![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1476403
°íÁ¤Çü ÃàÀüÁö ´ë±â Àü·Â ½ÃÀå ¿¹Ãø(-2030³â) : ¼¼°è ºÐ¼® - ±â¼úº°, ¿ëµµº°, Áö¿ªº°Stationary Storage Standby Power Market Forecasts to 2030 - Global Analysis By Technology (Lead-Acid Batteries, Vanadium Redox Flow Batteries and Other Technologies), Application (Commercial, Residential and Other Applications) and By Geography |
¼¼°èÀÇ °íÁ¤Çü ÃàÀüÁö ´ë±â Àü·Â ½ÃÀå ±Ô¸ð´Â 2023³â¿¡ 72¾ï 6,000¸¸ ´Þ·¯¿¡ ´ÞÇϸç, ¿¹Ãø ±â°£ Áß CAGR 11.0%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 150¾ï 7,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù.
°íÁ¤Çü ÃàÀüÁö ´ë±â Àü·ÂÀº ºñ»ó½Ã ¶Ç´Â ÁÖÀü¿øÀÌ °íÀå ³µÀ» ¶§ Àü·ÂÀ» °ø±ÞÇϱâ À§ÇØ ¼³°èµÈ ¹é¾÷ Àü¿ø ½Ã½ºÅÛÀ» ¸»ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ÀϹÝÀûÀ¸·Î ¹èÅ͸®, ¹ßÀü±â ¶Ç´Â ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼Ç°ú °áÇÕµÈ Å¾籤 ÆÐ³Î°ú °°Àº Àç»ý ¿¡³ÊÁö¿øÀ» Æ÷ÇÔÇÏ´Â °íÁ¤½Ä ½Ã½ºÅÛÀÔ´Ï´Ù. º´¿ø, µ¥ÀÌÅͼ¾ÅÍ, Åë½Å ½Ã¼³°ú °°Àº Áß¿äÇÑ ÀÎÇÁ¶ó¿¡ ¸Å¿ì Áß¿äÇϸç, Á¤Àü½Ã Áß´Ü ¾ø´Â ¿î¿µÀ» º¸ÀåÇÕ´Ï´Ù. °íÁ¤Çü ÃàÀüÁö ´ë±â Àü·Â ½Ã½ºÅÛÀº °èÅ뿬°èÇü ¶Ç´Â µ¶¸³ÇüÀ̸ç, ´Ù¾çÇÑ ¿ëµµ¿¡ À¯¿¬¼º°ú ½Å·Ú¼ºÀ» Á¦°øÇÕ´Ï´Ù. Á¤Àü¿¡ ´ëÇÑ º¹¿ø·ÂÀ» °ÈÇϰí, µµ½Ã¿Í ¿Üµý Áö¿ª¿¡¼ ÇʼöÀûÀÎ ¼ºñ½ºÀÇ Áö¼ÓÀ» Áö¿øÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù.
Àç»ý¿¡³ÊÁö ÅëÇÕ
Àç»ý¿¡³ÊÁöÀÇ ÅëÇÕÀº ž籤 ¹× dz·Â µî Àç»ý¿¡³ÊÁöÀÇ °£Ç漺 ¹®Á¦¸¦ ÇØ°áÇÔÀ¸·Î½á °íÁ¤Çü ÃàÀüÁö ´ë±â Àü·Â ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ÇÇÅ© ½Ã°£´ë¿¡ »ý»êµÈ À׿© ¿¡³ÊÁö¸¦ ÀúÀåÇÏ¿© Àü·Â »ý»ê·®ÀÌ Àû°Å³ª ¼ÛÀü¸ÁÀÌ Áß´ÜµÉ ¶§ ¾ÈÁ¤ÀûÀÎ Àü·Â °ø±ÞÀ» º¸ÀåÇÕ´Ï´Ù. Àç»ý¿¡³ÊÁöÀÇ º¸±ÞÀÌ È®´ëµÊ¿¡ µû¶ó ±× º¯µ¿¼ºÀ» »ó¼âÇÒ ¼ö ÀÖ´Â ¾ÈÁ¤ÀûÀÎ ¹é¾÷ Àü¿ø¿¡ ´ëÇÑ Çʿ伺ÀÌ Áõ°¡ÇÏ¸é¼ °íÁ¤Çü ÃàÀüÁö ´ë±â Àü·Â ½ÃÀåÀÇ ¼ºÀå¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÅëÇÕÀº Àü·Â¸ÁÀÇ ¾ÈÁ¤¼ºÀ» ÃËÁøÇϰí ȼ® ¿¬·á¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ã߸ç Áö¼Ó°¡´ÉÇÑ ¿¡³ÊÁö·ÎÀÇ ÀüȯÀ» °¡¼ÓÈÇÒ ¼ö ÀÖ½À´Ï´Ù.
±ÔÁ¦»óÀÇ Àå¾Ö¹°
±ÔÁ¦Àû Àå¾Ö¹°Àº °íÁ¤Çü ÃàÀüÁö ´ë±â Àü·Â ½ÃÀåÀÇ ¼ºÀå¿¡ Å« °É¸²µ¹·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Àå¾Ö¹°Àº º¹ÀâÇÑ ÀÎÇã°¡ ÀýÂ÷, ¾ÈÀü ±âÁØ, »óÈ£ ¿¬°á ±ÔÁ¦¿¡¼ ±âÀÎÇÏ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. °¢ ÁÖ¿Í Áö¿ª¸¶´Ù ´Ù¸¥ Á¤Ã¥À¸·Î ÀÎÇØ Áö¿ª °£ ºÒÀÏÄ¡°¡ ¹ß»ýÇÏ¿© ½ÃÀå È®´ë¿¡ °É¸²µ¹ÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ È¯°æ ±ÔÁ¦¿Í Àü·Â¸Á ±ÔÁ¤ Áؼö ¿ª½Ã º¹À⼺À» °¡Áß½ÃÄÑ ±â¾÷ÀÇ ºñ¿ë°ú ½ÃÀå Ãâ½Ã ½Ã°£À» Áõ°¡½Ãŵ´Ï´Ù.
Àü±âÀÚµ¿Â÷(EV) ÃæÀü ÀÎÇÁ¶ó
EVÀÇ º¸±Þ°ú ÇÔ²² ÃæÀü¼Ò¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ÃæÀü¼ÒÀÇ ¼ºñ½º Áß´ÜÀ» ¹æÁöÇÒ ¼ö ÀÖ´Â °·ÂÇÑ ¹é¾÷ Àü¿ø ¼Ö·ç¼ÇÀÌ ÇÊ¿äÇÕ´Ï´Ù. °íÁ¤½Ä Àü·Â ÀúÀå ½Ã½ºÅÛÀº Àü·Â¸Á Á¤ÀüÀ̳ª ¼ö¿ä ÇÇÅ©½Ã ¹é¾÷ Àü·ÂÀ» °ø±ÞÇÏ¿© EV ÃæÀü ³×Æ®¿öÅ©ÀÇ ½Å·Ú¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ÇÇÅ© Â÷´Ü ¹× ºÎÇÏ ºÐ»ê°ú °°Àº ±×¸®µå ¼ºñ½º¸¦ Á¦°øÇÏ¿© ÃæÀü ÀÎÇÁ¶óÀÇ Àü¹ÝÀûÀÎ È¿À²¼ºÀ» ÃÖÀûÈÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ °íÁ¤½Ä ÃàÀüÁö¸¦ EV ÃæÀü¼Ò¿Í ÅëÇÕÇÔÀ¸·Î½á »ç¾÷ÀÚ´Â ¿î¿µ ºñ¿ëÀ» Àý°¨ÇÏ°í ³×Æ®¿öÅ©ÀÇ º¹¿ø·ÂÀ» Çâ»ó½ÃÄÑ ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÒ ¼ö ÀÖ½À´Ï´Ù.
ºñ¿ë ¿ªÇÐ
ºñ¿ë ¿ªÇÐÀº ÁÖ·Î ÀúÀå ±â¼ú°ú °ü·ÃµÈ °íÀ¯ÇÑ ºñ¿ëÀ¸·Î ÀÎÇØ Å« À§ÇùÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¹èÅ͸® ¹× ±âŸ Àü±â ÀúÀå ½Ã½ºÅÛÀÇ Ãʱâ ÅõÀÚ ºñ¿ëÀº »ó´çÇÒ ¼ö ÀÖÀ¸¸ç, ÀÌ´Â ÀáÀçÀûÀÎ ±¸¸Å ÀÇ¿åÀ» ¶³¾î¶ß¸± ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ À¯Áöº¸¼ö, ±³Ã¼, Àü±â·á µî Áö¼ÓÀûÀÎ ¿î¿µ ºñ¿ëÀº ¿¹»êÀ» ´õ¿í ¾Ð¹ÚÇÒ ¼ö ÀÖ½À´Ï´Ù. ½ÃÀå °æÀï·Â°ú ±â¼ú ¹ßÀüÀº ºñ¿ë Àý°¨°ú È¿À²¼º Çâ»óÀ» ÅëÇØ ÀÌ·¯ÇÑ À§ÇùÀ» ¿ÏÈÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±×·¯³ª Áö¼ÓÀûÀÎ ¹ßÀüÀÌ ¾ø´Ù¸é, ³ôÀº ºñ¿ëÀº ½ÃÀå ħÅõ¸¦ Á¦ÇÑÇÏ°í ´ë±â Àü·Â¿ë °íÁ¤½Ä Àü·Â ÀúÀå ¼Ö·ç¼ÇÀÇ º¸±ÞÀ» ¹æÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.
ºÀ¼â¿Í ±ÔÁ¦·Î ÀÎÇØ °ø±Þ¸Á°ú °Ç¼³ Ȱµ¿ÀÌ Áß´ÜµÇ¸é¼ °íÁ¤½Ä Àü·Â ÀúÀå ½Ã½ºÅÛÀÇ µµÀÔÀÌ Áö¿¬µÇ°Å³ª µÐȵǾú½À´Ï´Ù. ¶ÇÇÑ ºÒÈ®½ÇÇÑ °æÁ¦ Àü¸ÁÀ¸·Î ÀÎÇØ ¿¹»êÀÌ »è°¨µÇ°í ºÒÇÊ¿äÇÑ ÇÁ·ÎÁ§Æ®°¡ ¿¬±âµÇ¸é¼ ´ë±â Àü·Â ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¿¡ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ±×·¯³ª ÆÒµ¥¹ÍÀº ƯÈ÷ Áß¿äÇÑ ÀÎÇÁ¶ó¿Í ÀÇ·á ½Ã¼³¿¡¼ ½Å·ÚÇÒ ¼ö ÀÖ´Â ¹é¾÷ Àü¿ø °ø±Þ ÀåºñÀÇ Á߿伺À» ºÎ°¢½Ã۸ç ÀϺΠ¼ö¿ä¸¦ °ßÀÎÇß½À´Ï´Ù. ½ÃÀåÀº ÆÒµ¥¹ÍÀÇ ºÒÈ®½Ç¼ºÀ» ±Øº¹ÇÏ´Â °úÁ¤¿¡¼ µµÀü°ú ±âȸ°¡ È¥ÀçµÈ °æÇèÀ» Çß½À´Ï´Ù.
¿¹Ãø ±â°£ Áß ¸®Æ¬À̿ ¹èÅ͸® ºÎ¹®ÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
ÈÞ´ë¿ë ¹èÅ͸® ´ë±â Àü·Â ½ÃÀå¿¡¼ ¸®Æ¬À̿ ¹èÅ͸®ÀÇ ¼ºÀåÀº ³ôÀº ¿¡³ÊÁö ¹Ðµµ·Î ÀÎÇØ °ø°£ Á¦¾àÀÌ ÀÖ´Â °íÁ¤Çü ¿ëµµ¿¡ ÇʼöÀûÀÎ ¼ÒÇüÀÇ È¿À²ÀûÀÎ Àü·Â ÀúÀå ¼Ö·ç¼ÇÀÌ °¡´ÉÇØÁ³±â ¶§¹®ÀÔ´Ï´Ù. ¸®Æ¬À̿ ¹èÅ͸®´Â ±âÁ¸ ³³ ÃàÀüÁö¿¡ ºñÇØ ¼ö¸íÀÌ ±æ¾î ÀæÀº ±³Ã¼ ¹× À¯Áöº¸¼öÀÇ Çʿ伺À» ÁÙ¿© Àü¹ÝÀûÀÎ ¿î¿µ ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¹èÅ͸® ±â¼úÀÇ ¹ßÀüÀ¸·Î ¾ÈÀü¼ºÀÌ Çâ»óµÇ¾î ´ë±Ô¸ð °íÁ¤½Ä ¹èÅ͸® µµÀÔ¿¡ µû¸¥ ÀáÀçÀû À§Çè¿¡ ´ëÇÑ ¿ì·Á¸¦ ÇØ¼ÒÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ Àç»ý ¿¡³ÊÁö¿øÀÌ Àü·Â¸Á¿¡ Á¡Á¡ ´õ ¸¹ÀÌ ÅëÇյʿ¡ µû¶ó ½Å·ÚÇÒ ¼ö ÀÖ´Â ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ¸é¼ ¸®Æ¬À̿ ¹èÅ͸®ÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµÇ´Â »ê¾÷ ºÎ¹®
»ê¾÷ ºÎ¹®Àº °íÁ¤Çü ÃàÀüÁö ´ë±â Àü·Â ½ÃÀå¿¡¼ °ý¸ñÇÒ ¸¸ÇÑ ¼ºÀåÀ» º¸À̰í ÀÖ½À´Ï´Ù. »ê¾÷°è´Â ¿î¿µÀ» À¯ÁöÇϱâ À§ÇØ ¹«Á¤Àü Àü¿ø °ø±ÞÀ» ¿ì¼±½ÃÇÏ´Â °æÇâÀÌ ³ô¾ÆÁö¸é¼ ½Å·ÚÇÒ ¼ö ÀÖ´Â ´ë±â Àü·Â ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Á¦Á¶ °øÁ¤ÀÌ ´õ¿í ÀÚµ¿ÈµÇ°í µ¥ÀÌÅÍ Áß½Éȵʿ¡ µû¶ó Áß¿äÇÑ Àåºñ¸¦ º¸È£ÇÏ°í ´Ù¿îŸÀÓÀ» ¹æÁöÇϱâ À§ÇÑ ¹é¾÷ Àü¿ø¿¡ ´ëÇÑ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ Á¤Àü½Ã ¹ß»ýÇÏ´Â °æÁ¦Àû ¼Õ½Ç¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁö¸é¼ »ê¾÷ ½Ã¼³¿¡¼ °·ÂÇÑ ´ë±â Àü·Â ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¿¡³ÊÁö ÀúÀå ±â¼úÀÇ ¹ßÀüÀº ´ë±â Àü·Â ½Ã½ºÅÛÀÇ È¿À²¼º°ú È®À强À» Çâ»ó½ÃÄÑ ºñ¿ë È¿À²ÀûÀ̰í Áö¼Ó°¡´ÉÇÑ ¼Ö·ç¼ÇÀ» ¿øÇÏ´Â »ê¾÷ »ç¿ëÀڵ鿡°Ô ¾îÇÊÇϰí ÀÖ½À´Ï´Ù.
ÃÖ±Ù ¼ö³â°£ ºÏ¹ÌÁö¿ªÀº °íÁ¤Çü ÃàÀüÁö ´ë±â Àü·Â ½ÃÀåÀÌ Å©°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼ºÀåÀÇ ¹è°æ¿¡´Â Ç㸮ÄÉÀÎ, »êºÒ µî ±â»ó À̺¯ÀÇ ºóµµ°¡ Áõ°¡ÇÏ¸é¼ ÁÖ°Å, »ó¾÷ ¹× »ê¾÷ ºÐ¾ß¿¡¼ ¾ÈÁ¤ÀûÀÎ ¹é¾÷ Àü¿ø ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí Àֱ⠶§¹®ÀÔ´Ï´Ù. ¶ÇÇÑ ¹èÅ͸® ±â¼úÀÇ ¹ßÀü°ú Àç»ý ¿¡³ÊÁö ÅëÇÕ ¹× ±×¸®µå º¹¿ø·ÂÀ» ÃËÁøÇÏ´Â Á¤ºÎ Áö¿ø Á¤Ã¥ÀÌ °áÇÕµÇ¾î °íÁ¤Çü ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
¾Æ½Ã¾ÆÅÂÆò¾çÀº ¸î °¡Áö Áß¿äÇÑ ¿äÀÎÀ¸·Î ÀÎÇØ °íÁ¤Çü ÃàÀüÁö ´ë±â Àü·Â ½ÃÀåÀÌ Å©°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. Áß±¹, Àεµ, ÀϺ»°ú °°Àº ±¹°¡µéÀÇ ±Þ¼ÓÇÑ µµ½ÃÈ¿Í »ê¾÷È·Î ÀÎÇØ ¾ÈÁ¤ÀûÀÎ Àü·Â ¹é¾÷ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ È¯°æ Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁö¸é¼ ž籤, dz·Â µî Àç»ý ¿¡³ÊÁö·Î ±¸µ¿µÇ´Â °íÁ¤½Ä ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¿¡³ÊÁö ÀúÀåÀåºñ º¸±ÞÀ» ÃËÁøÇϱâ À§ÇÑ Á¤ºÎÀÇ ±¸»ó°ú Áö¿ø Á¤Ã¥Àº ½ÃÀå È®´ë¸¦ ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¹èÅ͸® ±â¼úÀÇ ¹ßÀü°ú ºñ¿ëÀÇ Ç϶ôÀ¸·Î ÀÎÇØ ¼ÒºñÀÚ ¹× ±â¾÷Àº °íÁ¤Çü ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼ÇÀ» ´õ¿í Ä£¼÷ÇÏ°í ¸Å·ÂÀûÀ¸·Î ¹Þ¾ÆµéÀ̰í ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Stationary Storage Standby Power Market is accounted for $7.26 billion in 2023 and is expected to reach $15.07 billion by 2030 growing at a CAGR of 11.0% during the forecast period. Stationary Storage Standby Power refers to the backup power systems designed to provide electricity during emergencies or when the primary power source fails. These systems are stationary and typically include batteries, generators, or renewable energy sources like solar panels coupled with energy storage solutions. They are crucial for critical infrastructure, such as hospitals, data centers, and telecommunications facilities, ensuring uninterrupted operations during power outages. Stationary storage standby power systems can be grid-tied or off-grid, offering flexibility and reliability in various applications. They play a vital role in enhancing resilience against power disruptions and supporting the continuity of essential services in both urban and remote areas.
Renewable energy integration
Renewable energy integration drives the demand for stationary storage standby power solutions by addressing intermittency issues inherent in renewables like solar and wind. These systems store excess energy generated during peak production periods, ensuring a stable power supply during low-generation phases or grid outages. As renewable sources become more prevalent, the need for reliable backup power to offset their variability increases, spurring the growth of the stationary storage standby power market. This integration fosters grid stability, reduces reliance on fossil fuels, and accelerates the transition towards a sustainable energy landscape.
Regulatory hurdles
Regulatory hurdles pose significant challenges to the growth of the stationary storage standby power market. These hurdles often stem from complex permitting processes, safety standards, and interconnection regulations. Varying state and local policies create inconsistencies across different regions, hindering market expansion. Compliance with environmental regulations and grid codes also adds to the complexity, increasing costs and time-to-market for companies.
Electric vehicle (EV) charging infrastructure
As more EVs are adopted, the demand for charging stations increases, requiring robust backup power solutions to ensure uninterrupted service. Stationary storage systems can provide backup power during grid outages or peak demand periods, enhancing the reliability of EV charging networks. These systems can offer grid services such as peak shaving and load balancing, optimizing the overall efficiency of the charging infrastructure. Furthermore, by integrating stationary storage with EV charging stations, operators can reduce operational costs and enhance the resilience of their networks, thereby driving further growth in the market.
Cost dynamics
Cost dynamics pose a significant threat primarily due to the inherent expenses associated with storage technologies. Initial investment costs for batteries and other storage systems can be substantial, deterring potential buyers. Additionally, ongoing operational expenses such as maintenance, replacement, and electricity costs can further strain budgets. Market competitiveness and technological advancements play crucial roles in mitigating these threats by driving down costs and improving efficiency. However, without consistent progress, high costs may limit market penetration and hinder the widespread adoption of stationary storage solutions for standby power.
With lockdowns and restrictions disrupting supply chains and construction activities, the deployment of stationary storage systems faced delays and slowdowns. In addition, economic uncertainty led to budget cuts and the deferment of non-essential projects, affecting demand for standby power solutions. However, the pandemic also underscored the importance of reliable backup power, especially for critical infrastructure and healthcare facilities, driving some demand. The market experienced a mix of challenges and opportunities as it navigated through the pandemic's uncertainties.
The lithium-ion batteries segment is expected to be the largest during the forecast period
The growth of lithium-ion batteries in the stationary storage standby power market can be attributed to their high energy density, allowing for compact and efficient storage solutions, which are essential for stationary applications where space is limited. Lithium-ion batteries offer a longer cycle life compared to traditional lead-acid batteries, reducing the need for frequent replacements and maintenance and thus lowering overall operating costs. Moreover, advancements in battery technology have improved safety features, addressing concerns about potential risks associated with large-scale stationary storage deployments. Furthermore, the increasing integration of renewable energy sources into power grids has heightened the demand for reliable energy storage solutions, driving the adoption of lithium-ion batteries.
The industrial segment is expected to have the highest CAGR during the forecast period
In the stationary storage standby power market, the industrial segment is experiencing notable growth. Industries increasingly prioritize uninterrupted power supply to maintain operations, driving demand for reliable standby power solutions. As manufacturing processes become more automated and data-driven, the need for backup power to safeguard critical equipment and prevent downtime escalates. Furthermore, growing awareness of the economic losses incurred during power outages prompts industrial facilities to invest in robust standby power infrastructure. Moreover, advancements in energy storage technologies enhance the efficiency and scalability of standby power systems, appealing to industrial users seeking cost-effective and sustainable solutions.
In recent years, North America has witnessed significant growth in the stationary storage standby power market. This growth can be attributed to the increasing frequency of extreme weather events, such as hurricanes and wildfires, which has heightened the demand for reliable backup power solutions across residential, commercial, and industrial sectors. Additionally, advancements in battery technology, coupled with supportive government policies promoting renewable energy integration and grid resilience, have spurred the adoption of stationary storage solutions.
The Asia-Pacific region has experienced substantial growth in the stationary storage standby power market due to several key factors. Rapid urbanization and industrialization in countries like China, India, and Japan have increased the demand for reliable power backup solutions. Additionally, rising awareness about environmental sustainability has propelled the adoption of stationary storage systems powered by renewable energy sources like solar and wind. Government initiatives and supportive policies promoting energy storage deployment have further fueled market expansion. Moreover, advancements in battery technology and declining costs have made stationary storage solutions more accessible and attractive to consumers and businesses.
Key players in the market
Some of the key players in Stationary Storage Standby Power market include Abb Ltd, Bloom Energy Corporation, Cummins Inc, Eaton Corporation Plc, Generac Holdings Inc, General Electric Company, Lg Chem Ltd., Schneider Electric Se, Siemens Ag and Tesla Inc.
In April 2024, Tesla has inked a strategic agreement with Tata Electronics to acquire semiconductor chips for its global operations. This agreement, executed discreetly a few months ago, holds significance as it positions Tata Electronics as a supplier for top-tier global clients seeking to establish a pivotal segment of their semiconductor value chain within India.
In April 2024, South Korea firm LG Chem has agreed a memorandum of understanding with Ansan City to recycle its end-of-life polyvinyl chloride (PVC). An estimated 15 000 tonnes of PVC is collected in Ansan in Gyeonggi Province every year. Using chemical recycling, LG Chem will convert it into pyrolysis oil to power its new facility in Dangjin. The site is scheduled to open in the second half of this year.