½ÃÀ庸°í¼­
»óǰÄÚµå
1494858

¼¼°èÀÇ ³ó¾÷¿ë ÀΰøÁö´É(AI) ½ÃÀå ¿¹Ãø : ÀÛ¹° À¯Çüº°, ÄÄÆ÷³ÍÆ®º°, Àü°³ ¸ðµåº°, ±â¼úº°, ¿ëµµº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®(-2030³â)

Artificial Intelligence in Agriculture Market Forecasts to 2030 - Global Analysis By Crop Type, Component, Deployment Mode, Technology, Application, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ³ó¾÷¿ë ÀΰøÁö´É(AI) ½ÃÀåÀº 2024³â¿¡ 19¾ï 5,000¸¸ ´Þ·¯·Î ÃßÁ¤µÇ°í, ¿¹Ãø ±â°£ µ¿¾È CAGR 25.2%·Î ¼ºÀåÇÒ Àü¸ÁÀ̸ç, 2030³â¿¡´Â 65¾ï 3,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù.

³ó¾÷¿ë ÀΰøÁö´É(AI)À̶õ ¸Ó½Å·¯´×, ÄÄÇ»ÅÍ ºñÀü, ·Îº¿ °øÇÐ ¹× µ¥ÀÌÅÍ ºÐ¼®À» Àû¿ëÇÏ¿© ³ó¾÷À» °­È­ÇÏ´Â °ÍÀ» ¸»ÇÕ´Ï´Ù. AI ÁÖµµ ±â¼úÀº Åä¾ç ¼¾¼­, Àϱ⠿¹º¸, À§¼º À̹ÌÁö µî ´Ù¾çÇÑ ÃâóÀÇ µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ¿© Á¤¹Ð ³ó¾÷À» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº ÀÛ¹° ¼öÀ²À» ÃÖÀûÈ­Çϰí ÀÚ¿ø »ç¿ë·®À» ÁÙÀ̰í ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÃÖ¼ÒÈ­ÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. º´ÇØÃæ ŽÁö, ÀÛ¹° ¸ð´ÏÅ͸µ, ÀÚµ¿ ¼öÈ®°ú °°Àº ÀÛ¾÷Àº ÀΰøÁö´É¿¡ ÀÇÇØ °£¼ÒÈ­µÇ¾î ³ó¾÷ °æ¿µÀÇ È¿À²¼º, Áö¼Ó°¡´É¼º ¹× ¼öÀͼºÀ» Çâ»ó½Ãŵ´Ï´Ù.

NASSCOM¿¡ µû¸£¸é Àεµ¿¡¼­´Â 2025³â±îÁö µ¥ÀÌÅÍ¿Í AI ±â¼ú¿¡ ÀÇÇØ ³ó¾÷ ºÎ¹®¿¡ ¾à 900¾ï ´Þ·¯ÀÇ °¡Ä¡°¡ ºÎ°¡µÈ´Ù°í ÇÕ´Ï´Ù. ¸ðµç ºÐ¾ß¸¦ ÇÕÄ¡¸é ÀΰøÁö´ÉÀº 2025³â±îÁö Àεµ GDP¿¡ ¾à 5,000¾ï ´Þ·¯¸¦ ¿Ã¸± °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

½Ä·®»ý»ê ¼ö¿ä Áõ°¡

½Ä·®»ý»ê ¼ö¿ä Áõ°¡´Â È¿À²ÀûÀÎ ÀÚ¿ø ÀÌ¿ë, ¼öÀ² ±Ø´ëÈ­, Áö¼Ó °¡´ÉÇÑ ½ÇõÀ» ÇÊ¿ä·Î ÇÔÀ¸·Î½á ³ó¾÷¿ë ÀΰøÁö´É(AI)ÀÇ ¼ºÀåÀ» °¡¼ÓÇÕ´Ï´Ù. Á¤¹Ð ³ó¾÷, ¿¹Ãø ºÐ¼®, ÀÚµ¿ ±â°è µîÀÇ AI ±â¼úÀº ÀÚ¿ø Ȱ¿ëÀ» ÃÖÀûÈ­Çϰí ÀÛ¹° ¼öÀ²À» Çâ»ó½ÃŰ°í Æó±â¹°À» ÁÙÀÔ´Ï´Ù. ¼¼°è Àα¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó ³óºÎ´Â ½Ä·® °ø±Þ ¼ö¿ä¸¦ Áö¼ÓÀûÀ¸·Î ÃæÁ·½Ã۱â À§ÇØ AI¸¦ äÅÃÇÕ´Ï´Ù. °í±Þ AI ¿ëµµ´Â ½Ç½Ã°£ ¸ð´ÏÅ͸µ, º´ÇØÃæ °ü¸®, µ¥ÀÌÅÍ Áß½ÉÀÇ ÀÇ»ç °áÁ¤À» ¿ëÀÌÇÏ°Ô ÇÏ°í ³ó¾÷À» º¸´Ù ź·ÂÀûÀÌ°í °úÁ¦¿¡ ´ëÀÀÇϱ⠽±°Ô ÇÔÀ¸·Î½á ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÕ´Ï´Ù.

±â¼ú Àü¹® Áö½Ä ºÎÁ·

³ó¾÷¿ë ÀΰøÁö´É(AI)ÀÇ ±â¼úÀû Àü¹®Áö½ÄÀÇ ºÎÁ·Àº ÀÌ ºÐ¾ß°¡ Á¾·¡ÀÇ ³ó¹ý¿¡ ÀÇÁ¸Çϰí ÷´Ü±â¼ú¿¡ Á¢ÇÒ ±âȸ°¡ ÇÑÁ¤µÇ¾î Àֱ⠶§¹®ÀÔ´Ï´Ù. ±â¼úÀû ³ëÇϿ찡 ºÒÃæºÐÇϱ⠶§¹®¿¡ AIÀÇ ÀáÀç ´É·ÂÀÌ ÃæºÐÈ÷ Ȱ¿ëµÇÁö ¾Ê°í, Çõ½Å, µ¥ÀÌÅÍ ÁÖµµÀÇ ÀÇ»ç°áÁ¤, ³ó¾÷ÀÇ ÀüüÀûÀÎ »ý»ê¼º Çâ»óÀÌ ¹æÇصǰí ÀÖ½À´Ï´Ù. ±× °á°ú AI ±â¼úÀÇ Ã¤¿ë·üÀÌ µÐÈ­µÇ°í ½ÃÀå È®´ë¿Í ÀÌ ºÐ¾ßÀÇ º¯ÇõÀû ¿µÇâÀÌ Á¦Çѵ˴ϴÙ.

AgriTech ½ÅÈï±â¾÷ ÅõÀÚ Áõ°¡

AgriTech ½ÅÈï±â¾÷¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡´Â ÷´Ü AI ±¸µ¿ ¼Ö·ç¼ÇÀÇ Çõ½Å°ú °³¹ßÀ» ÃËÁøÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ÅõÀÚ¸¦ ÅëÇØ ½ÅÈï ±â¾÷Àº ¸Ó½Å·¯´×, ÄÄÇ»ÅÍ ºñÀü, µ¥ÀÌÅÍ ºÐ¼® µîÀÇ AI ±â¼úÀ» ÅëÇØ Á¤¹Ð ³ó¾÷ °­È­, ÀÚ¿ø Ȱ¿ë ÃÖÀûÈ­, ÀÛ¹° ¼öÀ² Çâ»óÀ» ½ÇÇöÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÚ±Ý Á¶´Þ Áõ°¡´Â ¿¬±¸°³¹ßÀ» °¡¼ÓÈ­ÇÏ°í º¸´Ù °ß°íÇϰí È®Àå °¡´ÉÇÑ AI ¿ëµµÀ» ¸¸µé¾î ³ó¾÷ °üÇàÀ» º¯È­½ÃŰ°í »ý»ê¼ºÀ» Çâ»ó½ÃŰ°í ±âÈÄ º¯È­¿Í ½Ä·® ¾Èº¸ µîÀÇ °úÁ¦¸¦ ÇØ°áÇÕ´Ï´Ù.

³ôÀº Ãʱâ ÅõÀÚ ºñ¿ë

³ó¾÷¿ë ÀΰøÁö´É(AI)Àº ÷´Ü ±â¼ú, ÀÎÇÁ¶ó ¹× ¼÷·ÃµÈ ÀηÂÀÌ ÇÊ¿äÇϱ⠶§¹®¿¡ ³ôÀº Ãʱâ ÅõÀÚ ºñ¿ëÀÌ µì´Ï´Ù. ¸Ó½Å·¯´× ¾Ë°í¸®Áò, ·Îº¿ °øÇÐ, IoT ÀåÄ¡ µîÀÇ AI ½Ã½ºÅÛÀ» °³¹ßÇÏ°í ±¸ÇöÇÏ·Á¸é ¸¹Àº ¾çÀÇ ÀÚ±ÝÀÌ ÇÊ¿äÇÕ´Ï´Ù. ±× °á°ú ±¤¹üÀ§ÇÑ µµÀÔÀÌ Áö¿¬µÇ°í ÁøÀÔ À庮ÀÌ »ý°Ü ³ó¾÷ ºÎ¹®ÀÇ ±â¼ú Áøº¸¿Í »ý»ê¼º Çâ»óÀÇ Àü¹ÝÀûÀÎ ÆäÀ̽º°¡ ÀúÇÏµÇ¾î ½ÃÀå ¼ºÀåÀ» ¹æÇØÇÕ´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

COVID-19ÀÇ ´ëÀ¯ÇàÀº ½Äǰ °ø±Þ¸Á¿¡¼­ ÀÚµ¿È­¿Í ź·Â¼ºÀÇ Çʿ伺À» ºÎ°¢½ÃÄÑ ³ó¾÷¿ë ÀΰøÁö´É(AI)ÀÇ Ã¤¿ëÀ» °¡¼ÓÈ­Çß½À´Ï´Ù. ³ëµ¿·Â ºÎÁ·°ú ¹°·ùÀÇ È¥¶õÀº Á¤¹Ð ³ó¾÷, ¿ø°Ý °¨½Ã, ÀÚµ¿ ¼öÈ®À» À§ÇÑ AI ÁÖµµÇü ¼Ö·ç¼Ç¿¡ ´ëÇÑ °ü½ÉÀ» ²ø¾ú½À´Ï´Ù. ±×·¯³ª °æÁ¦ÀÇ ºÒÈ®½Ç¼º°ú °ø±Þ¸ÁÀÇ È¥¶õµµ °úÁ¦°¡ µÇ°í ÀÖÀ¸¸ç, ³ó¾÷¿ë ÀΰøÁö´É(AI) ±â¼úÀÇ ÅõÀÚ ¹× µµÀÔ ½ºÄÉÁÙ¿¡ ¿µÇâÀ» ÁÖ°í ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ·Îº¿ ¹× ÀÚµ¿È­ ºÐ¾ß°¡ ÃÖ´ëÈ­µÉ Àü¸Á

·Îº¿ ¹× ÀÚµ¿È­ ºÐ¾ß´Â À¯¸®ÇÑ ¼ºÀåÀ» ÀÌ·ç´Â °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù. ³ó¾÷ÀÇ ·Îº¿ ¹× ÀÚµ¿È­´Â AI¸¦ Ȱ¿ëÇÏ¿© È¿À²¼º°ú »ý»ê¼ºÀ» ³ôÀÔ´Ï´Ù. ÀÚÀ²ÁÖÇà Æ®·¢ÅÍ, µå·Ð, ·Îº¿ ¼öÈ®±â´Â ½É±â, ±Þ¼ö, ¼öÈ® µîÀÇ Á¤¹Ð ÀÛ¾÷¿¡ AI¸¦ ÀÌ¿ëÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº ÀÛ¹°ÀÇ ½Ç½Ã°£ ¸ð´ÏÅ͸µ ¹× °ü¸®¸¦ °¡´ÉÇÏ°Ô ÇÏ¿© ÀΰǺñ Àý°¨°ú ¼öÈ®·® Áõ°¡¸¦ ½ÇÇöÇÕ´Ï´Ù. AI ÁÖµµÀÇ ÀÚµ¿È­´Â ÀÚ¿øÀÇ ÃÖÀû ÀÌ¿ëÀ» º¸ÀåÇϰí, ³¶ºñ¸¦ ÃÖ¼ÒÈ­Çϰí, º¸´Ù ³ªÀº ÀÛ¹° °ü¸®¿Í Áö¼Ó°¡´É¼ºÀ» À§ÇÑ µ¥ÀÌÅÍ ÁÖµµÀÇ ÀÇ»ç°áÁ¤¿¡ µµ¿òÀÌ µË´Ï´Ù.

ÇöÀå Áغñ ºÎ¹®Àº ¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGR ¿¹»ó

ÇöÀå Áغñ ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀÇ ¼ºÀåÀÌ ¿¹»óµË´Ï´Ù. AI ÁÖµµÇü ³ó¾÷ÀÇ ³óÀå Á¤ºñ´Â Åä¾ç ¼¾¼­, µå·Ð, ¸Ó½Å·¯´× ¾Ë°í¸®Áò°ú °°Àº ±â¼úÀ» »ç¿ëÇÏ¿© Åä¾çÀÇ °Ç°­ »óÅÂ, ¼öºÐ ¼öÁØ, ¿µ¾ç ÇÔ·®À» ºÐ¼®ÇÏ´Â °ÍÀ» Æ÷ÇÔÇÕ´Ï´Ù. ÀÌ µ¥ÀÌÅÍ´Â ³ó¹ÎµéÀÌ °æÀÛ, ½É±â ÀÏÁ¤, Åä¾ç 󸮸¦ ÃÖÀûÈ­ÇÒ ¶§ÀÇ ÁöħÀÌ µÇ¾î ÀÛ¹° ¼öÀ² Çâ»ó, ÅõÀÔ ºñ¿ë Àý°¨, Áö¼Ó °¡´ÉÇÑ ³ó¹ýÀ¸·Î À̾îÁý´Ï´Ù. AI´Â Á¤È®ÇÑ ÇöÀå ¸ÅÇΰú ÀÇ»ç°áÁ¤À» Áö¿øÇÏ¿© ³ó¾÷ÀÇ Àü¹ÝÀûÀÎ È¿À² ¹× »ý»ê¼ºÀ» ³ôÀÔ´Ï´Ù.

ÃÖ´ë Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

¾Æ½Ã¾ÆÅÂÆò¾çÀº ½Ä·® ¼ö¿ä Áõ°¡, Á¤ºÎ ÀÌ´Ï¼ÅÆ¼ºê ¹× ±â¼ú ¹ßÀüÀ¸·Î ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Áß±¹, Àεµ, ÀϺ»°ú °°Àº ±¹°¡´Â Á¤¹Ð ³ó¾÷, ÀÛ¹° ¸ð´ÏÅ͸µ, ÀÚµ¿ ±â°è¸¦ À§ÇÑ AI äÅÃÀ¸·Î ¼±µµÇϰí ÀÖ½À´Ï´Ù. ±Þ¼ÓÇÑ µµ½ÃÈ­, ±â¼úÀÇ Áøº¸, ½Ä»ýȰÀÇ ±âÈ£ÀÇ º¯È­°¡ ½ÃÀå ¿ªÇÐÀ» À籸¼ºÇϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ ´ë±Ô¸ð ³ó¾÷ ±â¹ÝÀº AgriTech ½ÅÈï ±â¾÷¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡¿Í ÇÔ²² AI ¼Ö·ç¼ÇÀÇ Çõ½Å°ú ±¸ÇöÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

À¯·´Àº Áö¿ªÀÇ Á¤¹Ð ³ó¾÷ ±â¼ú¿¡ °ßÀÎµÇ¾î ¿¹Ãø ±â°£ µ¿¾È CAGRÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â ¼Ò±Ô¸ð °¡Á· °æ¿µ ³óÀå°ú ´ë±Ô¸ð »ó¾÷ °æ¿µ ³óÀåÀÌ È¥ÀçµÇ¾î Áö¼Ó°¡´É¼º°ú À¯±â »ý»ê ¹æ½Ä¿¡ ´ëÇÑ ÁÖ¸ñÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. À¯·´ÀÇ Áö¿ø ±ÔÁ¦ ȯ°æ°ú Á¤ºÎÀÇ ÀÌ´Ï¼ÅÆ¼ºê´Â µðÁöÅÐ ³ó¾÷À» Å©°Ô ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ µ¿ÇâÀº À¯·´ ³ó¾÷¿ë ÀΰøÁö´É(AI) ÅëÇÕÀÇ ¹Ì·¡°¡ À¯¸ÁÇÏ´Ù´Â °ÍÀ» º¸¿©ÁÖ¸ç, ÀÌ ºÐ¾ßÀÇ ¿î¿µ »óȲ¿¡ Çõ¸íÀ» °¡Á®´ÙÁִ ż¼°¡ °®Ãß¾îÁ® ÀÖ½À´Ï´Ù.

¹«·á ¸ÂÃã¼³Á¤ ¼­ºñ½º :

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀû ÇÁ·ÎÆÄÀϸµ(3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ ÀÀÇÑ ÁÖ¿ä±¹ ½ÃÀå Ãß°è, ¿¹Ãø ¹× CAGR(ÁÖ : Ÿ´ç¼º È®Àο¡ µû¸§)
  • °æÀï º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû Á¸Àç ¹× Àü·«Àû Á¦ÈÞ¿¡ ±â¹ÝÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç Á¤º¸¿ø
    • 1Â÷ Á¶»ç Á¤º¸¿ø
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ±â¼ú ºÐ¼®
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾ »ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
  • ±¸¸ÅÀÚÀÇ Çù»ó·Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô ÁøÀÔ¾÷ÀÚÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ³ó¾÷¿ë ÀΰøÁö´É(AI) ½ÃÀå : ÀÛ¹° À¯Çüº°

  • °î·ù ¹× °î¹°
  • Áö¹æÁ¾ÀÚ ¹× Äá·ù
  • °úÀÏ ¹× ä¼Ò
  • ±âŸ ÀÛ¹° À¯Çü

Á¦6Àå ¼¼°èÀÇ ³ó¾÷¿ë ÀΰøÁö´É(AI) ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • Çϵå¿þ¾î
    • ¼¾¼­
    • µå·Ð
    • ·Îº¿
  • ¼ÒÇÁÆ®¿þ¾î
    • ÀΰøÁö´É Ç÷§Æû
    • ÀΰøÁö´É ¼Ö·ç¼Ç
  • ¼­ºñ½º
    • Àü¹® ¼­ºñ½º
    • ¸Å´ÏÁöµå ¼­ºñ½º

Á¦7Àå ¼¼°èÀÇ ³ó¾÷¿ë ÀΰøÁö´É(AI) ½ÃÀå : Àü°³ ¸ðµåº°

  • Ŭ¶ó¿ìµå ±â¹Ý
  • ¿ÂÇÁ·¹¹Ì½º

Á¦8Àå ¼¼°èÀÇ ³ó¾÷¿ë ÀΰøÁö´É(AI) ½ÃÀå : ±â¼úº°

  • ¸Ó½Å·¯´×
  • ÄÄÇ»ÅÍ ºñÀü
  • ¿¹Ãø ºÐ¼®
  • ÀÚ¿¬¾ð¾îó¸®(NLP)
  • ·Îº¿ °øÇаú ÀÚµ¿È­
  • ±âŸ ±â¼ú

Á¦9Àå ¼¼°èÀÇ ³ó¾÷¿ë ÀΰøÁö´É(AI) ½ÃÀå : ¿ëµµº°

  • Á¤¹Ð³ó¾÷
  • °¡Ãà ¸ð´ÏÅ͸µ
  • Åä¾ç °ü¸®
  • ÇöÀå Áغñ
  • ±âŸ ¿ëµµ

Á¦10Àå ¼¼°èÀÇ ³ó¾÷¿ë ÀΰøÁö´É(AI) ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • ³ó¹Î
  • ³ó¾÷ °ü·Ã »ê¾÷
  • ¿¬±¸±â°ü
  • Á¤ºÎ±â°ü
  • ±âŸ ÃÖÁ¾ »ç¿ëÀÚ

Á¦11Àå ¼¼°èÀÇ ³ó¾÷¿ë ÀΰøÁö´É(AI) ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦12Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷ ¹× ÇÕÀÛ ÅõÀÚ
  • Àμö ¹× ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦13Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • IBM Corporation
  • Microsoft Corporation
  • Deere & Company
  • Bayer AG
  • Trimble Inc.
  • AG Leader Technology
  • Cropin Technology Solutions Pvt. Ltd.
  • Agribotix LLC
  • Prospera Technologies
  • Descartes Labs
  • Taranis
  • Corteva
  • aWhere Inc.
  • Ceres Imaging
  • Gamaya
AJY 24.06.25

According to Stratistics MRC, the Global Artificial Intelligence in Agriculture Market is accounted for $1.95 billion in 2024 and is expected to reach $6.53 billion by 2030 growing at a CAGR of 25.2% during the forecast period. Artificial Intelligence in agriculture refers to the application of machine learning, computer vision, robotics, and data analytics to enhance farming practices. AI-driven technologies enable precision farming by analyzing data from various sources such as soil sensors, weather forecasts, and satellite imagery. These technologies assist in optimizing crop yields, reducing resource usage, and minimizing environmental impact. Tasks such as pest detection, crop monitoring, and automated harvesting are streamlined through AI, leading to improved efficiency, sustainability, and profitability in agricultural operations.

According to NASSCOM, by 2025, approximately USD 90 billion of value will be added to the agriculture sector through data and AI technologies in India. With all the sectors combined, artificial intelligence is projected to add approximately USD 500 billion to India's GDP by 2025.

Market Dynamics:

Driver:

Increasing demand for food production

Increasing food production demand drives AI growth in agriculture by necessitating efficient resource use, yield maximization, and sustainable practices. AI technologies, such as precision farming, predictive analytics, and automated machinery, optimize resource use, improve crop yields, and reduce waste. As the global population rises, farmers adopt AI to meet food supply demands sustainably. Advanced AI applications facilitate real-time monitoring, pest and disease management, and data-driven decision-making, making agriculture more resilient and responsive to challenges, thereby propelling market growth.

Restraint:

Lack of technical expertise

The lack of technical expertise in Artificial Intelligence (AI) in agriculture stems from the sector's traditional reliance on conventional farming methods and limited exposure to advanced technologies. Insufficient technical know-how leads to underutilization of AI's potential, hindering innovation, data-driven decision-making and overall productivity improvements in agriculture. Consequently, the adoption rate of AI technologies slows, limiting the market's expansion and its transformative impact on the sector.

Opportunity:

Rising investments in agritech start-ups

Rising investments in agritech start-ups fosters innovation and development of advanced AI-driven solutions. These investments enable start-ups to enhance precision farming, optimize resource utilization, and improve crop yield through AI technologies like machine learning, computer vision, and data analytics. Increased funding accelerates research and development, leading to more robust and scalable AI applications, thereby transforming agricultural practices, boosting productivity, and addressing challenges such as climate change and food security.

Threat:

High initial investment costs

Artificial Intelligence in agriculture involves high initial investment costs due to the need for advanced technologies, infrastructure, and skilled personnel. Developing and implementing AI systems, such as machine learning algorithms, robotics, and IoT devices, requires substantial financial resources. Consequently, market growth is hampered as widespread implementation is slowed, creating a barrier to entry and reducing the overall pace of technological advancement and productivity improvements in the agricultural sector.

Covid-19 Impact

The covid-19 pandemic accelerated the adoption of AI in agriculture by highlighting the need for automation and resilience in food supply chains. Labor shortages and disrupted logistics spurred interest in AI-driven solutions for precision farming, remote monitoring, and automated harvesting. However, economic uncertainties and disrupted supply chains also posed challenges, affecting investment and implementation timelines for AI technologies in the agricultural sector.

The robotics & automation segment is expected to be the largest during the forecast period

The robotics & automation segment is estimated to have a lucrative growth. Robotics and automation in agriculture leverage AI to enhance efficiency and productivity. Autonomous tractors, drones, and robotic harvesters use AI for precision tasks like planting, watering, and harvesting. These technologies enable real-time monitoring and management of crops, reducing labor costs and increasing yields. AI-driven automation ensures optimal use of resources, minimizes waste, and helps in making data-driven decisions for better crop management and sustainability.

The field preparation segment is expected to have the highest CAGR during the forecast period

The field preparation segment is anticipated to witness the highest CAGR growth during the forecast period. Field preparation in AI-driven agriculture involves using technologies like soil sensors, drones, and machine learning algorithms to analyze soil health, moisture levels, and nutrient content. This data guides farmers in optimizing tillage, planting schedules, and soil treatment, leading to improved crop yields, reduced input costs, and sustainable farming practices. AI aids in precise field mapping and decision-making, enhancing overall efficiency and productivity in agriculture.

Region with largest share:

Asia Pacific is projected to hold the largest market share during the forecast period due to increasing food demand, government initiatives, and advancements in technology. Countries like China, India, and Japan are leading in adopting AI for precision farming, crop monitoring, and automated machinery. Rapid urbanization, technological advancements, and shifting dietary preferences are reshaping the market dynamics. The region's large agricultural base, coupled with rising investments in AgriTech start-ups, fosters innovation and implementation of AI solutions.

Region with highest CAGR:

Europe is projected to have the highest CAGR over the forecast period, driven by the region's precision farming techniques. Europe is marked by a mix of small-scale family farms and large commercial operations, with an increasing focus on sustainability and organic production methods. Europe's supportive regulatory environment and government initiatives are highly promoting digital agriculture. This trend indicates a promising future for AI integration in European agriculture, poised to revolutionize the sector's operational landscape.

Key players in the market

Some of the key players profiled in the Artificial Intelligence in Agriculture Market include IBM Corporation, Microsoft Corporation, Deere & Company, Bayer AG, Trimble Inc., AG Leader Technology, Cropin Technology Solutions Pvt. Ltd., Agribotix LLC, Prospera Technologies, Descartes Labs, Taranis, Corteva, aWhere Inc., Ceres Imaging and Gamaya.

Key Developments:

In April 2024, Cropin launched Aksara, a generative AI system for climate smart agriculture. Aksara will cover nine crops such as paddy, wheat, maize, sorghum, barley, cotton, sugarcane, soybean, and millets for 5 countries in the Indian subcontinent. This generative AI system can suggest farmers which inputs to use for crops like rice or maize under specific agro-climatic conditions or provide climate smart agri-advisories, the company said in a statement.

In June 2023, Deere & Company has unveiled its first fully autonomous tractor, which is already operational on select farms and available for purchase. This tractor is a product of 20 years of AI development and is designed to complete tasks on time, every time, and at a high level of quality.

Crop Types Covered:

  • Cereals & Grains
  • Oilseeds & Pulses
  • Fruits & Vegetables
  • Other Crop Types

Components Covered:

  • Hardware
  • Software
  • Services

Deployment Modes Covered:

  • Cloud-Based
  • On-Premises

Technologies Covered:

  • Machine Learning
  • Computer Vision
  • Predictive Analytics
  • Natural Language Processing (NLP)
  • Robotics & Automation
  • Other Technologies

Applications Covered:

  • Precision Farming
  • Livestock Monitoring
  • Soil Management
  • Field Preparation
  • Other Applications

End Users Covered:

  • Farmers
  • Agribusinesses
  • Research Organizations
  • Government Bodies
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Artificial Intelligence in Agriculture Market, By Crop Type

  • 5.1 Introduction
  • 5.2 Cereals & Grains
  • 5.3 Oilseeds & Pulses
  • 5.4 Fruits & Vegetables
  • 5.5 Other Crop Types

6 Global Artificial Intelligence in Agriculture Market, By Component

  • 6.1 Introduction
  • 6.2 Hardware
    • 6.2.1 Sensors
    • 6.2.2 Drones
    • 6.2.3 Robots
  • 6.3 Software
    • 6.3.1 Artificial Intelligence Platforms
    • 6.3.2 Artificial Intelligence Solutions
  • 6.4 Services
    • 6.4.1 Professional Services
    • 6.4.2 Managed Services

7 Global Artificial Intelligence in Agriculture Market, By Deployment Mode

  • 7.1 Introduction
  • 7.2 Cloud-Based
  • 7.3 On-Premises

8 Global Artificial Intelligence in Agriculture Market, By Technology

  • 8.1 Introduction
  • 8.2 Machine Learning
  • 8.3 Computer Vision
  • 8.4 Predictive Analytics
  • 8.5 Natural Language Processing (NLP)
  • 8.6 Robotics & Automation
  • 8.7 Other Technologies

9 Global Artificial Intelligence in Agriculture Market, By Application

  • 9.1 Introduction
  • 9.2 Precision Farming
  • 9.3 Livestock Monitoring
  • 9.4 Soil Management
  • 9.5 Field Preparation
  • 9.6 Other Applications

10 Global Artificial Intelligence in Agriculture Market, By End User

  • 10.1 Introduction
  • 10.2 Farmers
  • 10.3 Agribusinesses
  • 10.4 Research Organizations
  • 10.5 Government Bodies
  • 10.6 Other End Users

11 Global Artificial Intelligence in Agriculture Market, By Geography

  • 11.1 Introduction
  • 11.2 North America
    • 11.2.1 US
    • 11.2.2 Canada
    • 11.2.3 Mexico
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 Italy
    • 11.3.4 France
    • 11.3.5 Spain
    • 11.3.6 Rest of Europe
  • 11.4 Asia Pacific
    • 11.4.1 Japan
    • 11.4.2 China
    • 11.4.3 India
    • 11.4.4 Australia
    • 11.4.5 New Zealand
    • 11.4.6 South Korea
    • 11.4.7 Rest of Asia Pacific
  • 11.5 South America
    • 11.5.1 Argentina
    • 11.5.2 Brazil
    • 11.5.3 Chile
    • 11.5.4 Rest of South America
  • 11.6 Middle East & Africa
    • 11.6.1 Saudi Arabia
    • 11.6.2 UAE
    • 11.6.3 Qatar
    • 11.6.4 South Africa
    • 11.6.5 Rest of Middle East & Africa

12 Key Developments

  • 12.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 12.2 Acquisitions & Mergers
  • 12.3 New Product Launch
  • 12.4 Expansions
  • 12.5 Other Key Strategies

13 Company Profiling

  • 13.1 IBM Corporation
  • 13.2 Microsoft Corporation
  • 13.3 Deere & Company
  • 13.4 Bayer AG
  • 13.5 Trimble Inc.
  • 13.6 AG Leader Technology
  • 13.7 Cropin Technology Solutions Pvt. Ltd.
  • 13.8 Agribotix LLC
  • 13.9 Prospera Technologies
  • 13.10 Descartes Labs
  • 13.11 Taranis
  • 13.12 Corteva
  • 13.13 aWhere Inc.
  • 13.14 Ceres Imaging
  • 13.15 Gamaya
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦