½ÃÀ庸°í¼­
»óǰÄÚµå
1494848

¼¼°èÀÇ ±¤ÀüÀÚ ºÎǰ ½ÃÀå ¿¹Ãø : ÄÄÆ÷³ÍÆ®º°, Àç·áº°, ¿ëµµº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®(-2030³â)

Optoelectronic Components Market Forecasts to 2030 - Global Analysis By Component, Material, Application, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é, ¼¼°èÀÇ ±¤ÀüÀÚ ºÎǰ ½ÃÀåÀº 2024³â¿¡ 542¾ï 7,000¸¸ ´Þ·¯·Î ÃßÁ¤µÇ°í, ¿¹Ãø ±â°£ µ¿¾È CAGRÀº 7.0%·Î ¼ºÀåÇÒ Àü¸ÁÀ̸ç, 2030³â¿¡´Â 814¾ï 4,000¸¸ ´Þ·¯¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÈ´Ù ÇÕ´Ï´Ù.

±¤ÀüÀÚ ºÎǰÀº ÀüÀÚ¿Í ºûÀ» ¿øÈ°ÇÏ°Ô °áÇÕÇÏ°í ±¤¹üÀ§ÇÑ ¿ëµµ¸¦ °³Ã´Çϱ⠶§¹®¿¡ Çö´ë ±â¼ú¿¡ ÇʼöÀûÀÎ ºÎǰÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ºÎǰ¿¡´Â ±¤°ËÃâ±â, ±¤¼¶À¯, ·¹ÀÌÀú ´ÙÀÌ¿Àµå, LED µî ´Ù¾çÇÑ ÇüŰ¡ ÀÖ½À´Ï´Ù. ±¤ °ËÃâ±â´Â Ä«¸Þ¶ó, ±¤Åë½Å ½Ã½ºÅÛ, ÀÇ·á±â±â µîÀÇ ÀåÄ¡¿¡¼­ ±¤ °¨Áö¸¦ °¡´ÉÇÏ°Ô Çϸç, LED´Â µð½ºÇ÷¹ÀÌ, Á¶¸í ½Ã½ºÅÛ, Ç¥½Ã µî¿¡¼­ È¿°úÀûÀÎ ±¤¿ø ¿ªÇÒÀ» ÇÕ´Ï´Ù.

±¹Á¦ÆÐÅÏÀνÄÇùȸ(IAPR)¿¡ µû¸£¸é 'ÆÐÅÏÀνÄÀº ÁÖ·Î ±× ±ÙÀú¿¡ ÀÖ´Â ±ÔÄ¢¼º»Ó¸¸ ¾Æ´Ï¶ó °¡º¯¼ºÀ̳ª ºÒº¯¼º µîÀÇ Æ¯¼ºµµ Æ÷ÇÔÇÑ ÆÐÅÏ ºÐ¼®¿¡ °ü·ÃµÈ °úÇÐ ºÐ¾ßÀÌ´Ù'¶ó°í ÇÕ´Ï´Ù.

°í¼Ó µ¥ÀÌÅÍ Åë½Å¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡

Åë½Å ³×Æ®¿öÅ©¿¡¼­ÀÇ °í¼Ó µ¥ÀÌÅÍ Àü¼ÛÀº ±¤°ËÃâ±â, ·¹ÀÌÀú, ±¤¼¶À¯ µîÀÇ ±¤ÀüÀÚ ºÎǰ¿¡ ÀÇÁ¸ÇÕ´Ï´Ù. Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ, ¿Â¶óÀÎ °ÔÀÓ, ºñµð¿À ½ºÆ®¸®¹Ö µî ´ë¿ªÆøÀÌ ÇÊ¿äÇÑ ¿ëµµÀÌ ±Þ¼ÓÈ÷ Áõ°¡Çϰí Àֱ⠶§¹®¿¡ º¸´Ù ºü¸£°í ¾ÈÁ¤ÀûÀÎ µ¥ÀÌÅÍ Åë½Å ÀÎÇÁ¶ó°¡ ÇÊ¿äÇÕ´Ï´Ù. °Ô´Ù°¡, ±¤ÀüÀÚ ºÎǰÀº ³ôÀº µ¥ÀÌÅÍ ·¹ÀÌÆ®, ³·Àº Áö¿¬, ÀüÀڱ⠰£¼·¿¡ ´ëÇÑ ³»¼º µîÀÇ ÀåÁ¡ÀÌ Àֱ⠶§¹®¿¡ Áõ°¡ÇÏ´Â µ¥ÀÌÅÍ Æ®·¡ÇÈÀÇ Ã³¸®¿¡ ÇʼöÀûÀÔ´Ï´Ù.

»ý»ê ¹× ±¸ÇöÀÇ ºñ¿ë Á¦ÇÑ

±¤ÀüÀÚ ºÎǰÀÇ Ã¤¿ëÀº ƯÈ÷ ½ÅÈï ½ÃÀå°ú ÀÀ¿ë ºÐ¾ß¿¡¼­ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡µµ ºÒ±¸ÇÏ°í ³ôÀº Á¦Á¶ ºñ¿ëÀ¸·Î ÀÎÇØ ¹æÇعÞÀ» ¼ö ÀÖ½À´Ï´Ù. ÷´Ü ±¤ÀüÀÚ µð¹ÙÀ̽ºÀÇ Á¦Á¶¿¡´Â º¹ÀâÇÑ Á¦Á¶ ÀýÂ÷, Ư¼ö Àç·á, Á¤È®ÇÑ Á¶¸³ ¹æ¹ýÀÌ ÀÚÁÖ ÇÊ¿äÇϸç, ÀÌµé ¸ðµÎ´Â Á¦Á¶ ºñ¿ëÀ» Áõ°¡½Ãŵ´Ï´Ù. °Ô´Ù°¡ ¿¬±¸ ÀÎÇÁ¶ó¿Í Á¦Á¶ ½Ã¼³ÀÇ ¼³Ä¡¿¡ ÇÊ¿äÇÑ Ãʱ⠺ñ¿ëÀÌ °í¾×ÀÌ µÇ´Â °æ¿ìµµ ÀÖ¾î, ½Å±Ô °æÀï ±â¾÷ÀÇ ÁøÀÔÀ̳ª ½ÃÀå¿¡¼­ÀÇ ±â¼ú Çõ½ÅÀ» ÀúÇØÇϰí ÀÖ½À´Ï´Ù.

»ç¹°ÀÎÅͳÝ(IOT) »ýÅÂ°è ¼ºÀå

±¤ÀüÀÚ ºÎǰÀº ƯÈ÷ ½º¸¶Æ® Ȩ, »ê¾÷ ÀÚµ¿È­, ȯ°æ ¼¾½Ì, °Ç°­ °ü¸® ¹× ¸ð´ÏÅ͸µ°ú °°Àº ºÐ¾ß¿¡¼­ ¿¬°á ÀåÄ¡ ¹× »ç¹° ÀÎÅÍ³Ý ¿ëµµÀÇ º¸±ÞÀ¸·Î Å« ÀÌÁ¡À» ´©¸± ¼ö ÀÖ½À´Ï´Ù. »ç¹° ÀÎÅÍ³Ý ½Ã½ºÅÛ¿¡¼­ÀÇ µ¥ÀÌÅÍ ¼öÁý, ºÐ¼® ¹× Åë½ÅÀº ±¤ÀüÀÚ ¼¾¼­, ¾×Ãß¿¡ÀÌÅÍ ¹× Åë½Å ¸ðµâÀ» ÅëÇØ ´ëºÎºÐ °¡´ÉÇÕ´Ï´Ù. ¶ÇÇÑ IoT ÀÎÇÁ¶ó ±¸Ãà È®´ë, ¿¡Áö ÄÄÇ»ÆÃ, AI ±â¼ú äÅÃÀ¸·Î ÀúÀü·Â, ¼ÒÇü, °í¼º´É ±¤ÀüÀÚ ºÎǰ¿¡ ´ëÇÑ ¿ä±¸°¡ ³ô¾ÆÁú °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

½ÃÀå Æ÷È­ ¹× Ä¡¿­ÇÑ °æÀï

±¤ÀüÀÚ ºÎǰ ½ÃÀå¿¡¼­´Â ¿À·£ °æÀï»ç¿Í ÃÖ±Ù µé¾î¿Â ±â¾÷ °£ÀÇ Ä¡¿­ÇÑ °æÀïÀÌ ¹ú¾îÁö°í °¡°ÝÀÌ Ç϶ôÇÏ°í ¸¶ÁøÀÌ Ä§½ÄµÇ¾î Á¦Ç°ÀÌ »óǰȭµË´Ï´Ù. ±â¼ú°ú Á¦Á¶±â¼úÀÇ ±Þ¼ÓÇÑ ¹ßÀüÀ¸·Î ÁøÀÔ À庮ÀÌ ÀúÇϵǾú°í, ´Ù¼öÀÇ ¶óÀ̹úÀÌ µ¿µîÇϰųª ´ëüÁ¦Ç°À» Á¦°øÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ LED Á¶¸í°ú ½º¸¶Æ®Æù µð½ºÇ÷¹ÀÌ¿Í °°Àº ƯÁ¤ ºÐ¾ß ½ÃÀå Æ÷È­·Î ÀÎÇØ °æÀï ¾Ð·ÂÀÌ ´õ¿í °­ÇØÁ® °ø±Þ °úÀ×°ú °¡°Ý µ¿ÇâÀÇ ÀúÇϸ¦ ÃÊ·¡Çϰí ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ :

ÆÒµ¥¹ÍÀº Æó¼â, ¿©Çà Á¦ÇÑ, °æÁ¦ ºÒ¾ÈÀ» ÀÏÀ¸Ä×°í, óÀ½¿¡´Â ±¤ÀüÀÚ ºÎǰ ½ÃÀå °ø±Þ¸Á, ¼ö¿ä µ¿Çâ, Á¦Á¶ ¾÷¹«¿¡ È¥¶õÀ» ÃÊ·¡Çß½À´Ï´Ù. ¹ÙÀÌ¿ÀÆ÷Åä´Ð½º³ª ÇコÄÉ¾î ¿ëµµÀÇ LED Á¶¸í°ú °°Àº ƯÁ¤ ºÐ¾ß¿¡¼­´Â ¼ö¿ä°¡ Áõ°¡ÇßÁö¸¸, ÀÚµ¿Â÷ Á¶¸íÀ̳ª ¼ÒºñÀÚ¿ë ÀüÀÚ±â±â µî ´Ù¸¥ ºÐ¾ß¿¡¼­´Â »ý»ê Á¤Áö³ª ¼ÒºñÀÚ ÁöÃâÀÇ °¨¼Ò·Î ¾î·Á¿òÀÌ ¹ß»ýÇß½À´Ï´Ù. ¶ÇÇÑ, ±¤ÀüÀÚ ºÎǰÀº ¿Â¶óÀÎ ±³À°, ¿ø°Ý ÀÇ·á, ¿ø°Ý ±Ù¹« ¼Ö·ç¼Ç µîÀÇ ºÐ¾ß¿¡¼­ ¼ö¿ä°¡ ³ô½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È °¥·ý ³ªÀÌÅ»¸®¾Æµå ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ Àü¸Á

±¤ÀüÀÚ ºÎǰ ½ÃÀå¿¡¼­´Â ÁúÈ­°¥·ý(GaN) ºÎ¹®ÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÕ´Ï´Ù. GaN ±â¹Ý µð¹ÙÀ̽º´Â ³ôÀº Àü·Â È¿À², ³ÐÀº ¹êµå °¸, ³ôÀº ÀüÀÚ À̵¿µµ¿Í °°Àº ¿ì¼öÇÑ ¼º´É Ư¼ºÀ¸·Î LED, ·¹ÀÌÀú ´ÙÀÌ¿Àµå, ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º, RF ÁõÆø±â µî ´Ù¾çÇÑ ¿ëµµ¿¡ ÀûÇÕÇÕ´Ï´Ù. °Ô´Ù°¡, Á¾·¡ÀÇ ½Ç¸®ÄÜ ±â¹Ý µð¹ÙÀ̽º¿¡ ºñÇØ, GaN ±â¹Ý ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º´Â ´õ ³ôÀº Àü·Â ¹Ðµµ, ´õ ºü¸¥ ½ºÀ§Äª ¼Óµµ, ´õ ³·Àº ¿Â ÀúÇ× µîÀÇ ÀÌÁ¡À» °¡Áö¸ç, ¹«¼± Àü·Â Àü¼Û, ½ÅÀç»ý ¿¡³ÊÁö ½Ã½ºÅÛ, Àü±âÀÚµ¿Â÷ µîÀÇ ¿ëµµÀ» °³Ã´Çϰí ÀÖ½À´Ï´Ù.

¿¹Ãø±â°£ µ¿¾È Åë½ÅºÐ¾ßÀÇ CAGRÀÌ °¡Àå ³ô¾ÆÁú Àü¸Á

±¤ÀüÀÚ ºÎǰ ½ÃÀå¿¡¼­ Åë½Å ºÐ¾ßÀÇ CAGRÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. °í¼Ó µ¥ÀÌÅÍ Àü¼Û, Àå°Å¸® Åë½Å ¹× ³×Æ®¿öÅ© ¿¬°áÀº ±¤ÀüÀÚ ºÎǰ¿¡ ÀÇÇØ °¡´ÉÇÏ¸ç ±¤Æ®·£½Ã¹ö, ±¤ °ËÃâ±â, ·¹ÀÌÀú ´ÙÀÌ¿Àµå, ±¤ ÁõÆø±â µîÀÇ ºÎǰ ¼ö¿ä¿¡ ¹ÚÂ÷¸¦ °¡ÇÕ´Ï´Ù. ¶ÇÇÑ Å¬¶ó¿ìµå ÄÄÇ»ÆÃ, ºñµð¿À ½ºÆ®¸®¹Ö ¹× »ç¹° ÀÎÅÍ³Ý ¿¬°á°ú °°Àº ´ë¿ªÆø Áý¾àÀû ¿ëµµÀ» Áö¿øÇϱâ À§ÇØ °í±Þ ±¤ÀüÀÚ ±¸¼º ¿ä¼Ò´Â ´õ ³ôÀº µ¥ÀÌÅÍ ¼Óµµ, ³·Àº ´ë±â ½Ã°£ ¹× ¾ÈÁ¤¼ºÀ» ¿ä±¸ÇÕ´Ï´Ù.

ÃÖ´ë °øÀ¯ Áö¿ª :

±¤ÀüÀÚ ºÎǰ ½ÃÀå¿¡¼­ ¾Æ½Ã¾ÆÅÂÆò¾çÀº °¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÕ´Ï´Ù. ½ÃÀå ¸®´õÀÇ Á¸Àç°¨, °­·ÂÇÑ Á¦Á¶ ´É·Â, ÀÚµ¿Â÷, »ê¾÷, °¡Àü, Åë½Å ºÐ¾ß¿¡¼­ ±¤ÀüÀÚ ±â¼úÀÇ ±¤¹üÀ§ÇÑ »ç¿ë, ¿¡³ÊÁö È¿À²ÀûÀÎ Á¶¸í ¼Ö·ç¼Ç ¼ö¿ä Áõ°¡ µîÀÌ ÀÌ ¿ìÀ§ÀÇ ¿äÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±¤ÀüÀÚ ºÎǰÀÇ Çõ½Å°ú »ý»êÀº Áß±¹, ÀϺ», Çѱ¹, ´ë¸¸ µîÀÇ ±¹°¡¸¦ ¼±µµÇϰí ÀÖ½À´Ï´Ù. À̰ÍÀº Á¤ºÎÀÇ Áö¿ø Á¤Ã¥, ¿¬±¸ °³¹ß ºñ¿ë, Á¦Á¶ ¾÷ü ¹× °ø±Þ¾÷üÀÇ °ß°íÇÑ ³×Æ®¿öÅ© ¶§¹®ÀÔ´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

ºÏ¹Ì´Â ±¤ÀüÀÚ ºÎǰ ½ÃÀå¿¡¼­ °¡Àå ³ôÀº CAGRÀ» À¯ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ¼ºÀå¿¡´Â ÃÖ÷´Ü ±â¼ú ±â¾÷ÀÇ Ç³ºÎÇÔ, ¸¹Àº ¿¬±¸ °³¹ß ºñ¿ë, ±¤ÀüÀÚ ±â¼úÀÇ Áö¼ÓÀûÀÎ ¹ßÀü µî ¸¹Àº ¿äÀÎÀÌ ±â¿©Çϰí ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ÀÌ Áö¿ªÀÇ °­·ÂÇÑ ¼ºÀå±Ëµµ´Â ±â¼úÀû Áøº¸¿¡ ÁßÁ¡À» µÎ°í ÀÖ´Â °Í ¿Ü¿¡µµ °¡»óÇö½Ç(VR), Áõ°­Çö½Ç(AR), ÀÚÀ²ÁÖÇàÂ÷ µî ÃÖ÷´Ü »ê¾÷¿¡¼­ ±¤ÀüÀÚ ºÎǰÀÇ ¿ëµµ°¡ È®´ëµÇ°í Àֱ⠶§¹®ÀÔ´Ï´Ù.

¹«·á ¸ÂÃã¼³Á¤ ¼­ºñ½º :

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀû ÇÁ·ÎÆÄÀϸµ(3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ ÀÀÇÑ ÁÖ¿ä±¹ ½ÃÀå Ãß°è, ¿¹Ãø ¹× CAGR(ÁÖ : Ÿ´ç¼º È®Àο¡ µû¸§)
  • °æÀï º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû Á¸Àç ¹× Àü·«Àû Á¦ÈÞ¿¡ ±â¹ÝÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç Á¤º¸¿ø
    • 1Â÷ Á¶»ç Á¤º¸¿ø
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾ »ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
  • ±¸¸ÅÀÚÀÇ Çù»ó·Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô ÁøÀÔ¾÷ÀÚÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ±¤ÀüÀÚ ºÎǰ ½ÃÀå : ºÎǰº°

  • ¼¾¼­
    • À̹ÌÁö ¼¾¼­
    • ±¤ÇÐ ¼¾¼­
    • Àڿܼ± ¼¾¼­
  • LED
    • ÀϹÝÀûÀÎ LED
    • À¯±â LED
    • Àڿܼ± LED
  • ·¹ÀÌÀú ´ÙÀÌ¿Àµå
    • û»ö ·¹ÀÌÀú ´ÙÀÌ¿Àµå
    • ³ì»ö ·¹ÀÌÀú ´ÙÀÌ¿Àµå
    • ±ÙÀû¿Ü¼±(NIR)
    • Àû»ö ·¹ÀÌÀú ´ÙÀÌ¿Àµå
  • Àû¿Ü¼± ºÎǰ
    • Àû¿Ü¼± µ¥ÀÌÅÍ Çùȸ(IrDA) Æ®·£½Ã¹ö
    • Àû¿Ü¼± LED(IRED)
    • Àû¿Ü¼±(IR) °ËÃâ±â
  • ¿ÉÅä Ä¿Ç÷¯
    • 4ÇÉ ±¤Ä¿Ç÷¯
    • 6ÇÉ ±¤Ä¿Ç÷¯
    • °í¼Ó ±¤Ä¿Ç÷¯
  • ±âŸ ÄÄÆ÷³ÍÆ®

Á¦6Àå ¼¼°èÀÇ ±¤ÀüÀÚ ºÎǰ ½ÃÀå : Àç·áº°

  • ÁúÈ­°¥·ý
  • °¥·ýºñ¼Ò
  • ½Ç¸®ÄÜ Ä«¹ÙÀ̵å
  • ÀÎÈ­Àεã
  • ½Ç¸®ÄÜ °Ô¸£¸¶´½
  • ÀÎÈ­°¥·ý
  • ±âŸ Àç·á

Á¦7Àå ¼¼°èÀÇ ±¤ÀüÀÚ ºÎǰ ½ÃÀå : ¿ëµµº°

  • ÃøÁ¤
  • Á¶¸í
  • Åë½Å
  • º¸¾È ¹× ¸ð´ÏÅ͸µ
  • Áö¸®Á¶»ç
  • ºÐ±¤ ÃøÁ¤
  • ±âŸ ¿ëµµ

Á¦8Àå ¼¼°èÀÇ ±¤ÀüÀÚ ºÎǰ ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • ÀÚµ¿Â÷
  • °¡Àü
  • Åë½Å
  • ±º»ç ¹× Ç×°ø¿ìÁÖ
  • ÀÇ·á
  • ÁÖÅÃ
  • »ó¾÷
  • Á¦Á¶¾÷
  • À¯Æ¿¸®Æ¼
  • À½½Ä
  • ÆÞÇÁ ¹× Á¾ÀÌ
  • ±âŸ ÃÖÁ¾ »ç¿ëÀÚ

Á¦9Àå ¼¼°èÀÇ ±¤ÀüÀÚ ºÎǰ ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦10Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷ ¹× ÇÕÀÛÅõÀÚ(JV)
  • Àμö ¹× ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦11Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • Omnivision
  • Mitsubishi Electric Corporation
  • Samsung
  • Trumpf
  • Osram
  • Vishay
  • Broadcom
  • ON Semiconductor
  • Sony
  • TT Electronics
  • Panasonic
  • SICK AG
  • Hamamatsu
AJY 24.06.25

According to Stratistics MRC, the Global Optoelectronic Components Market is accounted for $54.27 billion in 2024 and is expected to reach $81.44 billion by 2030 growing at a CAGR of 7.0% during the forecast period. Optoelectronic components are essential to contemporary technology because they combine electronics and light in a seamless way, opening up a wide range of uses. These parts come in a variety of forms, such as photodetectors, optical fibers, laser diodes, and light-emitting diodes (LEDs). Photodetectors enable light sensing in devices like cameras, optical communication systems, and medical instruments, while LEDs function as effective light sources in displays, lighting systems, and indicators.

According to the International Association for Pattern Recognition (IAPR), "Pattern recognition is the scientific discipline concerned with the analysis of patterns, mainly in terms of their underlying regularities, but also their variability and invariance properties.

Market Dynamics:

Driver:

Increasing demand for high-speed data communication

High-speed data transmission in telecommunications networks depends on optoelectronic components like photodetectors, lasers, and optical fibers. Rapidly increasing bandwidth-demanding applications such as cloud computing, online gaming, and video streaming necessitate faster and more dependable data communication infrastructure. Additionally, optoelectronic components are essential for handling the ever-increasing data traffic because of their benefits, which include high data rates, low latency, and immunity to electromagnetic interference.

Restraint:

Cost limitations in production and implementation

The adoption of optoelectronic components can be hindered by high manufacturing costs, especially in emerging markets and applications, despite the growing demand for these components. Advanced optoelectronic device production frequently entails intricate fabrication procedures, specialty materials, and exact assembly methods-all of which raise manufacturing costs. Furthermore, the initial outlay necessary to set up research infrastructure and fabrication facilities can be high, which inhibits the entry of new competitors and innovation in the market.

Opportunity:

Growth of the internet of things (IOT) ecosystem

Optoelectronic components can benefit greatly from the spread of connected devices and Internet of Things applications, especially in fields like smart homes, industrial automation, environmental sensing, and healthcare monitoring. Data gathering, analysis, and communication in Internet of Things systems are made possible in large part by optoelectronic sensors, actuators, and communication modules. Moreover, the need for low-power, small, and high-performance optoelectronic components is expected to rise due to the expanding IoT infrastructure deployment as well as the adoption of edge computing and AI technologies.

Threat:

Market saturation and fierce competition

Intense competition between long-standing competitors and recent arrivals in the optoelectronic components market drives down prices, erodes margins, and commoditizes goods. Quick developments in technology and manufacturing techniques have reduced entry barriers, allowing a plethora of rivals to offer comparable or alternative products. Additionally, competitive pressures are further intensified by market saturation in specific segments, such as LED lighting or smart phone displays, which results in oversupply and declining pricing trends.

Covid-19 Impact:

The pandemic caused lockdowns, travel restrictions, and economic uncertainty, which initially disrupted supply chains, demand dynamics, and manufacturing operations in the optoelectronic components market. There was a rise in demand for certain segments, like LED lighting for biophotonics and healthcare applications, while production halts and decreased consumer spending caused difficulties for other segments, like automotive lighting and consumer electronics. Furthermore, optoelectronic components are in high demand in fields like online education, telemedicine, and remote work solutions because of the pandemic's acceleration of digital transformation initiatives.

The Gallium Nitride segment is expected to be the largest during the forecast period

Within the optoelectronic components market, the gallium nitride (GaN) segment has the largest market share. GaN-based devices are well-suited for a range of applications, including LEDs, laser diodes, power electronics, and RF amplifiers, due to their superior performance characteristics, which include high power efficiency, wide bandgap, and high electron mobility. Moreover, compared to conventional silicon-based devices, GaN-based power electronics have advantages like higher power density, faster switching speeds, and lower on-resistance, opening up applications in wireless power transmission, renewable energy systems, and electric vehicles.

The Communications segment is expected to have the highest CAGR during the forecast period

The optoelectronic components market's communications segment has the highest CAGR. High-speed data transmission, long-distance communication, and network connectivity are made possible by optoelectronic components, which in turn fuel demand for components like optical transceivers, photodetectors, laser diodes, and optical amplifiers. Additionally, higher data rates, lower latency, and increased reliability are required for advanced optoelectronic components to support bandwidth-intensive applications like cloud computing, video streaming, and Internet of Things connectivity.

Region with largest share:

In the market for optoelectronic components, the Asia-Pacific region has the largest market share. The market leaders' presence, their strong manufacturing capabilities, the widespread use of optoelectronic technologies in the automotive, industrial, consumer electronics, and telecommunications sectors, as well as the growing demand for energy-efficient lighting solutions, are some of the factors contributing to this dominance. Furthermore, optoelectronic component innovation and production are leading the way in nations like China, Japan, South Korea, and Taiwan, owing to supportive government policies, R&D expenditures, and a robust network of manufacturers and suppliers.

Region with highest CAGR:

The North American region is anticipated to hold the highest CAGR in the optoelectronic components market. Numerous factors contribute to this growth, such as the region's abundance of top technology companies, significant R&D expenditures, and ongoing progress in optoelectronic technologies. Moreover, the region's strong growth trajectory is attributed to its emphasis on technological advancements as well as the growing applications of optoelectronic components in cutting-edge industries like virtual reality (VR), augmented reality (AR), and autonomous vehicles.

Key players in the market

Some of the key players in Optoelectronic Components market include Omnivision, Mitsubishi Electric Corporation, Samsung, Trumpf, Osram, Vishay, Broadcom, ON Semiconductor, Sony, TT Electronics, Panasonic, SICK AG and Hamamatsu.

Key Developments:

In May 2024, Mitsubishi Electric Corporation and Musashi Energy Solutions Co., Ltd., a subsidiary of Musashi Seimitsu Industry Co., Ltd., announced their signing of a partnership and co-development agreement on May 14 for Innovative Energy Storage Devices to be incorporated into Innovative Energy Storage Modules, and Battery Management Systems (BMSs) that monitor and control battery usage for railway operators and rolling stock manufacturers.

In April 2024, TT Electronics has announced that its Fairford UK business has been awarded a new contract with long-standing customer Kongsberg Defence and Aerospace (Kongsberg) for the production of complex cable harness solutions.

In January 2024, High-technology company TRUMPF plans to build a production facility in Pune, India. The company intends to invest €5 million ($5.4 million) in the facility, which will begin production later this year. The facility is expected to produce 300 bending and cutting machines annually. Additionally, TRUMPF has plans to add a showroom in Bengaluru to strengthen service in the region.

Components Covered:

  • Sensor
  • LED
  • Laser Diode
  • Infrared Components
  • Optocouplers
  • Other Components

Materials Covered:

  • Gallium Nitride
  • Gallium Arsenide
  • Silicon Carbide
  • Indium Phosphide
  • Silicon Germanium
  • Gallium Phosphide
  • Other Materials

Applications Covered:

  • Measurement
  • Lighting
  • Communications
  • Security and Surveillance
  • Geographical Survey
  • Spectrometry
  • Other Applications

End Users Covered:

  • Automotive
  • Consumer Electronics
  • Telecommunication
  • Military & Aerospace
  • Medical
  • Residential
  • Commercial
  • Manufacturing
  • Utility
  • Food and Beverages
  • Pulp and Paper
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Optoelectronic Components Market, By Component

  • 5.1 Introduction
  • 5.2 Sensor
    • 5.2.1 Image Sensor
    • 5.2.2 Optical Sensor
    • 5.2.3 Ultraviolet Sensor
  • 5.3 LED
    • 5.3.1 General Light-Emitting Diode
    • 5.3.2 Organic Light-Emitting Diode
    • 5.3.3 Ultraviolet Light-Emitting Diode
  • 5.4 Laser Diode
    • 5.4.1 Blue Laser Diode
    • 5.4.2 Green Laser Diode
    • 5.4.3 Near Infrared (NIR)
    • 5.4.4 Red Laser Diode
  • 5.5 Infrared Components
    • 5.5.1 Infrared Data Association (IrDA) Transceiver
    • 5.5.2 Infrared Emitting Diode (IRED)
    • 5.5.3 Infrared (IR) Detector
  • 5.6 Optocouplers
    • 5.6.1 4 Pin Optocoupler
    • 5.6.2 6 Pin Optocoupler
    • 5.6.3 High Speed Optocoupler
  • 5.7 Other Components

6 Global Optoelectronic Components Market, By Material

  • 6.1 Introduction
  • 6.2 Gallium Nitride
  • 6.3 Gallium Arsenide
  • 6.4 Silicon Carbide
  • 6.5 Indium Phosphide
  • 6.6 Silicon Germanium
  • 6.7 Gallium Phosphide
  • 6.8 Other Materials

7 Global Optoelectronic Components Market, By Application

  • 7.1 Introduction
  • 7.2 Measurement
  • 7.3 Lighting
  • 7.4 Communications
  • 7.5 Security and Surveillance
  • 7.6 Geographical Survey
  • 7.7 Spectrometry
  • 7.8 Other Applications

8 Global Optoelectronic Components Market, By End User

  • 8.1 Introduction
  • 8.2 Automotive
  • 8.3 Consumer Electronics
  • 8.4 Telecommunication
  • 8.5 Military & Aerospace
  • 8.6 Medical
  • 8.7 Residential
  • 8.8 Commercial
  • 8.9 Manufacturing
  • 8.10 Utility
  • 8.11 Food and Beverages
  • 8.12 Pulp and Paper
  • 8.13 Other End Users

9 Global Optoelectronic Components Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 Omnivision
  • 11.2 Mitsubishi Electric Corporation
  • 11.3 Samsung
  • 11.4 Trumpf
  • 11.5 Osram
  • 11.6 Vishay
  • 11.7 Broadcom
  • 11.8 ON Semiconductor
  • 11.9 Sony
  • 11.10 TT Electronics
  • 11.11 Panasonic
  • 11.12 SICK AG
  • 11.13 Hamamatsu
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦