½ÃÀ庸°í¼­
»óǰÄÚµå
1494842

¼¼°èÀÇ ¼ö¼Ò¿¡³ÊÁö ÀúÀå ½ÃÀå ¿¹Ãø : ÀúÀå À¯Çüº°, »óź°, ±â¼úº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®(-2030³â)

Hydrogen Energy Storage Market Forecasts to 2030 - Global Analysis By Storage Type (Stationary Storage, Chemical Storage and Physical Storage and Other Storage Types), State (Gas, Liquid and Solid), Technology, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ¼ö¼Ò¿¡³ÊÁö ÀúÀå ½ÃÀåÀº 2024³â¿¡ 180¾ï 7,000¸¸ ´Þ·¯·Î ÁÖÁ¤µÇ°í, ¿¹Ãø ±â°£ µ¿¾È CAGRÀº 9.1%·Î ¼ºÀåÇÒ Àü¸ÁÀ̸ç, 2030³â¿¡´Â 304¾ï 7,000¸¸ ´Þ·¯¿¡ À̸¦ Àü¸ÁÀÔ´Ï´Ù.

¼ö¼Ò¿¡³ÊÁö ÀúÀåÀº ±âÁ¸ÀÇ ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛº¸´Ù ´õ ¸¹Àº ÀÌÁ¡À» °¡Áö°í ÀÖÀ¸¸ç ¼ö¼Ò °¡½ºÀÇ ÇüÅ·Π¿¡³ÊÁö¸¦ ÀúÀåÇÏ´Â ÃÖ÷´Ü ±â¼úÀÔ´Ï´Ù. ž籤¹ßÀüÀ̳ª dz·Â¹ßÀü°ú °°Àº ½ÅÀç»ý ¿¡³ÊÁö¿øÀ¸·ÎºÎÅÍ ¹ßÀüµÇ´Â Àü·ÂÀ» ÀÌ¿ëÇÏ¿© Àü±âºÐÇØ °úÁ¤À» ÅëÇØ ¹°À» ¼ö¼Ò¿Í »ê¼Ò·Î ºÐÇØÇÏ¿© ¼ö¼Ò¸¦ Á¦Á¶ÇÏ´Â ±â¼úÀÔ´Ï´Ù. ±× ÈÄ, ¼ö¼Ò´Â ±ØÀú¿Â¿¡¼­ ¾×ü, ¾ÐÃà ±âü, ¶Ç´Â ±Ý¼Ó ¼ö¼ÒÈ­¹° ³»¿¡ È­ÇÐÀûÀ¸·Î °áÇÕµÈ »óÅ·ΠÀúÀåµË´Ï´Ù.

±¹Á¦¿¡³ÊÁö±â±¸(IEA)¿¡ µû¸£¸é ¼ö¼Ò¿¡³ÊÁö ÀúÀåÀº Áö¼Ó°¡´ÉÇÑ ¿¡³ÊÁöÀÇ ¹Ì·¡¸¦ ½ÇÇöÇÏ°í ¼¼°èÀÇ Å»Åº¼ÒÈ­ ¸ñÇ¥¸¦ ´Þ¼ºÇÏ´Â µ¥ ÇʼöÀûÀÎ ±â¼úÀÔ´Ï´Ù.

½ÅÀç»ý ¿¡³ÊÁö ÅëÇÕ

ž籤 ¹ßÀü°ú dz·Â ¹ßÀü°ú °°Àº ½ÅÀç»ý ¿¡³ÊÁö ¹ßÀüÀº ±× Ư¼º»ó žç°ú ¹Ù¶÷ÀÌ ºÒ ¶§¸¸ ¿¡³ÊÁö¸¦ »ý»êÇÕ´Ï´Ù. ÀÌ °£Ç漺ÀÇ °á°ú, ¼ÛÀü¸ÁÀÇ ¼ö±Þ ¹ë·±½º¸¦ ÃëÇÏ´Â °ÍÀÌ ¾î·Á¿öÁý´Ï´Ù. °Ô´Ù°¡, Ãâ·ÂÀÌ ¼ö¿ä¸¦ ÃʰúÇÒ ¶§ ¿©ºÐÀÇ ½ÅÀç»ý ¿¡³ÊÁö¸¦ ÀúÀåÇÏ°í »ý»ê·®ÀÌ ÀûÀ» ¶§ À̸¦ Àü±â·Î µÇµ¹¸®´Â ¼ö¼Ò¿¡³ÊÁö ÀúÀåÀº ÀÌ ¹®Á¦¸¦ ÇØ°áÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ Æ¯¼ºÀ¸·ÎºÎÅÍ ¼ö¼Ò´Â ¼ÛÀü¸ÁÀÇ ¾ÈÁ¤¼ºÀ» À¯ÁöÇÏ°í ¿¡³ÊÁö ¹Í½º¿¡¼­ ½ÅÀç»ý ¿¡³ÊÁöÀÇ ºñÀ²À» ´Ã¸®´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù.

³ôÀº Ãʱ⠰¡°Ý

¼ö¼Ò¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛÀÇ ¾öû³­ Ãʱâºñ¿ëÀÌ º¸±ÞÀÇ Å« Àå¾Ö°¡ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºñ¿ë¿¡´Â ¿¬·áÀüÁö, ¹èÀü ÀÎÇÁ¶ó, ¼ö¼Ò ÀúÀå ÅÊÅ© ¹× ÀüÇØ ÀåÄ¡¿¡ ´ëÇÑ Ãʱâ ÅõÀÚ°¡ Æ÷ÇԵ˴ϴÙ. ƯÈ÷ Àü±â ºÐÇØ´Â Á¤¹ÐÇÑ ¿£Áö´Ï¾î¸µ°ú °í±Þ Àç·á°¡ ÇÊ¿äÇϱ⠶§¹®¿¡ ºñ¿ëÀÌ ¸¹ÀÌ µì´Ï´Ù. °Ô´Ù°¡ Ư¼öÇÑ ÆÄÀÌÇÁ¶óÀÎÀ̳ª °í¾Ð ÅÊÅ© µî ¼ö¼Ò¸¦ ¾ÈÀüÇÏ°Ô ¼ö¼Û ¹× ÀúÀåÇϱâ À§ÇØ ÇÊ¿äÇÑ ÀÎÇÁ¶óµµ ÀüüÀÇ ºñ¿ëÀ» ¹Ð¾î ¿Ã¸³´Ï´Ù.

¼ö¼Ò ÀúÀå ±â¼ú °³¹ß

º¸´Ù È¿°úÀûÀÌ°í ¾ÈÀüÇϰí Àú·ÅÇÑ ÀúÀå ¼Ö·ç¼ÇÀÇ »õ·Î¿î Àü¸ÁÀº ¼ö¼Ò ÀúÀå ±â¼úÀÇ Áö¼ÓÀûÀÎ ¿¬±¸ °³¹ß¿¡ ÀÇÇØ ¸¸µé¾îÁ³½À´Ï´Ù. ±âÁ¸ ±â¼ú¿¡ ºñÇØ ±Ý¼Ó ¼ö¼ÒÈ­¹° ¹× ź¼Ò°è Àç·á¿Í °°Àº °íü ÀúÀåÀÇ ¹ßÀüÀº ´õ ³ôÀº ¿¡³ÊÁö ¹Ðµµ¿Í ¾ÈÀü¼ºÀ» Á¦°øÇÕ´Ï´Ù. °í¾Ð ÅÊÅ©¿Í ±ØÀú¿Â ÀúÀåÀÇ ±â¼úÀû Áøº¸´Â ´Ù¾çÇÑ ¿ëµµ¿¡¼­ ¼ö¼Ò ÀúÀåÀÇ °¡´É¼ºÀ» Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. °Ô´Ù°¡, ÇöÀçÀÇ Àå¾Ö¸¦ ±Øº¹Çϰí, ´ë±Ô¸ð ¿¡³ÊÁö ÀúÀå ¹× ¼ö¼Û ¿É¼ÇÀ¸·Î¼­ÀÇ ¼ö¼Ò ÀúÀåÀÇ ¸Å·ÂÀ» ³ôÀ̱â À§Çؼ­´Â ±â¼úÀÇ Áøº¸°¡ ÇʼöÀûÀÔ´Ï´Ù.

´ëü ¿¡³ÊÁö ÀúÀå ±â¼úÀ» ÅëÇÑ À§Çù

¸®Æ¬ À̿ ¹èÅ͸®, ¾ç¼ö ¹ßÀü, ¾ÐÃà °ø±â ¿¡³ÊÁö ÀúÀå°ú °°Àº ´ëü ¿¡³ÊÁö ÀúÀå ±â¼úÀº ¼ö¼Ò¿¡³ÊÁö ÀúÀå ½ÃÀå¿¡ Å« À§ÇùÀ» °¡Á®¿É´Ï´Ù. È®¸³µÈ °ø±Þ¸Á, Á¦Á¶ ´É·Â, ±Ô¸ðÀÇ °æÁ¦¼ºÀ¸·Î ÀÎÇØ ÀÌ·¯ÇÑ ±â¼úÀº ÀÌ¹Ì ÇöÀúÇÑ ½ÃÀå ħÅõ¸¦ ´Þ¼ºÇϰí ÀÖ½À´Ï´Ù. ƯÈ÷ ½Å¼ÓÇÑ ÀÀ´ä ½Ã°£°ú ³ôÀº Ãâ·Â ¹Ðµµ¸¦ ÇÊ¿ä·Î ÇÏ´Â ÀÀ¿ë ºÐ¾ß¿¡¼­ ¸®Æ¬ À̿ ¹èÅ͸®´Â »ó´çÇÑ ºñ¿ë Àý°¨°ú ¼º´É Çâ»óÀ» ÀÌ·ç°í ÀÖÀ¸¸ç ¼ö¼Ò ÀúÀåÀÇ °­·ÂÇÑ ¶óÀ̹úÀÌ µÇ°í ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ :

¼ö¼Ò¿¡³ÊÁö ÀúÀå ½ÃÀåÀº COVID-19ÀÇ ´ëÀ¯ÇàÀ¸·Î °ø±Þ¸ÁÀÇ È¥¶õ, ÇÁ·ÎÁ§Æ® °³¹ß Áö¿¬, °æÁ¦Àû ºÒÈ®½Ç¼º µî Å« ¿µÇâÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ÇÁ·ÎÁ§Æ® Áö¿¬°ú ºñ¿ë Ãʰú´Â ¼ö¼Ò ÀÎÇÁ¶ó ÇÁ·ÎÁ§Æ®ÀÇ Àü°³¿Í ¿¬±¸ Ȱµ¿ÀÌ ºÀ¼â Á¶Ä¡, ¿©Çà Á¦ÇÑ ¹× ³ëµ¿·ÂÀÇ È¥¶õ¿¡ ÀÇÇØ ´À·ÁÁ³±â ¶§¹®ÀÔ´Ï´Ù. °Ô´Ù°¡, ƯÈ÷ ¿î¼Û, Á¦Á¶, °Ç¼³ µîÀÇ »ê¾÷¿¡¼­ À¯Åë¿¡ ÀÇÇÑ »ê¾÷ Ȱµ¿°ú ¿¡³ÊÁö ¼ö¿äÀÇ °¨¼Ò·Î ÀÎÇØ °ø±Þ¿ø·á ¹× ¿¡³ÊÁö ij¸®¾î·Î¼­ ¼ö¼ÒÀÇ ´ç¸éÀÇ Çʿ伺ÀÌ ÀúÇϵǰí ÀÖ½À´Ï´Ù.

¿¹Ãø±â°£ µ¿¾È È­ÇÐÀúÀåºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ Àü¸Á

È­ÇÐ ÀúÀåÀÌ ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. È­ÇÐ ÀúÀåÀ̶õ ±Ý¼Ó ¼ö¼ÒÈ­¹°À̳ª ¾×ü À¯±â ¼ö¼Ò ij¸®¾î µî ¿¡³ÊÁö ¹Ðµµ°¡ ³ô°í ÀúÀå ¼ö¸íÀÌ ±ä È­ÇÕ¹°¿¡ ¼ö¼Ò¸¦ ÀúÀåÇÏ´Â °øÁ¤ÀÔ´Ï´Ù. ¿¹¸¦ µé¾î ±Ý¼Ó ¼ö¼ÒÈ­¹°Àº ¼ö¼Ò °¡½º¸¦ Èí¼öÇÏ¿© ¾ÈÁ¤ÇÑ È­ÇÕ¹°À» ¸¸µé°í ÇÊ¿äÇÒ ¶§ °¨¾Ð°ú °¡¿­¿¡ ÀÇÇØ ¼ö¼Ò¸¦ ¹æÃâÇÕ´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ È­ÇÐ ÀúÀå ±â¼úÀº ¼ö¼ÒÀÇ ÀúÀå ¹× ¹æÃâ¿¡ È¿°úÀûÀ̰í À¯¿¬Çϱ⠶§¹®¿¡ »ê¾÷ °øÁ¤, ±×¸®µå ¹ë·±½Ì ¹× ½ÅÀç»ý ¿¡³ÊÁö ÅëÇÕ¿¡ À־ÀÇ Á¤Ä¡ ¿ëµµ¿¡ ÀûÇÕÇÕ´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È CAGRÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹»óµÇ´Â °ÍÀº °¡½º ºÎ¹®

¿¹Ãø CAGRÀÌ °¡Àå ³ôÀº ºÐ¾ß´Â °¡½º ÀúÀåÀÔ´Ï´Ù. °¡½º ÀúÀåÀº ³ªÁß¿¡ »ç¿ëÇϱâ À§ÇØ ¼ö¼Ò¸¦ °¡½º ÇüÅ·ΠÀ¯ÁöÇÏ´Â °ÍÀÔ´Ï´Ù. À̰ÍÀº ÀϹÝÀûÀ¸·Î ÁöÇÏ µ¿±¼°ú °í¾Ð ÅÊÅ©¿¡¼­ ¼öÇàµÇ¸ç ³ôÀº ¿¡³ÊÁö ¹Ðµµ¿Í ºü¸¥ ¹ÝÀÀ ½Ã°£À» Á¦°øÇÕ´Ï´Ù. ¹é¾÷ ¹ßÀü, ÇÇÅ© ÄÆ, ¼ÛÀü¸Á ¾ÈÁ¤È­ µî ½Å¼ÓÇÏ°í ºó¹øÇÑ »çÀÌŬÀÌ ÇÊ¿äÇÑ ¿ëµµ´Â ÀÌ Á¢±Ù¹ý¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. ¶ÇÇÑ °¡½º ÀúÀå ½Ã½ºÅÛÀº ¿¡³ÊÁö ¼ö±ÞÀÇ º¯µ¿¿¡ ´ëÀÀÇÏ´Â ÀûÀÀ¼º°ú È®À强À» °®Ãß°í ÀÖ½À´Ï´Ù.

ÃÖ´ë Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª :

¼ö¼Ò¿¡³ÊÁö ÀúÀå ½ÃÀåÀº ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ Áö¹èÀûÀÔ´Ï´Ù. ƯÈ÷ Áß±¹, Çѱ¹, ÀϺ»°ú °°Àº ±¹°¡¿¡¼­ ¼ö¸¹Àº Á¤ºÎ ÀÌ´Ï¼ÅÆ¼ºê¿Í ÅõÀÚ°¡ ¼ö¼Ò ±â¼úÀÇ ÀÌÁ¡À» µÞ¹ÞħÇÕ´Ï´Ù. ÀÌµé ±¹°¡ÀÇ ¼ö¼ÒÁ¤Ã¥Àº ½ÅÀç»ý ¿¡³ÊÁöÀÇ ÅëÇÕ, ¼ö¼Ò¿¬·á ÀüÁöÂ÷ÀÇ º¸±Þ, °æÁ¦ÀÇ Å»Åº¼ÒÈ­¸¦ ¸ñÇ¥·Î Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ °ß°íÇÑ »ê¾÷ ±â¹Ý°ú ûÁ¤ ¿¡³ÊÁö ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¿ä±¸°¡ Ä¿Áü¿¡ µû¶ó ¼ö¼Ò¿¡³ÊÁö ÀúÀå ºÐ¾ßÀÇ ¸®´õ½Ê¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

¼¼°èÀÇ ¼ö¼Ò¿¡³ÊÁö ÀúÀå ½ÃÀå¿¡¼­´Â À¯·´ÀÌ °¡Àå ³ôÀº CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¾ö°ÝÇÑ È¯°æ ±ÔÁ¦, ¼ö¼Ò ÀÎÇÁ¶ó ¹× ±â¼ú¿¡ ´ëÇÑ °í¾×ÀÇ ÅõÀÚ, ½ÅÀç»ý ¿¡³ÊÁöÀÇ ¾ß½ÉÂù ¸ñÇ¥°¡ ÀÌ ¼ºÀåÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. À¯·´¿¬ÇÕ(EU)Àº ¼ö¼Ò »ý»ê, ÀúÀå, À¯Åë È®´ë¸¦ ¸ñÇ¥·Î ÇÑ ÇÁ·Î±×·¥À» ÅëÇØ ±×¸°µô ¹× ¼ö¼Ò Àü·«À» ÅëÇØ ¼ö¼Ò ±â¼úÀÇ ¼¼°èÀû ¸®´õ°¡ µÇ±â¸¦ ¸ñÇ¥·Î Çϰí ÀÖ½À´Ï´Ù. ±×·¯³ª ±â¼ú Çõ½Å°ú ½ÃÀå È®´ë´Â Àå·Á¹ý, ÀçÁ¤Àû Àμ¾Æ¼ºê, ¾÷°è °ü°èÀÚ, Á¤ºÎ ±â°ü, Çмú ±â°üÀÇ ÆÄÆ®³Ê½Ê¿¡ ÀÇÇØ¼­µµ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù.

¹«·á ¸ÂÃã¼³Á¤ ¼­ºñ½º

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀû ÇÁ·ÎÆÄÀϸµ(3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ ÀÀÇÑ ÁÖ¿ä±¹ ½ÃÀå Ãß°è, ¿¹Ãø ¹× CAGR(ÁÖ : Ÿ´ç¼º È®Àο¡ µû¸§)
  • °æÀï º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû Á¸Àç ¹× Àü·«Àû Á¦ÈÞ¿¡ ±â¹ÝÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç Á¤º¸¿ø
    • 1Â÷ Á¶»ç Á¤º¸¿ø
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ±â¼ú ºÐ¼®
  • ÃÖÁ¾ »ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
  • ±¸¸ÅÀÚÀÇ Çù»ó·Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô ÁøÀÔ¾÷ÀÚÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ¼ö¼Ò¿¡³ÊÁö ÀúÀå ½ÃÀå : ÀúÀå À¯Çüº°

  • °íÁ¤Çü ÀúÀå
  • È­ÇÐÁ¦Ç° ÀúÀå
  • ¹°¸®Àû ÀúÀå
  • ±âŸ ÀúÀå À¯Çü

Á¦6Àå ¼¼°èÀÇ ¼ö¼Ò¿¡³ÊÁö ÀúÀå ½ÃÀå : »óź°

  • ±âü
  • ¾×ü
  • °íü

Á¦7Àå ¼¼°èÀÇ ¼ö¼Ò¿¡³ÊÁö ÀúÀå ½ÃÀå : ±â¼úº°

  • ¾×ü ¼ö¼Ò
  • ÁöÇÏ¿°°»
  • ź¼Ò Èí¼ö
  • Àç·áº£À̽º
    • È­ÇÐ ¼ö¼ÒÈ­¹°
    • ±Ý¼Ó ¼ö¼ÒÈ­¹°
  • ¾×È­
  • ¾ÐÃà
  • ±âŸ ±â¼ú

Á¦8Àå ¼¼°èÀÇ ¼ö¼Ò¿¡³ÊÁö ÀúÀå ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • À¯Æ¿¸®Æ¼
  • »ê¾÷
    • È­Çаø¾÷
    • ö°­ ¹× ±Ý¼Ó°¡°ø
    • ¼®À¯ Á¤Á¦¼Ò
  • »ó¾÷
    • °ø°£ ³­¹æ
    • ¿î¼Û
  • ÁÖÅÃ
  • °íÁ¤Çü Àü¿ø
  • ±âŸ ÃÖÁ¾ »ç¿ëÀÚ

Á¦9Àå ¼¼°èÀÇ ¼ö¼Ò¿¡³ÊÁö ÀúÀå ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦10Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷ ¹× ÇÕÀÛÅõÀÚ(JV)
  • Àμö ¹× ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦11Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • Chart Industries
  • Fuelcell Energy
  • Hexagon Composites
  • Air Liquide
  • Iwatani Corporation
  • Linde PLC
  • Engie
  • Hydrogenics
  • Steelhead Composites Inc.
  • Air Products Inc.
  • Grz Technologies
  • Worthington Industries
  • Cummins Inc.
  • Nedstack Fuel Cell Technology BV
  • Pragma Industries
AJY 24.06.25

According to Stratistics MRC, the Global Hydrogen Energy Storage Market is accounted for $18.07 billion in 2024 and is expected to reach $30.47 billion by 2030 growing at a CAGR of 9.1% during the forecast period. With many benefits over conventional energy storage systems, hydrogen energy storage is a cutting-edge technique for storing energy in the form of hydrogen gas. With the use of electricity, which is frequently generated from renewable energy sources like solar or wind power; this technology produces hydrogen by splitting water into hydrogen and oxygen through the process of electrolysis. Subsequently, the hydrogen can be kept in liquid form at cryogenic temperatures, in compressed gas form, or chemically bound within metal hydrides.

According to the International Energy Agency (IEA), hydrogen energy storage is a crucial technology for achieving a sustainable energy future and meeting global decarbonisation targets.

Market Dynamics:

Driver:

Integration of renewable energy

Due to the fact that they are by nature sporadic, renewable energy sources like solar and wind power only generate energy when the sun or wind blows. It becomes difficult to balance supply and demand on the grid as a result of this intermittency. Additionally, by storing extra renewable energy when output exceeds demand and converting it back to electricity during times of low production, hydrogen energy storage can help solve this problem. Because of this property, hydrogen plays a crucial role in maintaining grid stability and facilitating the increased share of renewable energy sources in the energy mix.

Restraint:

High starting prices

The substantial upfront costs of hydrogen energy storage systems present a major obstacle to their widespread adoption. These expenses cover the initial investment in fuel cells, distribution infrastructure, hydrogen storage tanks, and electrolysis units. In particular, electrolysis is costly because it needs precise engineering and sophisticated materials. Furthermore, the infrastructure needed to safely transport and store hydrogen, such as specialized pipelines and high-pressure tanks, raises the overall cost as well.

Opportunity:

Technological developments in hydrogen storage

New prospects for more effective, secure, and affordable storage solutions are being created by ongoing research and development in hydrogen storage technologies. Compared to conventional techniques, advances in solid-state storage, such as metal hydrides and carbon-based materials, offer higher energy densities and enhanced safety. Technological advances in high-pressure tanks and cryogenic storage are also improving the viability of hydrogen storage for a range of uses. Moreover, in order to overcome the current obstacles and increase the appeal of hydrogen storage as a large-scale energy storage and transportation option, technological advancements are essential.

Threat:

Threats from alternative energy storage technologies

Alternative energy storage technologies like lithium-ion batteries, pumped hydroelectric storage, and compressed air energy storage pose a significant threat to the hydrogen energy storage market. Because of their established supply chains, manufacturing prowess, and economies of scale, these technologies have already attained notable market penetration. Particularly in applications requiring quick response times and high power densities, lithium-ion batteries have experienced significant cost reductions and performance improvements, making them a strong rival to hydrogen storage.

Covid-19 Impact:

The market for hydrogen energy storage has been significantly impacted by the COVID-19 pandemic, which has resulted in supply chain disruptions, project development delays, and economic uncertainty. Project delays and cost overruns have resulted from the deployment of hydrogen infrastructure projects and research activities being slowed down by lockdown measures, travel restrictions, and workforce disruptions. Furthermore, the immediate need for hydrogen as a feedstock or energy carrier has decreased due to the pandemic's decreased industrial activity and energy demand, especially in industries like transportation, manufacturing, and construction.

The Chemical Storage segment is expected to be the largest during the forecast period

It is projected that chemical storage will command the largest market share. Chemical storage is the process of storing hydrogen in chemical compounds with high energy densities and extended storage lives, such as metal hydrides or liquid organic hydrogen carriers. For instance, metal hydrides absorb hydrogen gas to create stable compounds and then release it through depressurization or heating when required. Moreover, these chemical storage techniques are effective and flexible in storing and releasing hydrogen, which makes them appropriate for stationary uses in industrial processes, grid balancing, and renewable energy integration.

The Gas segment is expected to have the highest CAGR during the forecast period

The segment with the highest predicted CAGR is gas storage. Gas storage is the practice of keeping hydrogen in a gaseous state for later use. This is usually done in subterranean caverns or high-pressure tanks, which provide high energy densities and quick reaction times. Applications that call for quick and frequent cycling, like backup power generation, peak shaving, and grid stabilization, are ideally suited for this approach. Additionally, gas storage systems offer adaptable and scalable ways to handle variations in the supply and demand for energy.

Region with largest share:

The market for hydrogen energy storage is dominated by Asia Pacific. Numerous government initiatives and investments, particularly in nations like China, South Korea, and Japan, are what fuel this dominance in hydrogen technologies. The aspirational hydrogen policies of these countries are to integrate renewable energy sources, encourage the use of hydrogen fuel cell vehicles, and decarbonize their economies. Furthermore, contributing to the region's leadership in hydrogen energy storage is Asia Pacific's robust industrial base and growing need for clean energy solutions.

Region with highest CAGR:

In the global market for hydrogen energy storage, Europe is expected to grow at the highest CAGR. Tight environmental regulations, high investments in hydrogen infrastructure and technology, and ambitious targets for renewable energy are driving this growth. Through programs aimed at increasing hydrogen production, storage, and distribution, the European Union hopes to become a global leader in hydrogen technologies through the Green Deal and the Hydrogen Strategy. However, innovation and market expansion are also being fueled by encouraging laws, financial incentives, and partnerships between industry players, government agencies, and academic institutions.

Key players in the market

Some of the key players in Hydrogen Energy Storage market include Chart Industries, Fuelcell Energy, Hexagon Composites, Air Liquide, Iwatani Corporation, Linde PLC, Engie, Hydrogenics, Steelhead Composites Inc., Air Products Inc., Grz Technologies, Worthington Industries, Cummins Inc., Nedstack Fuel Cell Technology BV and Pragma Industries.

Key Developments:

In April 2024, FuelCell Energy, Inc. and ExxonMobil Technology and Engineering Company announced an updated and extended joint development agreement (JDA) for the deployment of their unique carbonate fuel cell technology for carbon capture. According to the new agreement, FuelCell Energy can now incorporate elements of the jointly developed technology into its existing carbon capture products currently being marketed to customers.

In February 2024, Air Liquide and Sasol have signed new Power Purchase Agreements (PPAs) with Enel Green Power RSA[1] for the long term supply of an additional capacity of 110 MW of renewable power to Sasol's Secunda site in South Africa. This is the fourth set of PPAs signed by Air Liquide and Sasol after those announced in 2023. Together, these PPAs represent a total renewable power capacity of around 690 MW.

In May 2023, two major market leaders, Koch Engineered Solutions (KES) and Chart Industries, have signed a Memorandum of Understanding, marking the beginning of their CCUS collaboration and a combined pursuit of new knowledge and new carbon capture opportunities. Chart Industries is a global manufacturer of highly engineered equipment, servicing projects in the clean energy and industrial gas markets.

Storage Types Covered:

  • Stationary Storage
  • Chemical Storage
  • Physical Storage
  • Other Storage Types

States Covered:

  • Gas
  • Liquid
  • Solid

Technologies Covered:

  • Liquid Hydrogen
  • Underground Salt Caverns
  • Carbon Absorption
  • Material Based
  • Liquefaction
  • Compression
  • Other Technologies

End Users Covered:

  • Utilities
  • Industrial
  • Commercial
  • Residential
  • Stationary Power
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Hydrogen Energy Storage Market, By Storage Type

  • 5.1 Introduction
  • 5.2 Stationary Storage
  • 5.3 Chemical Storage
  • 5.4 Physical Storage
  • 5.5 Other Storage Types

6 Global Hydrogen Energy Storage Market, By State

  • 6.1 Introduction
  • 6.2 Gas
  • 6.3 Liquid
  • 6.4 Solid

7 Global Hydrogen Energy Storage Market, By Technology

  • 7.1 Introduction
  • 7.2 Liquid Hydrogen
  • 7.3 Underground Salt Caverns
  • 7.4 Carbon Absorption
  • 7.5 Material Based
    • 7.5.1 Chemical Hydrides
    • 7.5.2 Metal Hydrides
  • 7.6 Liquefaction
  • 7.7 Compression
  • 7.8 Other Technologies

8 Global Hydrogen Energy Storage Market, By End User

  • 8.1 Introduction
  • 8.2 Utilities
  • 8.3 Industrial
    • 8.3.1 Chemical Industry
    • 8.3.2 Steel & Metal Works
    • 8.3.3 Oil Refineries
  • 8.4 Commercial
    • 8.4.1 Space Heating
    • 8.4.2 Transportation
  • 8.5 Residential
  • 8.6 Stationary Power
  • 8.7 Other End Users

9 Global Hydrogen Energy Storage Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 Chart Industries
  • 11.2 Fuelcell Energy
  • 11.3 Hexagon Composites
  • 11.4 Air Liquide
  • 11.5 Iwatani Corporation
  • 11.6 Linde PLC
  • 11.7 Engie
  • 11.8 Hydrogenics
  • 11.9 Steelhead Composites Inc.
  • 11.10 Air Products Inc.
  • 11.11 Grz Technologies
  • 11.12 Worthington Industries
  • 11.13 Cummins Inc.
  • 11.14 Nedstack Fuel Cell Technology BV
  • 11.15 Pragma Industries
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦