½ÃÀ庸°í¼­
»óǰÄÚµå
1489349

¿¹Áöº¸Àü ½ÃÀå ¿¹Ãø(-2030³â) : ÄÄÆ÷³ÍÆ®, ¸ð´ÏÅ͸µ ±â¼ú, Á¶Á÷ ±Ô¸ð, ±â¼ú, ÃÖÁ¾»ç¿ëÀÚ, Áö¿ªº° ¼¼°è ºÐ¼®

Predictive Maintenance Market Forecasts to 2030 - Global Analysis By Component, Monitoring Technique, Organization Size, Technology, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¼¼°èÀÇ ¿¹Áöº¸Àü ½ÃÀå ±Ô¸ð´Â 2023³â¿¡ 103¾ï 4,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇϸç, ¿¹Ãø ±â°£ Áß CAGR 31.7%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 710¾ï 5,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ°í ÀÖ½À´Ï´Ù. ¿¹Áöº¸Àü ½ÃÀå¿¡´Â ÷´Ü ºÐ¼®, ¸Ó½Å·¯´× ¾Ë°í¸®Áò, IoT ¼¾¼­¸¦ Ȱ¿ëÇÏ¿© ÀåºñÀÇ °íÀåÀ» »çÀü¿¡ ¿¹ÃøÇÏ¿© À¯Áöº¸¼ö ÀÏÁ¤À» ÃÖÀûÈ­ÇÏ°í °¡µ¿ Áß´Ü ½Ã°£À» ÁÙÀÌ´Â °ÍÀÌ Æ÷ÇԵ˴ϴÙ. ¿¹Áöº¸Àü ¼Ö·ç¼ÇÀº °ú°Å µ¥ÀÌÅÍ¿Í ½Ç½Ã°£ ¼¾¼­ Á¤º¸¸¦ ºÐ¼®ÇÏ¿© ÀáÀçÀûÀÎ °íÀåÀ» ³ªÅ¸³»´Â ÆÐÅϰú ÀÌ»ó ¡Èĸ¦ °¨ÁöÇÏ°í ¿¹¹æÀû À¯Áöº¸¼ö °³ÀÔÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀ» ÅëÇØ ±â¾÷Àº ºñ¿ëÀÌ ¸¹ÀÌ µå´Â °èȹµÇÁö ¾ÊÀº ´Ù¿îŸÀÓÀ» ¹æÁöÇϰí, À¯Áöº¸¼ö ºñ¿ëÀ» ÃÖ¼ÒÈ­Çϸç, ÀÚ»êÀÇ ¼ö¸íÀ» ¿¬ÀåÇÒ ¼ö ÀÖ½À´Ï´Ù.

¼¼°èÀºÇà µ¥ÀÌÅÍ¿¡ µû¸£¸é 2020³â ¹Ì±¹ÀÇ Á¦Á¶¾÷ ºÎ°¡°¡Ä¡´Â 2Á¶ 3,370¾ï ´Þ·¯¸¦ Å©°Ô ¿ôµ¹¾Ò½À´Ï´Ù. ij³ª´Ù Á¤ºÎ Åë°è¿¡ µû¸£¸é Á¦Á¶¾÷ÀÇ GDP ±â¿©µµ´Â ¾à 1,740¾ï ij³ª´Ù ´Þ·¯, Á¦Á¶¾÷ ¼öÃâÀº ¿¬°£ ¾à 3,540¾ï ij³ª´Ù ´Þ·¯¿´½À´Ï´Ù.

ÀÚ»ê ¼º°ú°ü¸®¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡

APMÀº µ¥ÀÌÅÍ ºÐ¼®, ¸Ó½Å·¯´×, IoT ¼¾¼­¸¦ ÅëÇÕÇÏ¿© »ê¾÷ ÀÚ»êÀÇ °ÇÀü¼º°ú ¼º´ÉÀ» ½Ç½Ã°£À¸·Î ¸ð´ÏÅ͸µÇÕ´Ï´Ù. Áö¼ÓÀûÀÎ µ¥ÀÌÅÍ ¼öÁý ¹× ºÐ¼®À» ÅëÇØ APM ½Ã½ºÅÛÀº ÀáÀçÀûÀÎ Àåºñ °íÀåÀ̳ª ºñÈ¿À²¼ºÀ» ³ªÅ¸³»´Â ÆÐÅÏÀ̳ª ÀÌ»óÀ» »çÀü¿¡ ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ »çÀü ¿¹¹æÀû Á¢±Ù ¹æ½ÄÀ» ÅëÇØ Á¶Á÷Àº À¯Áöº¸¼ö ÀÛ¾÷À» º¸´Ù È¿À²ÀûÀ¸·Î ½ºÄÉÁÙ¸µÇϰí, ´Ù¿îŸÀÓÀ» ÃÖ¼ÒÈ­Çϸç, Àüü ¿î¿µ ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÚ»ê ¼ö¸íÀ» ±Ø´ëÈ­Çϰí À¯Áöº¸¼ö Àü·«À» ÃÖÀûÈ­ÇÏ´Â °ÍÀÇ Á߿伺ÀÌ ¾÷°è¿¡¼­ Á¡Á¡ ´õ ¸¹ÀÌ ÀνĵǸ鼭 APM ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀº °è¼Ó Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

µµÀÔ ºñ¿ë

¿¹Áöº¸Àü ±â¼úÀº ÀåºñÀÇ °íÀåÀ» »çÀü¿¡ ÆÄ¾ÇÇÏ¿© »ó´çÇÑ ºñ¿ë Àý°¨ °¡´É¼ºÀ» Á¦°øÇÏÁö¸¸, ÀÌ·¯ÇÑ ½Ã½ºÅÛÀ» µµÀÔÇÏ´Â µ¥ ÇÊ¿äÇÑ Ãʱâ ÅõÀÚºñ¿ëÀº ¸¹Àº Á¶Á÷¿¡ Å« ºÎ´ãÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºñ¿ë¿¡´Â ¿¹Áöº¸Àü ¼ÒÇÁÆ®¿þ¾î ¹× Çϵå¿þ¾î ±¸¸Å»Ó¸¸ ¾Æ´Ï¶ó µ¥ÀÌÅÍ ¼öÁý, ÅëÇÕ, Àη ±³À° °ü·Ã ºñ¿ëµµ Æ÷ÇԵ˴ϴÙ. ±×·¯³ª ±âÁ¸ ±â°è¿¡ ¼¾¼­¿Í ¿¬°á ±â´ÉÀ» Ãß°¡ÇÏ´Â °ÍÀº ºñ¿ëÀ» ´õ¿í Áõ°¡½Ãų ¼ö ÀÖ½À´Ï´Ù.

¼¾¼­ ±â¼úÀÇ ¹ßÀü

¼¾¼­ ±â¼úÀÇ ¹ßÀüÀº ÀåºñÀÇ »óŸ¦ º¸´Ù Á¤È®ÇÏ°í ½Ã±âÀûÀýÇÏ°Ô ¸ð´ÏÅ͸µÇÒ ¼ö ÀÖ°Ô ÇÔÀ¸·Î½á ¿¹Áöº¸Àü ½ÃÀå¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖÀ¸¸ç, IoT ¿¬°á, ¸Ó½Å·¯´× ¾Ë°í¸®Áò, ½Ç½Ã°£ µ¥ÀÌÅÍ ºÐ¼® µîÀÇ ±â´ÉÀ» °®Ãá ÀÌ ¼¾¼­µéÀº ¿Âµµ, Áøµ¿, ¼º´É ÁöÇ¥¿Í °°Àº ´Ù¾çÇÑ ¸Å°³º¯¼ö¸¦ Áö¼ÓÀûÀ¸·Î ¸ð´ÏÅ͸µÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿Âµµ, Áøµ¿, ¼º´É ÁöÇ¥ µî ´Ù¾çÇÑ ÆÄ¶ó¹ÌÅ͸¦ Áö¼ÓÀûÀ¸·Î ¸ð´ÏÅ͸µÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ µ¥ÀÌÅ͸¦ ¼öÁýÇÏ°í ºÐ¼®ÇÔÀ¸·Î½á ¿¹Áöº¸Àü ½Ã½ºÅÛÀº ÀáÀçÀûÀÎ Àåºñ °íÀåÀ» ¹Ì¸® ¿¹ÃøÇÏ¿© ºñ¿ëÀÌ ¸¹ÀÌ µå´Â ´Ù¿îŸÀÓÀ» ¹æÁöÇÏ°í ¿î¿µ È¿À²À» ±Ø´ëÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÌ·¯ÇÑ ¼¾¼­´Â »ç¿ë ÆÐÅϰú ȯ°æ Á¶°Ç¿¡ ´ëÇÑ ÀλçÀÌÆ®À» Á¦°øÇÏ¿© º¸´Ù Á¤È®ÇÑ À¯Áöº¸¼ö ½ºÄÉÁÙ¸µ°ú ¸®¼Ò½º ÇÒ´çÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.

ȯ°æ ¹× ¿îÀüÀÇ º¯µ¿¼º

¿Âµµ º¯È­, ½Àµµ ¼öÁØ, ´Ù¾çÇÑ ¿ä¼Ò¿¡ ´ëÇÑ ³ëÃâ°ú °°Àº ȯ°æÀû ¿äÀÎÀº ½Ã°£ÀÌ Áö³²¿¡ µû¶ó ÀåºñÀÇ ¼º´É¿¡ ´Ù¾çÇÑ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. ¸¶Âù°¡Áö·Î, ´Ù¾çÇÑ »ç¿ë ÆÐÅÏ, ÀÛ¾÷ ºÎÇÏ º¯µ¿, À¯Áöº¸¼ö °üÇàÀ¸·Î ÀÎÇÑ ¿î¿µÀÇ º¯µ¿¼ºÀº ¿¹Ãø À¯Áöº¸¼ö ³ë·ÂÀ» ´õ¿í º¹ÀâÇÏ°Ô ¸¸µì´Ï´Ù. ÀÌ·¯ÇÑ ¿ªµ¿ÀûÀÎ º¯µ¿ ¿äÀÎÀ¸·Î ÀÎÇØ Àåºñ °íÀå ¹× À¯Áöº¸¼ö Çʿ伺À» Á¤È®ÇÏ°Ô ¿¹ÃøÇÒ ¼ö ÀÖ´Â °­·ÂÇÑ ¿¹Ãø À¯Áöº¸¼ö ¸ðµ¨À» °³¹ßÇϱⰡ ½±Áö ¾Ê½À´Ï´Ù. ¶ÇÇÑ ¾÷Á¾¸¶´Ù ¿î¿µ ȯ°æÀÌ ´Ù¸£±â ¶§¹®¿¡ ´õ¿í º¹ÀâÇØÁ® ¾÷Á¾º° ¸ÂÃãÇü ¼Ö·ç¼ÇÀÌ ÇÊ¿äÇÕ´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

±â¾÷Àº »çȸÀû °Å¸®µÎ±â ±â°£ Áß ¹°¸®Àû Á¢ÃËÀ» ÃÖ¼ÒÈ­ÇÏ°í ¾÷¹« ¿¬¼Ó¼ºÀ» º¸ÀåÇϱâ À§ÇØ ¿ø°Ý ¸ð´ÏÅ͸µ ¹× ¿¹Ãø ºÐ¼® ±â¼ú äÅÃÀ» °¡¼ÓÈ­Çß½À´Ï´Ù. Á¦Á¶, ¿¡³ÊÁö, ¿î¼Û µî ÁÖ¿ä »ê¾÷¿¡¼­ ÀÚ»ê ¼º´ÉÀ» ÃÖÀûÈ­ÇÏ°í ¿¹±âÄ¡ ¸øÇÑ ´Ù¿îŸÀÓÀ» ¹æÁöÇØ¾ß ÇÏ´Â »óȲ¿¡¼­ ¿¹Ãø À¯Áöº¸¼ö ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ÆÒµ¥¹ÍÀ¸·Î ÀÎÇÑ °æ±â ħü´Â ±â¾÷ÀÌ ºñ¿ë È¿À²¼º°ú ÀÚ»ê ÃÖÀûÈ­¸¦ ¿ì¼±¼øÀ§¿¡ µÎ°Ô ¸¸µé¾ú°í, ¿î¿µÀ» °£¼ÒÈ­Çϰí ÀÚ¿øÀ» ÃÖ´ëÇÑ È°¿ëÇϱâ À§ÇÑ ¿¹Áöº¸Àü ÅøÀÇ Ã¤ÅÃÀ» ´õ¿í ÃËÁøÇß½À´Ï´Ù.

ºÎ½Ä ¸ð´ÏÅ͸µ ºÎ¹®Àº ¿¹Ãø ±â°£ Áß °¡Àå Å« ½ÃÀåÀ¸·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ºÎ½Ä ¸ð´ÏÅ͸µ ºÎ¹®Àº ¿¹Ãø ±â°£ Áß °¡Àå Å« ½ÃÀåÀÌ µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ºÎ½ÄÀº ¸¹Àº »ê¾÷¿¡¼­ ÈçÈ÷ ¹ß»ýÇÏ´Â ¹®Á¦À̸ç, ¹æÄ¡ÇÒ °æ¿ì ÀåºñÀÇ ¿­È­, ±¸Á¶Àû ¾àÁ¡, ±×¸®°í ºñ¿ëÀÌ ¸¹ÀÌ µå´Â °íÀåÀ¸·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù. ºÎ½Ä ¸ð´ÏÅ͸µ ½Ã½ºÅÛÀ» ¿¹Áöº¸Àü Àü·«¿¡ ÅëÇÕÇÔÀ¸·Î½á ±â¾÷Àº ºÎ½ÄÀÇ Ãʱâ ¡Èĸ¦ °¨ÁöÇϰí Àû½Ã¿¡ °³ÀÔÇÏ¿© Ãß°¡ ¼Õ»óÀ» ¹æÁöÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ¼¾¼­, ÇÁ·Îºê, ºñÆÄ±« °Ë»ç ¹æ¹ý µî ´Ù¾çÇÑ ±â¼úÀ» Ȱ¿ëÇÏ¿© ºÎ½Ä ¼öÁØÀ» Áö¼ÓÀûÀ¸·Î Æò°¡Çϰí ÇâÈÄ ¿­È­¸¦ ¿¹ÃøÇÒ ¼ö ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµÇ´Â ºÐ¾ß´Â ¿¡³ÊÁö ¹× À¯Æ¿¸®Æ¼ ºÎ¹®ÀÔ´Ï´Ù.

¿¡³ÊÁö ¹× À¯Æ¿¸®Æ¼ ºÎ¹®Àº ¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¹ßÀü¼Ò, ¼ÛÀü¸Á, °ø°ø½Ã¼³¿¡´Â ¹æ´ëÇÑ ÀÎÇÁ¶ó¿Í ¼³ºñ°¡ Á¸ÀçÇϸç, È¿À²ÀûÀÎ À¯Áöº¸¼ö °üÇàÀÌ °¡Àå ÇÊ¿äÇÑ ºÐ¾ßÀÔ´Ï´Ù. ÀÌ ºÐ¾ßÀÇ ¿¹Áöº¸ÀüÀº IoT ¼¾¼­¸¦ ÅëÇØ ÀåºñÀÇ »óŸ¦ Áö¼ÓÀûÀ¸·Î ¸ð´ÏÅ͸µÇϰí, ¹æ´ëÇÑ ¾çÀÇ µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ¿© ÀÌ»óÀ» °¨ÁöÇϰí ÀáÀçÀûÀÎ °íÀåÀ» »çÀü¿¡ ¿¹ÃøÇÏ´Â °ÍÀ» Æ÷ÇÔÇÕ´Ï´Ù. ÀÌ·¯ÇÑ »çÀü ¿¹¹æÀû Á¢±Ù ¹æ½ÄÀº À¯Áöº¸¼ö ºñ¿ëÀ» Àý°¨ÇÒ »Ó¸¸ ¾Æ´Ï¶ó ¾ÈÀü¼º°ú ½Å·Ú¼ºÀ» Çâ»ó½ÃÄÑ ¼ÒºñÀÚ¿¡°Ô Áß´Ü ¾ø´Â ¼­ºñ½º Á¦°øÀ» º¸ÀåÇÏ´Â µ¿½Ã¿¡ ÀÚ¿ø Ȱ¿ëÀ» ±Ø´ëÈ­Çϰí ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÃÖ¼ÒÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

°í°´ ä³ÎÀÇ È®»ê, ÀÚ»ê À¯Áöº¸¼ö ¹× ¿î¿µ ºñ¿ë¿¡ ´ëÇÑ °ü½É Áõ°¡, ÀΰøÁö´É(AI), ¸Ó½Å·¯´×(ML), À½Çâ ¸ð´ÏÅ͸µ, »ç¹°ÀÎÅͳÝ(IoT) µî ÷´Ü ±â¼ú µµÀÔ Áõ°¡·Î ÀÎÇØ ºÏ¹Ì°¡ ¿¹Ãø ±â°£ Áß °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ ÀÌ Áö¿ª ½ÃÀåÀº ¿¹Ãø ÁöÇ¥¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁö°í ±× Á߿伺¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁö¸é¼­ ±â¼ú µµÀÔÀÌ ºü¸£°Ô ÁøÇàµÊ¿¡ µû¶ó ´õ¿í ¼ºÀåÇϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª

À¯·´Àº ¿¹Ãø ±â°£ Áß ¼öÀͼº ÀÖ´Â ¼ºÀåÀ» ÀÌ·ê °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À¯·´ ¿¬ÇÕÀÇ ¿¡³ÊÁö È¿À² ¹× ¹èÃâ °¨¼Ò¿¡ °üÇÑ Áöħ°ú °°Àº ±ÔÁ¦ÀÇ ½ÃÇàÀº ±â¾÷ÀÌ ¿¹Áöº¸Àü Àü·«À» äÅÃÇϵµ·Ï µ¿±â¸¦ ºÎ¿©Çϰí ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó ±â¾÷Àº ÀÌ·¯ÇÑ ±ÔÁ¦¸¦ ÁؼöÇÏ´Â µ¿½Ã¿¡ ¿î¿µ ¼º°ú¸¦ °³¼±Çϱâ À§ÇØ ¿¹Áöº¸Àü ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ¸¦ ´Ã¸®°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¿¹Áöº¸Àü ¼Ö·ç¼Ç µµÀÔ¿¡ ´ëÇÑ º¸Á¶±Ý, º¸Á¶±Ý ¹× ¼¼Á¦ ÇýÅÃÀ» Á¦°øÇÏ´Â Á¤ºÎ ±¸»óÀº ´Ù¾çÇÑ ºÐ¾ßÀÇ ±â¾÷ÀÌ ÀÌ·¯ÇÑ ±â¼úÀ» º¸´Ù ½±°Ô ÀÌ¿ëÇÒ ¼ö ÀÖµµ·Ï ÇÔÀ¸·Î½á ½ÃÀå ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

¹«·á Ä¿½ºÅ͸¶ÀÌ¡ Á¦°ø:

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. :

  • ±â¾÷ °³¿ä
    • Ãß°¡ ½ÃÀå ±â¾÷ Á¾ÇÕ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3»ç)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(ÃÖ´ë 3»ç)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤Ä¡, ¿¹Ãø, CAGR(ÁÖ: Ÿ´ç¼º È®Àο¡ µû¸§)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¿ªÀû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç ¾îÇÁ·ÎÄ¡
  • Á¶»ç Á¤º¸¿ø
    • 1Â÷ Á¶»ç Á¤º¸¿ø
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ÃËÁø¿äÀÎ
  • ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ±â¼ú ºÐ¼®
  • ÃÖÁ¾»ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ±¸¸ÅÀÚÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô ÁøÃâ¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ¿¹Áöº¸Àü ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • ¼­ºñ½º
    • Æ®·¹ÀÌ´×°ú ÄÁ¼³ÆÃ
    • Áö¿ø°ú Á¤ºñ
  • ¼Ö·ç¼Ç
    • ½ºÅĵå¾ó·Ð
    • ÅëÇÕÇü
  • ±âŸ ÄÄÆ÷³ÍÆ®

Á¦6Àå ¼¼°èÀÇ ¿¹Áöº¸Àü ½ÃÀå : ¸ð´ÏÅ͸µ ±â¼úº°

  • ºÎ½Ä ¸ð´ÏÅ͸µ
  • ¼­¸ð±×·¡ÇÇ
  • ¿ÀÀÏ ºÐ¼®
  • Áøµ¿ ¸ð´ÏÅ͸µ
  • ÅäÅ© ¸ð´ÏÅ͸µ
  • ±âŸ ¸ð´ÏÅ͸µ ±â¼ú

Á¦7Àå ¼¼°èÀÇ ¿¹Áöº¸Àü ½ÃÀå : Á¶Á÷ ±Ô¸ðº°

  • Áß¼Ò±â¾÷
  • ´ë±â¾÷

Á¦8Àå ¼¼°èÀÇ ¿¹Áöº¸Àü ½ÃÀå : ±â¼úº°

  • ÀΰøÁö´É
  • ºÐ¼®°ú µ¥ÀÌÅÍ °ü¸®
  • ±âŸ ±â¼ú

Á¦9Àå ¼¼°èÀÇ ¿¹Áöº¸Àü ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • Á¦Á¶
  • IT¡¤Åë½Å
  • ÇコÄɾî
  • ¿¡³ÊÁö¡¤À¯Æ¿¸®Æ¼
  • ÀÚµ¿Â÷¡¤¿î¼Û
  • Ç×°ø¿ìÁÖ¡¤¹æÀ§
  • ±âŸ ÃÖÁ¾»ç¿ëÀÚ

Á¦10Àå ¼¼°èÀÇ ¿¹Áöº¸Àü ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦11Àå ÁÖ¿ä ¹ßÀü

  • ÇùÁ¤, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕº´»ç¾÷
  • ÀμöÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦12Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • Siemens
  • Schneider Electric SE
  • Rockwell Automation
  • Robert Bosch GmbH
  • Microsoft
  • IBM Corporation
  • Hitachi, Ltd
  • Honeywell International Inc
  • General Electric
  • Cisco Systems, Inc
  • Accenture plc
KSA 24.06.10

According to Stratistics MRC, the Global Predictive Maintenance Market is accounted for $10.34 billion in 2023 and is expected to reach $71.05 billion by 2030 growing at a CAGR of 31.7% during the forecast period. The Predictive Maintenance Market encompasses the use of advanced analytics, machine learning algorithms, and IoT sensors to predict equipment failures before they occur, thereby optimizing maintenance schedules and reducing downtime. By analyzing historical data and real-time sensor information, predictive maintenance solutions can detect patterns and anomalies indicative of potential breakdowns, enabling proactive maintenance interventions. This approach helps businesses avoid costly unplanned downtime, minimize maintenance costs, and extend the lifespan of their assets.

According to World Bank data, manufacturing value addition in 2020 in the US was well above USD 2,337 billion. According to Government of Canada statistics, the manufacturing sector's contribution to the GDP was nearly CAD 174 billion, and exports from the sector were approximated at CAD 354 billion per year.

Market Dynamics:

Driver:

Increasing demand for asset performance management

APM integrates data analytics, machine learning, and IoT sensors to monitor the health and performance of industrial assets in real-time. By continuously collecting and analyzing data, APM systems can identify patterns and anomalies that indicate potential equipment failures or inefficiencies before they occur. This proactive approach enables organizations to schedule maintenance tasks more efficiently, minimizing downtime and reducing overall operational costs. Furthermore, as industries increasingly recognize the importance of maximizing asset lifespan and optimizing maintenance strategies, the adoption of APM solutions continues to rise.

Restraint:

Cost of implementation

While predictive maintenance technology offers the potential for substantial cost savings by identifying equipment failures before they occur, the initial investment required to implement such systems can be prohibitive for many organizations. This cost encompasses not only the purchase of predictive maintenance software and hardware but also the expenses associated with data collection, integration, and personnel training. However, retrofitting existing machinery with sensors and connectivity features can further escalate costs.

Opportunity:

Advancements in sensor technologies

Advancements in sensor technologies are revolutionizing the predictive maintenance market by enabling more accurate and timely monitoring of equipment health. These sensors, equipped with capabilities like IoT connectivity, machine learning algorithms, and real-time data analysis, allow for continuous monitoring of various parameters such as temperature, vibration, and performance metrics. By collecting and analyzing this data, predictive maintenance systems can predict potential equipment failures before they occur, thus preventing costly downtime and maximizing operational efficiency. Additionally, these sensors provide insights into usage patterns and environmental conditions, allowing for more precise maintenance scheduling and resource allocation.

Threat:

Environmental and operational variability

Environmental factors such as temperature fluctuations, humidity levels, and exposure to various elements can impact equipment performance differently over time. Similarly, operational variability stemming from diverse usage patterns, workload fluctuations, and maintenance practices further complicates predictive maintenance efforts. These dynamic variables make it challenging to develop robust predictive maintenance models that can accurately anticipate equipment failures and maintenance needs. The diversity in operational environments across industries adds another layer of complexity, requiring tailored solutions for different sectors.

Covid-19 Impact:

It accelerated the adoption of remote monitoring and predictive analytics technologies as companies sought to minimize physical contact and ensure operational continuity amid lockdowns and social distancing measures. This surge in demand for predictive maintenance solutions was driven by the need to optimize asset performance and prevent unexpected downtime in critical industries such as manufacturing, energy, and transportation. The economic slowdown induced by the pandemic prompted businesses to prioritize cost efficiency and asset optimization, further driving the adoption of predictive maintenance tools to streamline operations and maximize resource utilization.

The Corrosion Monitoring segment is expected to be the largest during the forecast period

Corrosion Monitoring segment is expected to be the largest during the forecast period. Corrosion is a common issue in many industries, leading to equipment degradation, structural weakness, and ultimately, costly failures if left unchecked. By integrating corrosion monitoring systems into predictive maintenance strategies, businesses can detect early signs of corrosion, allowing for timely interventions to prevent further damage. These systems utilize various techniques such as sensors, probes, and non-destructive testing methods to continuously assess corrosion levels and predict future deterioration.

The Energy & Utilities segment is expected to have the highest CAGR during the forecast period

Energy & Utilities segment is expected to have the highest CAGR during the forecast period. With the vast infrastructure and equipment spread across power plants, grid networks, and utility facilities, the need for efficient maintenance practices is paramount. Predictive maintenance in this sector involves the continuous monitoring of equipment conditions through IoT sensors, analyzing vast amounts of data to detect anomalies and predict potential failures before they occur. This proactive approach not only reduces maintenance costs but also enhances safety and reliability, ensuring uninterrupted service delivery to consumers while maximizing resource utilization and minimizing environmental impact.

Region with largest share:

Due to the spread of customer channels, rising concerns over asset maintenance and operating costs, and the increasing adoption of cutting-edge technologies like artificial intelligence (AI), machine learning (ML), acoustic monitoring, and the Internet of Things (IoT), North America commanded the largest share of the market during the extrapolated period. Furthermore, the market in the region has grown even more as a result of growing awareness of predictive metrics, their significance, and early technological adoption.

Region with highest CAGR:

Europe region is projected to witness profitable growth over the forecast period. The implementation of regulations such as the European Union's directives on energy efficiency and emissions reduction is incentivizing companies to adopt predictive maintenance strategies. Consequently, companies are increasingly investing in predictive maintenance technologies to comply with these regulations while simultaneously improving their operational performance. Moreover, government initiatives offering grants, subsidies, or tax incentives for adopting predictive maintenance solutions further stimulate market growth by making these technologies more accessible to businesses across different sectors.

Key players in the market

Some of the key players in Predictive Maintenance market include Siemens, Schneider Electric SE, Rockwell Automation, Robert Bosch GmbH, Microsoft, IBM Corporation, Hitachi, Ltd, Honeywell International Inc, General Electric, Cisco Systems, Inc and Accenture plc.

Key Developments:

In July 2022, two companies in Houston announced they would develop a new predictive maintenance software. Shape Corporation, along with Radix Engineering and Software, collaborated to develop a tool that would enable companies that operate floating production units to implement their system to positively impact their cash flow and environment, and health impact.

In July 2022, Keolis and Stratio announced a partnership that would provide predictive maintenance solutions to Keolis' fleet. Keolis provides solutions to public transit systems, and Stratio develops computerized maintenance management systems; The Stratio Platform will enable real-time data to be made available to Keolis' engineers to ensure minimal downtime.

In July 2022, Valmet announced a new application that would enable better tracking of machinery. The application is part of Valmet Industrial Internet portfolio which offers predictive maintenance and root cause analysis solutions for various machines in the paper and pulp industry.

In March 2022, C3 AI announced that it had reached a phenomenal number of more than 10,000 machines of Shell Corporation under their predictive maintenance program. The program uses more than 3 million sensors and 11,000 ML models.

Components Covered:

  • Service
  • Solution
  • Other Components

Monitoring Techniques Covered:

  • Corrosion Monitoring
  • Thermography
  • Oil Analysis
  • Vibration Monitoring
  • Torque Monitoring
  • Other Monitoring Techniques

Organization Size Covered:

  • Small & Medium-sized Enterprises
  • Large Enterprises

Technologies Covered:

  • Artificial Intelligence
  • Analytics & Data Management
  • Other Technologies

End Users Covered:

  • Manufacturing
  • IT & Telecommunication
  • Healthcare
  • Energy & Utilities
  • Automotive & Transportation
  • Aerospace & Defense
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2021, 2022, 2023, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Predictive Maintenance Market, By Component

  • 5.1 Introduction
  • 5.2 Service
    • 5.2.1 Training & Consulting
    • 5.2.2 Support & Maintenance
  • 5.3 Solution
    • 5.3.1 Standalone
    • 5.3.2 Integrated
  • 5.4 Other Components

6 Global Predictive Maintenance Market, By Monitoring Technique

  • 6.1 Introduction
  • 6.2 Corrosion Monitoring
  • 6.3 Thermography
  • 6.4 Oil Analysis
  • 6.5 Vibration Monitoring
  • 6.6 Torque Monitoring
  • 6.7 Other Monitoring Techniques

7 Global Predictive Maintenance Market, By Organization Size

  • 7.1 Introduction
  • 7.2 Small & Medium-sized Enterprises
  • 7.3 Large Enterprises

8 Global Predictive Maintenance Market, By Technology

  • 8.1 Introduction
  • 8.2 Artificial Intelligence
  • 8.3 Analytics & Data Management
  • 8.4 Other Technologies

9 Global Predictive Maintenance Market, By End User

  • 9.1 Introduction
  • 9.2 Manufacturing
  • 9.3 IT & Telecommunication
  • 9.4 Healthcare
  • 9.5 Energy & Utilities
  • 9.6 Automotive & Transportation
  • 9.7 Aerospace & Defense
  • 9.8 Other End Users

10 Global Predictive Maintenance Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Siemens
  • 12.2 Schneider Electric SE
  • 12.3 Rockwell Automation
  • 12.4 Robert Bosch GmbH
  • 12.5 Microsoft
  • 12.6 IBM Corporation
  • 12.7 Hitachi, Ltd
  • 12.8 Honeywell International Inc
  • 12.9 General Electric
  • 12.10 Cisco Systems, Inc
  • 12.11 Accenture plc
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦