![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1476372
FDC(Fault Detection and Classification) ½ÃÀå ¿¹Ãø(-2030³â) : ÀÌ»ó À¯Çü, ±¸¼º¿ä¼Ò, ±â¼ú, ¿ëµµ, ÃÖÁ¾»ç¿ëÀÚ, Áö¿ªº° ¼¼°è ºÐ¼®Fault Detection and Classification Market Forecasts to 2030 - Global Analysis By Fault Type, Component, Technology, Application, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é, FDC(Fault Detection and Classification) ¼¼°è ½ÃÀåÀº 2023³â 48¾ï ´Þ·¯ ±Ô¸ðÀ̸ç, ¿¹Ãø ±â°£ µ¿¾È ¿¬Æò±Õ 10.9% ¼ºÀåÇÏ¿© 2030³â¿¡´Â 100¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
FDC(Fault Detection and Classification)´Â ¿£Áö´Ï¾î¸µ, Á¦Á¶, µ¥ÀÌÅÍ ºÐ¼® µî ´Ù¾çÇÑ ºÐ¾ß¿¡¼ »ç¿ëµÇ´Â ±â¼ú ¹× ¹æ¹ý·ÐÀÇ ÁýÇÕÀ¸·Î, ½Ã½ºÅÛ ¹× ÇÁ·Î¼¼½ºÀÇ ÀÌ»ó ¹× °íÀåÀ» ½Äº°ÇÏ°í ºÐ·ùÇÕ´Ï´Ù. ÁÖ¿ä ¸ñÀûÀº ½Ã½ºÅÛÀ» Áö¼ÓÀûÀ¸·Î ¸ð´ÏÅ͸µÇϰí, Á¤»ó ÀÛµ¿¿¡¼ ¹þ¾î³ª´Â °ÍÀ» °¨ÁöÇϰí, ±× Ư¼º¿¡ µû¶ó ´Ù¾çÇÑ °íÀå ¹üÁÖ·Î ºÐ·ùÇÏ´Â °ÍÀÔ´Ï´Ù.
º¹ÀâÇØÁö´Â »ê¾÷ ÇÁ·Î¼¼½º
¸Ó½Å·¯´×, ÀΰøÁö´É, ºòµ¥ÀÌÅÍ ºÐ¼®°ú °°Àº ÷´Ü ±â¼úÀÌ ÅëÇÕµÇ¾î °íÀå ½Äº°ÀÇ Á¤È®¼º°ú ¼Óµµ¸¦ ³ôÀ̰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½ÃÀå µ¿ÇâÀº ¿¹Ãø À¯Áöº¸¼ö ¹× »çÀü À§Çè °ü¸®·ÎÀÇ ÀüȯÀ» ¹Ý¿µÇÏ¿© »ê¾÷°è°¡ ´Ù¿îŸÀÓÀ» ÃÖ¼ÒÈÇϰí, ¿î¿µ È¿À²¼ºÀ» °³¼±Çϸç, Á¦Ç° ǰÁúÀ» º¸ÀåÇϰí, ±Ã±ØÀûÀ¸·Î FDC(Fault Detection and Classification) ºÐ¾ßÀÇ ¼ºÀåÀ» ÃËÁøÇÏ´Â µ¥ µµ¿òÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó ÀÌ ½ÃÀåÀº »ê¾÷ °øÁ¤ÀÇ º¹À⼺ÀÌ ±ÞÁõÇÏ´Â °ÍÀ» ¸ñ°ÝÇϰí ÀÖ½À´Ï´Ù.
µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¹× º¸¾È¿¡ ´ëÇÑ ¿ì·Á
FDC ½Ã½ºÅÛÀº ÇØÅ·, ¾Ç¼ºÄÚµå, µ¥ÀÌÅÍ Á¶ÀÛ µîÀÇ »çÀ̹ö º¸¾È À§Çù¿¡ ³ëÃâµÇ±â ½±½À´Ï´Ù. ¼ÒÇÁÆ®¿þ¾î ¹× ³×Æ®¿öÅ© ÀÎÇÁ¶óÀÇ Ãë¾àÁ¡ÀÌ ¾Ç¿ëµÇ¸é µ¥ÀÌÅÍÀÇ ¹«°á¼º ¹× ±â¹Ð¼ºÀÌ ¼Õ»óµÉ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº »ê¾÷ ÇÁ·Î¼¼½º, Àåºñ ¼º´É, ¿î¿µ ÁöÇ¥¿Í °ü·ÃµÈ ¹Î°¨ÇÑ µ¥ÀÌÅ͸¦ ´Ù·ç´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ÀÌ·¯ÇÑ µ¥ÀÌÅÍÀÇ ¾ÈÀüÇÑ Ãë±Þ, ÀúÀå ¹× Àü¼ÛÀ» º¸ÀåÇÏ´Â °ÍÀº ¹«´Ü ¾×¼¼½º ¹× µ¥ÀÌÅÍ À¯ÃâÀ» ¹æÁöÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. µû¶ó¼ ÀÌ·¯ÇÑ ¿ä¼ÒµéÀÌ ½ÃÀå ¼ºÀåÀ» ÀúÇØÇÏ´Â ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù.
¼¾¼ ±â¼úÀÇ ¹ßÀü
¼¾¼ ½ÃÀåÀº ¼¾¼ ±â¼úÀÌ Å©°Ô ¹ßÀüÇϰí ÀÖ½À´Ï´Ù. ¿©±â¿¡´Â ½Ç½Ã°£ µ¥ÀÌÅÍ ºÐ¼®À» À§ÇÑ AI ¾Ë°í¸®ÁòÀÇ ÅëÇÕ, ¿þÀÌºí¸´ º¯È¯°ú °°Àº °í±Þ ½ÅÈ£ ó¸® ±â¼úÀÇ »ç¿ë, ¹Î°¨µµ¿Í Á¤È®µµ°¡ Çâ»óµÈ ½º¸¶Æ® ¼¾¼ÀÇ °³¹ß µîÀÌ Æ÷ÇԵ˴ϴÙ. ¶ÇÇÑ, ´Ù¾çÇÑ ¼Ò½ºÀÇ µ¥ÀÌÅ͸¦ °áÇÕÇÏ¿© º¸´Ù Á¾ÇÕÀûÀÎ FDC(Fault Detection and Classification) ±â´ÉÀ» ±¸ÇöÇÏ´Â ¸ÖƼ ¼¾¼ À¶ÇÕ ½Ã½ºÅÛµµ ¹ßÀüÇϰí ÀÖ½À´Ï´Ù.
¼÷·ÃµÈ Àü¹® Àη ºÎÁ·
½ÃÀåÀº ¼÷·ÃµÈ Àü¹®°¡ ºÎÁ·À¸·Î ÀÎÇØ Å« ¾î·Á¿òÀ» °Þ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºÎÁ·Àº »ê¾÷ Àü¹Ý¿¡ °ÉÃÄ ÀÌ·¯ÇÑ ½Ã½ºÅÛÀÇ È¿À²ÀûÀÎ µµÀÔ°ú Ȱ¿ëÀ» ¹æÇØÇϰí ÀÖ½À´Ï´Ù. °íÀå °¨Áö¸¦ À§ÇÑ µ¥ÀÌÅÍ ºÐ¼® ¹× ÇØ¼®¿¡´Â º¹ÀâÇÑ Àü¹® Áö½ÄÀÌ ÇÊ¿äÇÏÁö¸¸, ÇöÀç ½ÃÀå¿¡´Â ÀÌ·¯ÇÑ Àü¹® Áö½ÄÀÌ ºÎÁ·ÇÕ´Ï´Ù. ±× °á°ú, ±â¾÷µéÀº ¿î¿µÀ» ÃÖÀûÈÇÏ°í ³ôÀº ½Å·Ú¼º°ú »ý»ê¼ºÀ» À¯ÁöÇÏ´Â µ¥ ¾î·Á¿òÀ» °Þ°í ÀÖ½À´Ï´Ù.
COVID-19´Â FDC(Fault Detection and Classification) ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ¾÷°è°¡ È¥¶õ°ú ¿î¿µ Áß´Ü¿¡ Á÷¸éÇÏ¸é¼ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ º¯µ¿Çß½À´Ï´Ù. Ãʱ⿡´Â ¿¹»ê Á¦¾à°ú ÇÁ·ÎÁ§Æ® Áö¿¬À¸·Î ÀÎÇØ ¼Óµµ°¡ ´À·ÁÁ³½À´Ï´Ù. ±×·¯³ª »ê¾÷°è°¡ ¿ø°Ý ¿î¿µ¿¡ ÀûÀÀÇÔ¿¡ µû¶ó ¾÷¹« ¿¬¼Ó¼º°ú È¿À²¼ºÀ» º¸ÀåÇϱâ À§ÇØ AI ±â¹Ý ½Ã½ºÅÛ Ã¤ÅÃÀÌ ±ÞÁõÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È´Â ±â¼ú Çõ½ÅÀ» °¡¼ÓÈÇÏ¿© ´õ¿í °·ÂÇϰí ÀûÀÀ·ÂÀÌ ¶Ù¾î³ ¼Ö·ç¼ÇÀÇ °³¹ß·Î À̾îÁ³½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È Ç¥¸é °áÇÔ ºÎ¹®ÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
Ç¥¸é °áÇÔ ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Ç¥¸é °áÇÔÀº ½ºÅ©·¡Ä¡³ª ÈìÁý¿¡¼ ±Õ¿À̳ª º¯»ö¿¡ À̸£±â±îÁö ÀáÀçÀûÀÎ Á¦Ç° °áÇÔÀ̳ª ǰÁú ¹®Á¦¸¦ ³ªÅ¸³»´Â ÁöÇ¥°¡ µÉ ¼ö ÀÖ½À´Ï´Ù. °áÇÔ Å½Áö ¹× ºÐ·ù ½Ã½ºÅÛ ½ÃÀå¿¡¼´Â Ç¥¸é °áÇÔÀ» Á¤È®ÇÏ°Ô ½Äº°ÇÏ°í ºÐ·ùÇÏ¿© Á¦Ç° ǰÁú°ú ¿î¿µ È¿À²¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ´Â ÄÄÇ»ÅÍ ºñÀü ¹× ±â°è ÇнÀ ¾Ë°í¸®Áò°ú °°Àº ÷´Ü ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
Åë°èÀû ¹æ¹ý·Ð ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
Åë°èÀû ¹æ¹ý·Ð ºÐ¾ß´Â ´Ù¾çÇÑ »ê¾÷¿¡¼ °í±Þ ºÐ¼® µµ±¸ÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ±â¹ýÀº º¹ÀâÇÑ ½Ã½ºÅÛ¿¡¼ Àå¾Ö¸¦ °¨ÁöÇÏ°í ºÐ·ùÇÏ´Â È¿À²ÀûÀÎ ¹æ¹ýÀ» Á¦°øÇÏ¿© Àû½Ã¿¡ °³ÀÔ ¹× À¯Áöº¸¼ö¸¦ º¸ÀåÇÕ´Ï´Ù. ±â°è ÇнÀ ¹× µ¥ÀÌÅÍ ºÐ¼®ÀÇ ¹ßÀüÀ¸·Î Åë°è ±â¼úÀÌ ´õ¿í Á¤±³ÇØÁ® FDC(Fault Detection and Classification) ÇÁ·Î¼¼½ºÀÇ Á¤È®¼º°ú ½Å·Ú¼ºÀÌ Çâ»óµÇ°í ÀÖ½À´Ï´Ù.
ºÏ¹Ì´Â ÀÚµ¿È ±â¼úÀÇ ¹ßÀü°ú È¿À²ÀûÀÎ »ê¾÷ °øÁ¤¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÁÖ¿ä ¾÷üµéÀº °íÀå °¨Áö Á¤È®µµ¸¦ ³ôÀÌ°í ´Ù¿îŸÀÓÀ» ÁÙÀ̱â À§ÇØ Á¤±³ÇÑ ¾Ë°í¸®Áò°ú AI ±â¹Ý ¼Ö·ç¼Ç °³¹ß¿¡ ÁÖ·ÂÇϰí ÀÖ½À´Ï´Ù. Á¦Á¶, ¿¡³ÊÁö, ÀÚµ¿Â÷ ¹× ±âŸ »ê¾÷Àº ÀÌ ½Ã½ºÅÛÀÇ ÁÖ¿ä äÅÃÀÚÀ̸ç, ½ÃÀå È®´ë¿¡ ´õ¿í ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù.
¾Æ½Ã¾ÆÅÂÆò¾çÀº »ê¾÷ÈÀÇ ¹ßÀü, ±â¼ú ¹ßÀü, È¿À²ÀûÀÎ Á¦Á¶ °øÁ¤ÀÇ Çʿ伺 µî ´Ù¾çÇÑ ¿äÀÎÀ¸·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» À¯ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ ½ÃÀåÀº ¼¾¼ ±â¼ú, µ¥ÀÌÅÍ ºÐ¼® ¾Ë°í¸®Áò, ±â°è ÇнÀ ±â´ÉÀÇ ¹ßÀüÀ¸·Î ÇýÅÃÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀ¸·Î ÀÎÇØ ½Ã½ºÅÛÀº ´õ¿í °ß°íÇϰí Á¤È®ÇÏ¸ç ´Ù¾çÇÑ Á¦Á¶ °øÁ¤¿¡ ÀûÀÀÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.
According to Stratistics MRC, the Global Fault Detection and Classification Market is accounted for $4.8 billion in 2023 and is expected to reach $10.0 billion by 2030 growing at a CAGR of 10.9% during the forecast period. Fault Detection and Classification (FDC) is a set of techniques and methodologies used in various fields, such as engineering, manufacturing, and data analysis, to identify and categorize abnormalities or faults in a system or process. The primary goal is to monitor systems continuously, detect any deviations from normal operation, and classify these deviations into different fault categories based on their characteristics.
Increasing complexity in industrial processes
Advanced technologies like machine learning, artificial intelligence, and big data analytics are being integrated to enhance the accuracy and speed of identifying faults. This market trend reflects a shift towards predictive maintenance and proactive risk management, enabling industries to minimize downtime, improve operational efficiency, and ensure product quality, ultimately driving growth in the fault detection and classification sector. Therefore, the market is witnessing a surge in complexity within industrial processes.
Data privacy and security concerns
FDC systems are susceptible to cybersecurity threats such as hacking, malware, and data manipulation. Vulnerabilities in software or network infrastructure can be exploited to compromise the integrity and confidentiality of data. These systems often deal with sensitive data related to industrial processes, equipment performance, and operational metrics. Ensuring the secure handling, storage, and transmission of this data is essential to prevent unauthorized access or data breaches. Hence, these are the factors restraining the growth of the market.
Advancements in sensor technologies
In the market, sensor technologies have witnessed significant advancements. These include the integration of AI algorithms for real-time data analysis, the use of advanced signal processing techniques like wavelet transforms, and the development of smart sensors with enhanced sensitivity and accuracy. Additionally, there's a trend towards multi-sensor fusion systems that combine data from various sources for more comprehensive fault detection and classification capabilities.
Lack of skilled professionals
The market is experiencing a significant challenge due to a shortage of skilled professionals. This scarcity hampers the efficient implementation and utilization of these systems across industries. The complexities involved in analyzing and interpreting data for fault detection require specialized expertise, which is currently lacking in the market. As a result, companies face hurdles in optimizing their operations and maintaining high levels of reliability and productivity.
The COVID-19 pandemic significantly impacted the Fault Detection and Classification market. With industries facing disruptions and reduced operations, the demand for solutions fluctuated. Initially, there was a slowdown due to budget constraints and project delays. However, as industries adapted to remote operations, there was a surge in the adoption of AI-driven systems to ensure operational continuity and efficiency. This shift accelerated innovation and led to the development of more robust and adaptable solutions.
The surface defects segment is expected to be the largest during the forecast period
The surface defects segment is expected to be the largest during the forecast period. These defects, ranging from scratches and dents to cracks and discoloration, are indicators of potential product failures or quality issues. In the market for fault detection and classification systems, there is a growing demand for advanced technologies like computer vision and machine learning algorithms that can accurately identify and categorize surface defects, leading to improved product quality and operational efficiency.
The statistical methods segment is expected to have the highest CAGR during the forecast period
The statistical methods segment is expected to have the highest CAGR during the forecast period driven by the increasing adoption of advanced analytics tools across various industries. These methods offer efficient ways to detect and classify faults in complex systems, ensuring timely interventions and maintenance. With advancements in machine learning and data analytics, statistical techniques are becoming more sophisticated, providing enhanced accuracy and reliability in fault detection and classification processes.
North America is projected to hold the largest market share during the forecast period driven by advancements in automation technologies and increasing demand for efficient industrial processes. Key players are focusing on developing sophisticated algorithms and AI-powered solutions to enhance fault detection accuracy and reduce downtime. Industries such as manufacturing, energy, and automotive are major adopters of the systems, further fueling market expansion.
Asia Pacific is projected to hold the highest CAGR over the forecast period driven by various factors such as increasing industrialization, technological advancements, and the need for efficient manufacturing processes. The market has benefited from advancements in sensor technologies, data analytics algorithms, and machine learning capabilities. These advancements have made systems more robust, accurate, and adaptable to a wide range of manufacturing processes.
Key players in the market
Some of the key players in Fault Detection and Classification market include Teledyne Technologies, OMRON Corporation, Microsoft, Keyence Corporation, Applied Materials, Inc., Synopsys, Inc., Cognex Corporation, Nikon Corporation, KLA Corporation, Amazon Web Services, Inc., Tokyo Electron Limited, Siemens, Datalogic, BeyondMinds, Qualitas Technologies., Elunic AG, DNV Group AS and EinnoSys Technologies Inc.
In August 2023, Synopsys, Inc. launched Synopsys Software Risk Manager, a powerful new application security posture management (ASPM) solution. Software Risk Manager enables security and development teams to simplify, align and streamline their application security testing across projects, teams and application security testing (AST) tools.
In July 2022, Microsoft collaborated with Birlasoft to Establish Generative AI Centre of Excellence, Shares Rebound After Announcement. Birlasoft will utilize Azure OpenAI Service features for product design, process optimization, quality and defect detection, predictive maintenance, and digital twins for the manufacturing sector.