ °³¹ßÀÚµéÀº ¹æ´ëÇÑ ÀÇ·á µ¥ÀÌÅͷκÎÅÍ ÀÇ¹Ì ÀÖ´Â ÅëÂû·ÂÀ» ²ø¾î³¾ ¼ö ÀÖ¾î º¸´Ù È¿À²ÀûÀÎ ½ÃÇè ¼³°è, º¸´Ù ½Å¼ÓÇÑ ÀǾàǰ °³¹ß, ȯÀÚ °á°úÀÇ °³¼±À¸·Î À̾îÁý´Ï´Ù. Á¦¾àȸ»ç³ª ¿¬±¸±â°üÀÌ ½ÃÇèÀÇ À¯È¿¼º°ú ºñ¿ë´ëºñÈ¿°ú¸¦ ³ôÀ̱â À§ÇØ ÀÌ·¯ÇÑ ±â¼úÀ» äÅÃÇÏ´Â °æ¿ì°¡ ´Ã¾î³ª°í Àֱ⠶§¹®¿¡ ÀÌ ½ÃÀå¿¡¼­ÀÇ µö·¯´× ½ÃÀåÀº Å« ¼ºÀåÀ» ÀÌ·ç°í ÀÖ½À´Ï´Ù.

¿¹Ãø±â°£ µ¿¾È °¨¿°Áõ ºÐ¾ßÀÇ CAGRÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹Ãø

°¨¿°Áõ ºÐ¾ß´Â È¿À²ÀûÀ̰í Á¤È®ÇÑ ¼Ö·ç¼ÇÀÇ Çʿ伺À¸·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È CAGRÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. AI ±â¼úÀº °í±Þ ºÐ¼®, ¿¹Ãø ¸ðµ¨¸µ ¹× µ¥ÀÌÅÍ ºÐ¼®À» Á¦°øÇÏ¿© ÀÇ»ç °áÁ¤ ÇÁ·Î¼¼½º¸¦ °­È­ÇÕ´Ï´Ù. ÀÌ ½ÃÀå ºÎ¹®ÀÇ Æ¯Â¡Àº Çõ½ÅÀûÀÎ AI ¾Ë°í¸®Áò, °ß°íÇÑ µ¥ÀÌÅÍ ÅëÇÕ ±â´É, Ä¡·áÀÇ ¾ÈÀü°ú È¿°ú¸¦ º¸ÀåÇϱâ À§ÇÑ ±ÔÁ¤ Áؼö¿¡ ÁÖ·ÂÇÏ´Â °ÍÀÔ´Ï´Ù.

ÃÖ´ë Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

ºÏ¹Ì´Â ±â¼ú Áøº¸¿Í ÇコÄɾîÀÇ È¿À²ÀûÀÌ°í µ¥ÀÌÅÍ Á᫐ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. AI ±â¼úÀº ȯÀÚ ¸ðÁý, µ¥ÀÌÅÍ ºÐ¼®, ¸ÂÃãÇü ÀÇ·á µî ÀÓ»ó½ÃÇèÀÇ ´Ù¾çÇÑ Ãø¸é¿¡ Çõ¸íÀ» °¡Á®¿Ô½À´Ï´Ù. ÁÖ¿ä Á¦¾à ȸ»çÀÇ Á¸Àç, °ß°íÇÑ ÇコÄɾî ÀÎÇÁ¶ó, ÁöÁöÀûÀÎ ±ÔÁ¦ ȯ°æ µî ÁÖ¿ä ¿äÀÎÀº ÀÌ Áö¿ªÀÇ ÀÌ ½ÃÀå È®´ë¿¡ ´õ¿í ±â¿©Çϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

¾Æ½Ã¾Æ ÅÂÆò¾çÀº Àα¸ Áõ°¡, °í·ÉÈ­, ¸¸¼º Áúȯ ºÎ´ã Áõ°¡ µî ¿äÀο¡ µû¶ó ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» À¯ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ·Î ÀÎÇØ ÀÓ»ó½ÃÇèÀÇ È¿À²¼º°ú ¼º°ú¸¦ °³¼±Çϱâ À§ÇÑ ÇコÄɾî ÀÎÇÁ¶ó¿Í AI¸¦ Æ÷ÇÔÇÑ ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡Çß½À´Ï´Ù. ÀÌ Áö¿ª¿¡¼­´Â ÇコÄÉ¾î ¹× »ý¸í°úÇп¡ ƯȭµÈ ¼ö¸¹Àº AI ½ÅÈï±â¾÷ÀÇ ÃâÇöÀ» º¼ ¼ö ÀÖ¾ú½À´Ï´Ù. ÀÌ Áö¿ª¿¡¼­´Â AI, ¸Ó½Å·¯´× ¹× µ¥ÀÌÅÍ ºÐ¼® ±â¼úÀÌ ºü¸£°Ô ¹ßÀüÇϰí ÀÖ½À´Ï´Ù.

»ç¿ëÀÚ Á¤ÀÇ ¹«·á Á¦°ø :

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀû ÇÁ·ÎÆÄÀϸµ(3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ ÀÀÇÑ ÁÖ¿ä±¹ ½ÃÀå ÃßÁ¤ ¹× ¿¹Ãø¡¤CAGR(ÁÖ : Ÿ´ç¼º È®Àο¡ µû¸§)
  • °æÀï º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû Á¸Àç, Àü·«Àû Á¦ÈÞ¿¡ ±â¹ÝÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç ¼Ò½º
    • 1Â÷ Á¶»ç ¼Ò½º
    • 2Â÷ Á¶»ç ¼Ò½º
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ±â¼ú ºÐ¼®
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾ »ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
  • ±¸¸ÅÀÚÀÇ Çù»ó·Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô ÁøÀÔ¾÷ÀÚÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ÀÓ»ó½ÃÇè¿ë ÀΰøÁö´É(AI) ½ÃÀå : Á¦°øº°

  • ¼ÒÇÁÆ®¿þ¾î
    • ÀÓ»ó½ÃÇè°ü¸®½Ã½ºÅÛ(CTMS)
    • ÀüÀÚ µ¥ÀÌÅÍ Ä¸Ã³(EDC) ½Ã½ºÅÛ
    • Åë°è ºÐ¼® ¼ÒÇÁÆ®¿þ¾î
  • ¼­ºñ½º
    • µ¥ÀÌÅÍ °ü¸® ¹× ºÐ¼®
    • ±ÔÁ¦ ÄÁ¼³ÆÃ

Á¦6Àå ¼¼°èÀÇ ÀÓ»ó½ÃÇè¿ë ÀΰøÁö´É(AI) ½ÃÀå : ±â¼úº°

  • ±³»ç ÀÖÀ½
  • µö·¯´×
  • ¸Ó½Å·¯´×
  • ÀÚ¿¬¾ð¾îó¸®
  • ÄÄÇ»ÅÍ ºñÀü
  • ¿¹Ãø ºÐ¼®
  • ±âŸ ±â¼ú

Á¦7Àå ¼¼°èÀÇ ÀÓ»ó½ÃÇè¿ë ÀΰøÁö´É(AI) ½ÃÀå : ¿ëµµº°

  • ½Å°æ°è
  • ½ÉÀåÇ÷°ü
  • ´ë»ç
  • Á¾¾çÇÐ
  • °¨¿°Áõ
  • ¸é¿ª Áúȯ
  • ±âŸ ¿ëµµ

Á¦8Àå ¼¼°èÀÇ ÀÓ»ó½ÃÇè¿ë ÀΰøÁö´É(AI) ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • Á¦¾à ¹× »ý¸í °øÇÐ ±â¾÷
  • ¼öŹ¿¬±¸±â°ü
  • Çмú±â°ü
  • ±âŸ ÃÖÁ¾ »ç¿ëÀÚ

Á¦9Àå ¼¼°èÀÇ ÀÓ»ó½ÃÇè¿ë ÀΰøÁö´É(AI) ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾Æ ÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾Æ ÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦10Àå ÁÖ¿ä ¹ßÀü

  • °è¾à/ÆÄÆ®³Ê½Ê/Çù¾÷/ÇÕÀÛÅõÀÚ(JV)
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° Ãâ½Ã
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦11Àå ±â¾÷ ÇÁ·ÎÆÄÀÏ

  • Antidote Technologies, Inc.
  • Innoplexus
  • Symphony AI
  • Saama Technologies
  • Intelligencia
  • Median Technologies
  • Paradigm Health Inc.
  • Halo Health Systems
  • Trials.Ai
  • Pharmaseal
  • Koneksa Health
  • GNS Healthcare
  • Google-Verily
  • AstraZeneca
  • AiCure, LLC
  • BioSymetrics
  • Euretos
  • Ardigen
LYJ 24.05.02

According to Stratistics MRC, the Global AI in Clinical Trials Market is accounted for $1.9 billion in 2023 and is expected to reach $10.5 billion by 2030 growing at a CAGR of 27.6% during the forecast period. AI in clinical trials refers to the utilization of artificial intelligence (AI) technologies to enhance various aspects of the trial process, from patient recruitment and data analysis to trial design and drug development. By leveraging machine learning algorithms and data analytics, AI can streamline processes, identify suitable candidates, predict outcomes, and optimize trial protocols. This integration of AI aims to improve efficiency, reduce costs, and ultimately accelerate the development of new therapies and treatments within the healthcare industry.

According to estimates by Goldman Sachs Research, the global pharmaceutical industry will have about $700 billion in 2023 to spend on R&D and acquisitions of other businesses.

Market Dynamics:

Driver:

Potential for improved patient recruitment and retention

AI technologies offer tailored approaches for patient engagement, utilizing predictive analytics to identify suitable candidates and personalized interventions to improve retention rates. Through advanced algorithms, AI can streamline patient selection processes, mitigate dropout rates by identifying at-risk individuals, and optimize trial protocols based on real-time data analysis. These capabilities hold promise for more efficient and successful clinical trials, ultimately advancing medical research and improving patient outcomes. These are the factors propelling the growth of the market.

Restraint:

Data privacy and security concerns

With vast amounts of sensitive patient information being collected and analyzed, ensuring robust safeguards against data breaches and unauthorized access is paramount. The potential for misuse or exploitation of personal health data raises ethical and legal questions, demanding stringent regulatory frameworks. The integration of AI technologies introduces complexities in data anonymization and consent management, necessitating careful consideration of privacy and security protocols throughout the trial process. Hence, data privacy and security concerns are the factors restraining the growth of the market.

Opportunity:

Growing usage of AI-based platform

AI systems improve patient recruitment, trial design, and data analysis by utilizing machine learning and data analytics. Pharmaceutical businesses and research institutions are utilizing AI-powered platforms to accelerate medication development and enhance trial outcomes, owing to its capacity to manage extensive information and forecast patient reactions. The market is expanding because of the growing acceptance of AI and its revolutionary ability to change the clinical research and development landscape.

Threat:

High implementation costs

The costs arise from various factors, including the need for specialized infrastructure, sophisticated AI algorithms, data management systems, and regulatory compliance measures. Despite the potential benefits, such as improved efficiency and accuracy in trial processes, organizations must carefully weigh the financial implications of adopting AI technologies in clinical research. Therefore, the integration of AI in Clinical Trials presents substantial challenges due to high implementation costs.

Covid-19 Impact:

The COVID-19 pandemic significantly accelerated the adoption of AI in clinical trials. With traditional research disrupted, AI offered solutions for remote monitoring, data analysis, and patient recruitment. This led to increased efficiency, reduced costs, and faster trial completion times. AI facilitated virtual trials, remote patient monitoring, and predictive analytics, enabling researchers to adapt to the new normal. Furthermore, AI's ability to handle vast amounts of data became crucial in identifying patterns and developing treatments. Thus, COVID-19 acted as a catalyst for the growth of AI in the clinical trials market.

The deep learning segment is expected to be the largest during the forecast period

The deep learning segment is expected to be the largest during the forecast period. By leveraging deep learning algorithms, researchers can extract meaningful insights from vast amounts of medical data, leading to more efficient trial designs, faster drug development, and improved patient outcomes. The market for deep learning in the market is witnessing significant growth as pharmaceutical companies and research institutions increasingly adopt these technologies to enhance the efficacy and cost-effectiveness of their trials.

The infectious diseases segment is expected to have the highest CAGR during the forecast period

The infectious diseases segment is expected to have the highest CAGR during the forecast period driven by the need for efficient and accurate solutions. AI technologies offer advanced analytics, predictive modeling, and data interpretation, enhancing decision-making processes. This market segment is characterized by innovative AI algorithms, robust data integration capabilities, and a focus on regulatory compliance to ensure the safety and efficacy of treatments.

Region with largest share:

North America is projected to hold the largest market share during the forecast period driven by technological advancements and increasing demand for efficient and data-driven solutions in healthcare. AI technologies are revolutionizing various aspects of clinical trials, including patient recruitment, data analysis, and personalized medicine. Key factors such as the presence of major pharmaceutical companies, robust healthcare infrastructure, and supportive regulatory environment further contribute to the expansion of this market in the region.

Region with highest CAGR:

Asia Pacific is projected to hold the highest CAGR over the forecast period driven by factors such as population growth, aging demographics, and the growing burden of chronic diseases. This increased investment in healthcare infrastructure and technology, including AI, to improve clinical trial efficiency and outcomes. The region was witnessing the emergence of numerous AI startups specializing in healthcare and life sciences. The region has seen rapid advancements in AI, machine learning, and data analytics technologies.

Key players in the market

Some of the key players in AI in Clinical Trials market include Antidote Technologies, Inc.,m Innoplexus, Symphony AI, Saama Technologies, Intelligencia, Median Technologies, Paradigm Health Inc., Halo Health Systems, Trials.Ai, Pharmaseal, Koneksa Health, GNS Healthcare, Google- Verily, AstraZeneca, AiCure, LLC, BioSymetrics, Euretos and Ardigen.

Key Developments:

In November 2023, AstraZeneca announced the opening of Evinova, a health technology firm whose goal is to provide patients, clinical research organizations (CROs), trial sponsors, care teams, and other stakeholders with access to digital health solutions that the pharmaceutical giant already uses on a worldwide scale.

In January 2023, Paradigm Health Inc., a US-based healthcare technology company, acquired Deep Lens Inc. for an undisclosed amount. The acquisition aims to provide Paradigm with Deep Lens's platform, which enables equal access to trials for all patients while enhancing trial efficiency and reducing the barriers to participation for healthcare providers.

Offerings Covered:

  • Software
  • Services

Technologies Covered:

  • Supervised
  • Deep learning
  • Machine learning
  • Natural Language Processing
  • Computer Vision
  • Predictive Analytics
  • Other Technologies

Applications Covered:

  • Neurological
  • Cardiovascular
  • Metabolic
  • Oncology
  • Infectious Diseases
  • Immunology Diseases
  • Other Applications

End Users Covered:

  • Pharmaceutical & Biotechnology Companies
  • Contract Research Organizations
  • Academic Institutions
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2021, 2022, 2023, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global AI in Clinical Trials Market, By Offering

  • 5.1 Introduction
  • 5.2 Software
    • 5.2.1 Clinical Trial Management Systems (CTMS)
    • 5.2.2 Electronic Data Capture (EDC) Systems
    • 5.2.3 Statistical Analysis Software
  • 5.3 Services
    • 5.3.1 Data Management and Analysis
    • 5.3.2 Regulatory Consulting

6 Global AI in Clinical Trials Market, By Technology

  • 6.1 Introduction
  • 6.2 Supervised
  • 6.3 Deep learning
  • 6.4 Machine learning
  • 6.5 Natural Language Processing
  • 6.6 Computer Vision
  • 6.7 Predictive Analytics
  • 6.8 Other Technologies

7 Global AI in Clinical Trials Market, By Application

  • 7.1 Introduction
  • 7.2 Neurological
  • 7.3 Cardiovascular
  • 7.4 Metabolic
  • 7.5 Oncology
  • 7.6 Infectious Diseases
  • 7.7 Immunology Diseases
  • 7.8 Other Applications

8 Global AI in Clinical Trials Market, By End User

  • 8.1 Introduction
  • 8.2 Pharmaceutical & Biotechnology Companies
  • 8.3 Contract Research Organizations
  • 8.4 Academic Institutions
  • 8.5 Other End Users

9 Global AI in Clinical Trials Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 Antidote Technologies, Inc.
  • 11.2 Innoplexus
  • 11.3 Symphony AI
  • 11.4 Saama Technologies
  • 11.5 Intelligencia
  • 11.6 Median Technologies
  • 11.7 Paradigm Health Inc.
  • 11.8 Halo Health Systems
  • 11.9 Trials.Ai
  • 11.10 Pharmaseal
  • 11.11 Koneksa Health
  • 11.12 GNS Healthcare
  • 11.13 Google- Verily
  • 11.14 AstraZeneca
  • 11.15 AiCure, LLC
  • 11.16 BioSymetrics
  • 11.17 Euretos
  • 11.18 Ardigen
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦